Math 191 - Fall, 2004 - Prelim I "Solutions"
 9/21/04

1a. By the Fundamental Theorem of Calculus we have

$$
\frac{d}{d x} \int_{0}^{x} \cos t d t=\cos x
$$

1b. Let $u=\sin x \Rightarrow \frac{d u}{d x}=\cos x$. Then by the Fundamental Theorem and the Chain Rule we have

$$
\frac{d}{d x} \int_{0}^{\sin x} t^{2} d t=\left(\frac{d}{d u} \int_{0}^{u} t^{2} d t\right) \frac{d u}{d x}=u^{2} \frac{d u}{d x}=\sin ^{2} x \cos x
$$

2a. Let $u=1+x^{3} \Rightarrow d u=3 x^{2} d x$, so

$$
\int_{0}^{2} 3 x^{2} \sqrt{1+x^{3}} d x=\int_{1}^{9} \sqrt{u} d u=\left[\frac{2}{3} u^{3 / 2}\right]_{1}^{9}=\frac{2}{3}\left(9^{3 / 2}-1^{3 / 2}\right)=\frac{2}{3}(27-1)=\frac{52}{3} .
$$

2b. Let $u=\sin x \Rightarrow d u=\cos x d x$, so

$$
\int_{0}^{\pi / 2} \cos x \cos (\sin x) d x=\int_{0}^{1} \cos u d u=[\sin u]_{0}^{1}=\sin 1
$$

3. The error formula for the trapezoidal rule is $\left|E_{T}\right| \leq \frac{b-a}{12} h^{2} M$ where M is any upper bound on $\left|f^{\prime \prime}\right|$. In this problem we have $b=2, a=0, h=\frac{b-a}{n}=\frac{2}{n}$, and $f^{\prime \prime}(x)=6 x+4$. Therefore, since $\left|f^{\prime \prime}\right| \leq 6 \cdot 2+4=16$ on $[0,2]$ we have $M=16$. In order to make $\left|E_{T}\right|<\frac{1}{100}$, we need

$$
\begin{aligned}
\frac{b-a}{12} h^{2} M=\frac{2}{12}\left(\frac{2}{n}\right)^{2} \cdot 16 & <\frac{1}{100} \\
\frac{2^{5}}{3 n^{2}} & <\frac{1}{2^{2} \cdot 5^{2}} \\
n^{2} & >\frac{2^{7} \cdot 5^{2}}{3} \\
n & >\sqrt{\frac{2^{7} \cdot 5^{2}}{3}} \\
n & >2^{3} \cdot 5 \sqrt{\frac{2}{3}}=40 \sqrt{\frac{2}{3}} .
\end{aligned}
$$

Since $\sqrt{\frac{2}{3}}<1$, we can choose $n=40$ to make the error less than $\frac{1}{100}$.
4a. By definition, $\operatorname{av}(f)=\frac{1}{b-a} \int_{a}^{b} f(x) d x$. Therefore, $\operatorname{av}(f)$ over [0, 2] is given by $\frac{1}{2} \int_{0}^{2} f(x) d x$. Using one of our rules for definite integrals we have $\int_{0}^{2} f(x) d x=\int_{0}^{1} f(x) d x+\int_{1}^{2} f(x) d x$. Since av (f) over $[0,1]$ is 8 we have $\int_{0}^{1} f(x) d x=(1-0) \cdot 8=8$ and since $\operatorname{av}(f)$ over [0,2] is 4 we have $\int_{1}^{2} f(x) d x=(2-1) \cdot 4=4$. Therefore, $\operatorname{av}(f)$ over $[0,2]$ is $\operatorname{av}(f)=\frac{1}{2}(8+4)=6$.

4b. To get $\operatorname{av}(f)$ over [3,6] we use the same reasoning as above. By definition, $\operatorname{av}(f)=\frac{1}{6-3} \int_{3}^{6} f(x) d x=$ $\frac{1}{3} \int_{3}^{6} f(x) d x$. Since $\operatorname{av}(f)$ over $[3,4]$ is 3 we have $\int_{3}^{4} f(x) d x=(4-3) \cdot 3=3$ and since $\operatorname{av}(f)$ over $[4,6]$ is 9 we have $\int_{4}^{6} f(x) d x=(6-4) \cdot 9=18$. Therefore, $\operatorname{av}(f)$ on $[3,6]$ is $\operatorname{av}(f)=\frac{1}{3}\left(\int_{3}^{4} f(x) d x+\int_{4}^{6} f(x) d x\right)=$ $\frac{1}{3}(3+18)=7$.
5. The area of each cross section is given by $A(x)=\frac{1}{2}[s(x)]^{2}$ where $s(x)=\left(2-x^{2}\right)-\left(-6+x^{2}\right)=8-2 x^{2}$. The parabolas intersect at $x= \pm 2$ so the volume is given by:

$$
\begin{aligned}
\text { volume } & =\int_{-2}^{2} A(x) d x=\int_{-2}^{2} \frac{1}{2}\left(8-2 x^{2}\right)^{2} d x \\
& =\frac{1}{2} \int_{-2}^{2} 64-32 x^{2}+4 x^{4} d x=\frac{1}{2}\left[64 x-\frac{32}{3} x^{3}+\frac{4}{5} x^{5}\right]_{-2}^{2}=\frac{1024}{15} .
\end{aligned}
$$

6. To find the volume we use washers. The inner radii are given by $r(y)=\sin y$ and the outer radii are given by $R(y)=2-\cos y$. Therefore, the volume is:

$$
\begin{aligned}
\text { volume } & =\int_{0}^{\pi} \pi\left[R(y)^{2}-r(y)^{2}\right] d y=\int_{0}^{\pi} \pi\left[(2-\cos y)^{2}-(\sin y)^{2}\right] d y \\
& =\pi \int_{0}^{\pi} 4-4 \cos y+\cos ^{2} y-\sin ^{2} y d y=\pi \int_{0}^{\pi} 4-4 \cos y+\cos 2 y d y \\
& =\pi\left[4 y-4 \sin y+\frac{1}{2} \sin 2 y\right]_{0}^{\pi}=4 \pi^{2}
\end{aligned}
$$

7. To find the volume we use cylindrical shells. The heights of the shells are given by $f(x)=12\left(x^{2}-x^{3}\right)$. Therefore, the volume is:

$$
\begin{aligned}
\text { volume } & =\int_{0}^{1} 2 \pi x f(x) d x=\int_{0}^{1} 2 \pi x\left[12\left(x^{2}-x^{3}\right)\right] d x \\
& =24 \pi \int_{0}^{1} x^{3}-x^{4} d x=24 \pi\left[\frac{1}{4} x^{4}-\frac{1}{5} x^{5}\right]_{0}^{1}=\frac{6 \pi}{5}
\end{aligned}
$$

