Math 1920 Homework 1 Selected Solutions

13.1

PQ2)
$\|-3 \mathbf{a}\|=|-3|\|\mathbf{a}\|=3 \cdot 5=15$.
44)

If $\mathbf{v}=4 \mathbf{i}+3 \mathbf{j}$ then

$$
\mathbf{e}_{\mathbf{v}}=\frac{\mathbf{v}}{\|\mathbf{v}\|}=\frac{4 \mathbf{i}+3 \mathbf{j}}{\sqrt{4^{2}+3^{2}}}=\frac{4}{5} \mathbf{i}+\frac{3}{5} \mathbf{j}
$$

consequently the vector we want is

$$
3 \mathbf{e}_{\mathbf{v}}=\frac{12}{5} \mathbf{i}+\frac{9}{5} \mathbf{j}
$$

64)

We resolve the vectors into horizontal and vertical components

force	vertical component	horizontal component				
\mathbf{F}_{1}	$\left\\|\mathbf{F}_{1}\right\\|$	0				
\mathbf{F}_{2}	$\sin \left(45^{\circ}\right)\left\\|\mathbf{F}_{2}\right\\|$	$\cos \left(45^{\circ}\right)\left\\|\mathbf{F}_{2}\right\\|$				
20	$\sin \left(30^{\circ}\right) \cdot 20$	$\cos \left(30^{\circ}\right) \cdot 20$				

As the forces are balanced we know

$$
\left\|\mathbf{F}_{1}\right\|=\sin \left(45^{\circ}\right)\left\|\mathbf{F}_{2}\right\|+\sin \left(30^{\circ}\right) \cdot 20, \quad \cos \left(45^{\circ}\right)\left\|\mathbf{F}_{2}\right\|=\cos \left(30^{\circ}\right) \cdot 20
$$

From the second equation we have

$$
\left\|\mathbf{F}_{2}\right\|=20 \cdot \frac{\sqrt{3}}{2} \cdot \sqrt{2}=10 \sqrt{6}
$$

Using this in the first equation we find

$$
\left\|\mathbf{F}_{1}\right\|=\frac{1}{\sqrt{2}} \cdot 10 \sqrt{6}+\frac{1}{2} \cdot 20=10+10 \sqrt{3}
$$

13.2

PQ2)
The components of \mathbf{v} do not depend on its basepoint, so $\langle 3,2,1\rangle$.

PQ4)

$\overrightarrow{Q P}=\langle 2,1,0\rangle$ so (c) is a direction vector but neither of (a) nor (b) are.

PQ6)

True.
4)
(A) and (C) are right-hand ruled, but (B) is not.
34)
$\mathbf{r}(t)=\langle 4,0,8\rangle+t\langle 1,0,1\rangle=\langle 4+t, 0,8+t\rangle$.
46)

We have a point on the line: $(4,9,8)$. We need a direction vector. The line is perpendicular to the $y z$-plane, and so it is parallel to anything perpendicular to that plane, i.e., to the x-axis. Hence, we can use $\langle 1,0,0\rangle$ as a direction vector and then a parametrization is

$$
\mathbf{r}(t)=\langle 4,9,8\rangle+t\langle 1,0,0\rangle
$$

52)

If \mathbf{r}_{1} and \mathbf{r}_{2} intersect, then there are values of t and s so that

$$
\begin{aligned}
\langle 2,1,1\rangle+t\langle-4,0,1\rangle & =\langle-4,1,5\rangle+s\langle 2,1,-2\rangle, \\
\langle 2-4 t, 1,1+t\rangle & =\langle-4+2 s, 1+s, 5-2 s\rangle
\end{aligned}
$$

From the y-coordinate we derive that $s=0$ and so then the first coordinate implies that $\frac{3}{2}=t$, where as the third implies $t=4$, and so there is no solution and so no intercept.

13.3

PQ2)
The angle is obtuse as

$$
\mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta
$$

where θ is the angle we are after. So, $\cos \theta<0$ which implies $\theta \in(\pi / 2, \pi)$.

PQ4)

The projection of \mathbf{v} along \mathbf{v} is \mathbf{v} as

$$
\mathbf{v}_{\| \mathbf{v}}=\left(\frac{\mathbf{v} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}=\mathbf{v}
$$

PQ6)

$\mathbf{e}_{\mathbf{u}} \cdot \mathbf{e}_{\mathbf{v}}$ is correct as

$$
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}=\mathbf{e}_{\mathbf{u}} \cdot \mathbf{e}_{\mathbf{v}}
$$

46)

a)

$$
\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\| \cdot\|\mathbf{w}\| \cos \theta=2 \cdot 3 \cdot \cos \left(120^{\circ}\right)=6 \cdot\left(-\frac{1}{2}\right)=-3
$$

b)

$$
\begin{aligned}
\|2 \mathbf{v}+\mathbf{w}\| & =\sqrt{(2 \mathbf{v}+\mathbf{w}) \cdot(2 \mathbf{v}+\mathbf{w})} \\
& =\sqrt{4 \mathbf{v} \cdot \mathbf{v}+\mathbf{w} \cdot \mathbf{w}+4 \mathbf{v} \cdot \mathbf{w}} \\
& =\sqrt{4 \cdot 4+9+4 \cdot(-3)} \\
& =\sqrt{13}
\end{aligned}
$$

c)

$$
\begin{aligned}
\|2 \mathbf{v}-3 \mathbf{w}\| & =\sqrt{(2 \mathbf{v}-3 \mathbf{w}) \cdot(2 \mathbf{v}-3 \mathbf{w})} \\
& =\sqrt{4 \mathbf{v} \cdot \mathbf{v}+9 \mathbf{w} \cdot \mathbf{w}-12 \mathbf{v} \cdot \mathbf{w}} \\
& =\sqrt{4 \cdot 4+9 \cdot 9-12 \cdot(-3)} \\
& =\sqrt{133}
\end{aligned}
$$

74)

$A=(0,0,1), B=(1,0,0)$, and $D=(0,1,0)$ so

$$
\begin{array}{cl}
\overrightarrow{A B}=\langle 1,0,-1\rangle, & \overrightarrow{A D}=\langle 0,1,-1\rangle \\
\|\overrightarrow{A B}\|=\sqrt{2}, & \|\overrightarrow{A D}\|=\sqrt{2} .
\end{array}
$$

Therefore,

$$
\cos \theta=\frac{\overrightarrow{A B} \cdot \overrightarrow{A D}}{\|\overrightarrow{A B}\|\|\overrightarrow{A D}\|}=\frac{1}{\sqrt{2} \cdot \sqrt{2}}=\frac{1}{2}
$$

Thus $\theta=60^{\circ}$.

