Practice Prelim 3 Solutions, Math 191, Fall 2005

Problem 1) Decide, giving reasons, whether the following series converges absolutely, converges conditionally, or diverges?

Note: all the series have positive terms, so either converge absolutely, or diverge. There is no conditional convergence.

$$
\text { a) } \quad \sum_{n=1}^{\infty} \frac{(\ln n)^{2}}{n^{3 / 2}} \quad[10 \text { points }]
$$

$\frac{(\ln n)^{2}}{n^{3 / 2}}=\frac{1}{n^{\frac{5}{4}}} .\left(\frac{\ln n}{n^{\frac{1}{8}}}\right)^{2}$ Since $\left(\frac{\ln n}{n^{\frac{1}{8}}}\right) \rightarrow 0$ by L'Hopital's rule as $n \rightarrow \infty$ we see that for n large enough $\frac{(\ln n)^{2}}{n^{3 / 2}}=\frac{1}{n^{\frac{5}{4}}}$. $\left(\frac{\ln n}{n^{\frac{1}{8}}}\right)^{2} \leq \frac{1}{n^{\frac{5}{4}}}$. Since $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{5}{4}}}$ converges as it is a p-series with $p=\frac{5}{4}>1$, it follows by the Comparison Test that $\sum_{n=1}^{\infty} \frac{(\ln n)^{2}}{n^{3 / 2}}$ also converges.

$$
\text { b) } \sum_{n=2}^{\infty} \frac{1}{n+\sin n} \quad[5 \text { points }]
$$

$\frac{n+\sin n}{n}=1+\frac{\sin n}{n} \rightarrow 1$ as $n \rightarrow \infty$ since $|\sin n|$ is bounded. Comparison with the harmonic series $\sum_{n=2}^{\infty} \frac{1}{n}$, which diverges, therefore shows by the Limit Comparison Test that
$\sum_{n=2}^{\infty} \frac{1}{n+\sin n}$ also diverges.

$$
\text { c) } \sum_{n=2}^{\infty} \frac{n \sqrt{n+1}}{n^{3}+3 n+1} \quad[5 \text { points }]
$$

Let a_{n} be the $n^{t h}$ term of the above series, and let b_{n} be $\frac{1}{n^{\frac{3}{2}}}$. Then $\frac{a_{n}}{b_{n}}=$ $\frac{n^{\frac{5}{2}} \sqrt{n+1}}{n^{3}+3 n+1}=\frac{n^{3} \sqrt{\frac{n+1}{n}}}{n^{3}+3 n+1}$. Dividing both the numerator and the denominator by n^{3} shows that $\frac{a_{n}}{b_{n}}=\frac{\sqrt{\frac{n+1}{n}}}{1+\frac{3}{n}+\frac{1}{n^{2}}}$. ¿From this it follows $\frac{a_{n}}{b_{n}} \rightarrow 1$ as $n \rightarrow \infty$. Since $\sum_{n=2}^{\infty} \frac{1}{n^{\frac{3}{2}}}$ converges (because it is a p-series with $p=\frac{3}{2}>1$), it follows from the Limit Comparison Test that $\sum_{n=2}^{\infty} \frac{n \sqrt{n+1}}{n^{3}+3 n+1}$ also converges.

$$
\text { d) } \sum_{n=1}^{\infty} \frac{(2 n+1)!^{2}}{(3 n)!} \quad[10 \text { points }]
$$

Let a_{n} be the $n^{\text {th }}$ term of the above series. Then $\frac{a_{n+1}}{a_{n}}=\frac{(2 n+3)!^{2}}{(3 n+3)!} \cdot \frac{(3 n)!}{(2 n+1)!^{2}}=$ $\frac{(2 n+2)^{2}(2 n+3)^{2} \text {. }}{(3 n+1)(3 n+2)(3 n+3)}$. The numerator is a $4^{t h}$ degree polynomial in n, while the denominator is of degree 3.So $\frac{a_{n+1}}{a_{n}} \rightarrow \infty$ as $n \rightarrow \infty$. By the Ratio Test (or by the $n^{t h}$ term test) this shows that the series diverges.

Problem 2 a)The factor $\frac{1}{1+x}$ can be expanded as a geometric series and hence the Maclaurin series for $f(x)$ is:

$$
f(x)=x^{2}\left[1-x+x^{2}-x^{3}+\ldots+(-1)^{n-1} x^{n-1}+\ldots\right]
$$

Hence,

$$
f(x)=\left[x^{2}-x^{3}+x^{4}-x^{5}+\ldots+(-1)^{n-1} x^{n+1}+\ldots\right]
$$

By applying the ratio test, it can be seen that the series converges absolutely for $|x|<1$.

