HW 14 Solutions

11.6: 6 converges by the Alternating Series Test since f(z) = B2 = f/(z) = 1222 < 0 when 2 > e = f(2)
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converges by the Direct Comparison Test since
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11.6: 39 converges conditionally since
of positive terms which converges to 0 = Z
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11.7: 10
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we have Z 2 a divergent series
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a. the radius is 1; the interval of convergence is 0 < x < 2
b. the interval of absolute convergence is 0 < = < 2
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c. the series converges conditionally at z =0
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a. the radius is oco; the series converges for all
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b. the series converges absolutely for all x

c. there are no values for which the series converges conditionally
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a. the radius is %; the interval of convergence is —3 < x < —2
b. the interval of absolute convergence is —3 < x < —2
c. there are no values for which the series converges conditionally
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11.7: 24 lim |2 <1 = lim (n+ Dl — 4) <1=|z—4| lim (n+1) <1 = only z = 4 satisfies this
inequality

a. the radius is 0; the series converges only for all z =4
b. the series converges absolutely only for z = 4

c. there are no values for which the series converges conditionally
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11.8: 21 f(z) = 2 — 20 +4 = f'(z) = 322 -2, f'(z) = 62 = f"(z) = 6 = fM(x) = 0if n > 4
f(2) =8, f'(2) =10, f"(2) =12, f"(2) =6, fM(2)=0ifn>4= 2% 20 +4 =8+ 10(x — 2) +
R2@—-2)2+5(x-2)>=8+10(x —2) +6(z — 2)* + (z — 2)*



