Math 1920 Homework 1 Selected Solutions

13.1

PQ2)

$$||-3\mathbf{a}|| = |-3| \, ||\mathbf{a}|| = 3 \cdot 5 = 15.$$

44)

If $\mathbf{v} = 4\mathbf{i} + 3\mathbf{j}$ then

$$\mathbf{e}_{\mathbf{v}} = \frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{4\mathbf{i} + 3\mathbf{j}}{\sqrt{4^2 + 3^2}} = \frac{4}{5}\mathbf{i} + \frac{3}{5}\mathbf{j}$$

consequently the vector we want is

$$3\mathbf{e_v} = \frac{12}{5}\mathbf{i} + \frac{9}{5}\mathbf{j}$$

64)

We resolve the vectors into horizontal and vertical components

force	vertical component	horizontal component
\mathbf{F}_1	$\ \mathbf{F}_1\ $	0
\mathbf{F}_2	$\sin(45^\circ) \ \mathbf{F}_2\ $	$ \cos(45^\circ) \ \mathbf{F}_2\ \cos(30^\circ) \cdot 20 $
20	$\sin(30^\circ) \cdot 20$	$\cos(30^\circ) \cdot 20$

As the forces are balanced we know

$$\|\mathbf{F}_1\| = \sin(45^\circ) \|\mathbf{F}_2\| + \sin(30^\circ) \cdot 20, \quad \cos(45^\circ) \|\mathbf{F}_2\| = \cos(30^\circ) \cdot 20.$$

From the second equation we have

$$\|\mathbf{F}_2\| = 20 \cdot \frac{\sqrt{3}}{2} \cdot \sqrt{2} = 10\sqrt{6}.$$

Using this in the first equation we find

$$\|\mathbf{F}_1\| = \frac{1}{\sqrt{2}} \cdot 10\sqrt{6} + \frac{1}{2} \cdot 20 = 10 + 10\sqrt{3}$$

13.2

PQ2)

The components of \mathbf{v} do not depend on its basepoint, so (3, 2, 1).

PQ4)

 $\overrightarrow{QP}=\langle 2,1,0\rangle$ so (c) is a direction vector but neither of (a) nor (b) are.

PQ6)

True.

4)

(A) and (C) are right-hand ruled, but (B) is not.

34)

$$\mathbf{r}(t) = \langle 4, 0, 8 \rangle + t \langle 1, 0, 1 \rangle = \langle 4 + t, 0, 8 + t \rangle.$$

46)

We have a point on the line: (4,9,8). We need a direction vector. The line is perpendicular to the yz-plane, and so it is parallel to anything perpendicular to that plane, i.e., to the x-axis. Hence, we can use $\langle 1,0,0 \rangle$ as a direction vector and then a parametrization is

$$\mathbf{r}(t) = \langle 4, 9, 8 \rangle + t \langle 1, 0, 0 \rangle.$$

52)

If \mathbf{r}_1 and \mathbf{r}_2 intersect, then there are values of t and s so that

$$\begin{split} \langle 2,1,1\rangle + t \left\langle -4,0,1\right\rangle &= \left\langle -4,1,5\right\rangle + s \left\langle 2,1,-2\right\rangle, \\ \langle 2-4t,1,1+t\rangle &= \left\langle -4+2s,1+s,5-2s\right\rangle \end{split}$$

From the y-coordinate we derive that s=0 and so then the first coordinate implies that $\frac{3}{2}=t$, where as the third implies t=4, and so there is no solution and so no intercept.

13.3

PQ2)

The angle is obtuse as

$$\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta$$

where θ is the angle we are after. So, $\cos \theta < 0$ which implies $\theta \in (\pi/2, \pi)$.

PQ4)

The projection of \mathbf{v} along \mathbf{v} is \mathbf{v} as

$$\mathbf{v}_{||\mathbf{v}} = \left(rac{\mathbf{v}\cdot\mathbf{v}}{\mathbf{v}\cdot\mathbf{v}}
ight)\mathbf{v} = \mathbf{v}$$

PQ6)

 $\mathbf{e_u} \cdot \mathbf{e_v}$ is correct as

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} = \mathbf{e_u} \cdot \mathbf{e_v}$$

46)

a) $\mathbf{v} \cdot \mathbf{w} = \|\mathbf{v}\| \cdot \|\mathbf{w}\| \cos \theta = 2 \cdot 3 \cdot \cos(120^\circ) = 6 \cdot (-\frac{1}{2}) = -3$

b) $||2\mathbf{v} + \mathbf{w}|| = \sqrt{(2\mathbf{v} + \mathbf{w}) \cdot (2\mathbf{v} + \mathbf{w})}$ $= \sqrt{4\mathbf{v} \cdot \mathbf{v} + \mathbf{w} \cdot \mathbf{w} + 4\mathbf{v} \cdot \mathbf{w}}$ $= \sqrt{4 \cdot 4 + 9 + 4 \cdot (-3)}$ $= \sqrt{13}$

c) $||2\mathbf{v} - 3\mathbf{w}|| = \sqrt{(2\mathbf{v} - 3\mathbf{w}) \cdot (2\mathbf{v} - 3\mathbf{w})}$ $= \sqrt{4\mathbf{v} \cdot \mathbf{v} + 9\mathbf{w} \cdot \mathbf{w} - 12\mathbf{v} \cdot \mathbf{w}}$ $= \sqrt{4 \cdot 4 + 9 \cdot 9 - 12 \cdot (-3)}$ $= \sqrt{133}$

74)

$$A=(0,0,1), B=(1,0,0), \text{ and } D=(0,1,0) \text{ so}$$

$$\overrightarrow{AB}=\langle 1,0,-1\rangle\,, \quad \overrightarrow{AD}=\langle 0,1,-1\rangle$$

$$\left\|\overrightarrow{AB}\right\|=\sqrt{2}, \quad \left\|\overrightarrow{AD}\right\|=\sqrt{2}.$$

Therefore,

$$\cos\theta = \frac{\overrightarrow{AB} \cdot \overrightarrow{AD}}{\left\|\overrightarrow{AB}\right\| \left\|\overrightarrow{AD}\right\|} = \frac{1}{\sqrt{2} \cdot \sqrt{2}} = \frac{1}{2}.$$

Thus $\theta = 60^{\circ}$.