Problem 2 b)At $x=1$,

$$
|f(x)|=1+1+1+\ldots
$$

which diverges. Hence, the series does not converge absolutely at $x=1$.
Problem 3 a) The series can be split into a sum of two geometric series:

$$
1+\frac{2}{10}+\frac{2}{10^{4}}+\frac{2}{10^{7}}+\frac{3}{10^{2}}+\frac{3}{10^{5}}+\frac{3}{10^{8}}+\ldots
$$

Hence, the sum is:

$$
\text { Sum }=1+\frac{2}{10\left[1-\frac{1}{10^{3}}\right]}+\frac{3}{10^{2}\left[1-\frac{1}{10^{3}}\right]} \quad(\text { No } \quad \text { need to simplify this })
$$

Problem 3 b)This series is in fact an alternating series in disguise! To see this, write out the first few terms...

$$
\sum_{n=1}^{\infty}\left(\sin \frac{1}{2 n}-\sin \frac{1}{2 n+1}\right)=\sin \frac{1}{2}-\sin \frac{1}{3}+\sin \frac{1}{4}-\sin \frac{1}{5}+-+\ldots
$$

Now $\sin \frac{1}{n}>0$ for all $n \geq 1$, and further,

$$
\frac{d}{d x} \sin \frac{1}{x}=-\frac{1}{x^{2}} \cos \frac{1}{x}<0 \quad x>1
$$

Thus $\left\{\sin \frac{1}{n}\right\}_{n=1}^{\infty}$ is a decreasing nonnegative sequence. Hence the alternating series theorem gives that the series converges.
Problem 4) Evaluate the integral

$$
-\int_{0}^{1} \ln x d x
$$

The first thing to notice is that the integrand is singular at $x=0$, so this is an improper integral. Now we use integration by parts to compute...

$$
\begin{aligned}
-\int_{0}^{1} \ln x d x & =-\lim _{a \rightarrow 0^{+}} \int_{a}^{1} \ln x d x \\
& =-\lim _{a \rightarrow 0^{+}}\left(\left.x \ln x\right|_{a} ^{1}-\int_{a}^{1} \frac{x}{x} d x\right) \\
& =-\lim _{a \rightarrow 0^{+}}\left(x \ln x-\left.x\right|_{a} ^{1}\right. \\
& =-\lim _{a \rightarrow 0^{+}}(1 \ln 1-1-a \ln a+a) \\
& =1
\end{aligned}
$$

where in the last statement, we've used the fact that

$$
\begin{aligned}
\lim _{a \rightarrow 0^{+}} a \ln a & =\lim _{a \rightarrow 0^{+}} \frac{\ln a}{1 / a} \\
& =\lim _{a \rightarrow 0^{+}} \frac{1 / a}{-1 / a^{2}}=0
\end{aligned}
$$

Problem 5) According to the error bound formula for Simpson's rule, how many subintervals should you use to be sure of estimating the value of

$$
\ln 3=\int_{1}^{3} \frac{1}{x} d x
$$

to an accuracy of better than 10^{-2} in absolute value?
The error formula for Simpson's rule is

$$
\begin{equation*}
E_{s} \leq \frac{(b-a)^{5}}{180 n^{4}} \max _{x \in[a, b]}\left|f^{(4)}(x)\right| . \tag{1}
\end{equation*}
$$

Hence we need to compute $f^{(4)}$ for $f(x)=1 / x$:

$$
\begin{aligned}
f(x) & =\frac{1}{x} \\
f^{\prime}(x) & =-\frac{1}{x^{2}} \\
f^{\prime \prime}(x) & =\frac{2}{x^{3}} \\
f^{(3)}(x) & =-\frac{6}{x^{4}} \\
f^{(4)}(x) & =\frac{24}{x^{5}}
\end{aligned}
$$

Now $f^{(4)}$ is evidently a decreasing function of x, so it attains its maximum at the lower endpoint of $[1,3]$, so

$$
\max _{x \in[1,3]}\left|f^{(4)}(x)\right|=f^{(4)}(1)=24
$$

Now, rearranging Equation 1, we have

$$
\begin{aligned}
n & \geq\left(\frac{(b-a)^{5}}{180 E_{s}} \max _{x \in[a, b]}\left|f^{(4)}(x)\right|\right)^{1 / 4} \\
& >\left(\frac{2^{5}}{18010^{-2}} 24\right)^{1 / 4} \approx 4.5449
\end{aligned}
$$

Now since the number of subintervals must be even, we require 6 subintervals or more to approximate the integral.

