17.3

10) Solution: Observe that the field $\mathbf{F}=\left\langle y, x, z^{3}\right\rangle$ satisfies the cross partials condition everywhere, hence \mathbf{F} is conservative. If $f(x, y, z)$ is a potential function, then it satisfies

$$
\begin{aligned}
f(x, y, z) & =\int y \mathrm{~d} x=x y+f(y, z) \\
f(x, y, z) & =\int x \mathrm{~d} y=x y+g(x, z) \\
f(x, y, z) & =\int z^{3} \mathrm{~d} z=\frac{1}{4} z^{4}+h(x, y)
\end{aligned}
$$

These three ways of writing f must be equal. The function $f(x, y, z)=x y+\frac{1}{4} z^{4}+C$ does the job for any constant C.
15) Solution: This vector field \mathbf{F} satisfies the cross partials conditions everywhere, hence it is conservative. If $f(x, y, z)$ is a potential function, then it satisfies

$$
\begin{gathered}
f(x, y, z)=\int(2 x y+5) \mathrm{d} x=x^{2} y+5 x+f(y, z) \\
f(x, y, z)=\int\left(x^{2}-4 z\right) \mathrm{d} y=x^{2} y-4 y z+g(x, z) \\
f(x, y, z)=\int-4 y \mathrm{~d} z=4 y z+h(x, y)
\end{gathered}
$$

These three ways of writing f must be equal. The function $f(x, y, z)=x^{2} y+5 x-4 y z+C$ does the job for any constant C.
25) Solution: Work against gravity is calculated with the integral

$$
W=-\int_{\mathcal{C}} m \mathbf{F} \cdot \mathrm{~d} \mathbf{s}=1000 \int_{\mathcal{C}} \nabla V \cdot \mathrm{~d} \mathbf{s}=1000\left(V\left(r_{2}\right)-V\left(r_{1}\right)\right)
$$

Since r_{1} and r_{2} are measured from the center of the earth,

$$
\begin{gathered}
r_{1}=4 \times 10^{6}+6.4 \times 10^{6}=10.4 \times 10^{6} \text { meters } \\
r_{2}=6 \times 10^{6}+6.4 \times 10^{6}=12.4 \times 10^{6} \text { meters } \\
V(r)=-\frac{k}{r} \Rightarrow W=-\frac{1000 k}{10^{6}}\left(\frac{1}{12.4}-\frac{1}{10.4}\right) \approx 6.2 \times 10^{9} \mathrm{~J}
\end{gathered}
$$

28a) Solution: If $f(x, y, z)$ is a potential function for \mathbf{F}, then

$$
\begin{gathered}
f(x, y, z)=400 \int\left(\frac{x}{x^{2}+z^{2}}\right) \mathrm{d} x=200 \ln \left(x^{2}+z^{2}\right)+f(y, z) \\
f(x, y, z)=\int 0 \mathrm{~d} y=g(x, z) \\
f(x, y, z)=400 \int\left(\frac{z}{x^{2}+z^{2}}\right) \mathrm{d} z=200 \ln \left(x^{2}+z^{2}\right)+h(x, y)
\end{gathered}
$$

The function $f(x, y, z)=200 \ln \left(x^{2}+z^{2}\right)$ is a potential function for \mathbf{F}. Let

$$
V(x, y, z)=-f(x, y, z)=-200 \ln \left(x^{2}+z^{2}\right)
$$

Then $\mathbf{F}=-\nabla V$.

