
Homework 12 Selected Solutions
Math 1920 November 15, 2018

17.4

10) Solution: The tangent vectors are:

Tr =
∂Φ

∂r
=

∂

∂r

(
r cos θ, r sin θ, 1− r2

)
= 〈cos θ, sin θ,−2r〉

Tθ =
∂Φ

∂θ
=

∂

∂θ

(
r cos θ, r sin θ, 1− r2

)
= 〈−r sin θ, r cos θ, 0〉.

The normal vector is N = (r, θ) = Tr ×Tθ = r〈2r cos θ, 2r sin θ, 1〉.
Now we compute the tangency point and the normal vector at this point:

P = Φ
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,

1

2
√

2
,
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)
N

(
1

2
,
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4

)
=

1

2

〈
1√
2
,

1√
2
, 1

〉
.

The equation of the plane through P , with normal vector 〈 1√
2
, 1√

2
, 1〉 is:〈

x− 1

2
√

2
, y − 1

2
√

2
, z − 3

4

〉
·
〈

1√
2
,

1√
2
, 1

〉
= 0.

Simplifying,

2
√

2x+ 2
√

2y + 4 = 5.

21) Solution: We let z = g(x, y) = 1− x− y and use the formula for the surface integral over the graph
of z = g(x, y), where D is the parameter domain in the xy-plane. That is:∫∫

S
f(x, y, z)dS =

∫∫
D
f(x, y, g(x, y))

√
1 + g2x + g2ydxdy.

We have gx = −1 and gy = −1 therefore:√
1 + g2x + g2y =

√
3.

We express the function f(x, y, z) = z in terms of the parameters x and y:

Figure 1: Problem 21
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f(x, y, g(x, y)) = z = 1− x− y.

The domain of integration is the triangle D in the xy-plane shown in the figure.

This way,

∫∫
S

f(x, y, z)dS =

∫ 1

0

∫ 1−y

0

(1− x− y)
√

3dxdy =

√
3

6
.

24) Solution: We can use spherical coordinates to parametrize the cap S.

Φ(θ, φ) = (2 cos θ sinφ, 2 sin θ sinφ, 2 cosφ), 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ φ0,

where φ0 is determined by cosφ0 = 1
2 , that is, φ0 = π

3 . The length of the normal vector in spherical
coordinates is:

‖n‖ = R2 sinφ = 4 sinφ.

We express the function f(x, y, z) = z2(x2 + y2 + z2)−1 in terms of the parameters:

f(Φ(θ, φ)) = (2 cosφ)24−1 = cos2 φ.

Using the theorem on computing the surface integral we get:

∫∫
S

f(x, y, z)dS =

∫∫
D
f(Φ(θ, φ))‖n‖dφdθ =

∫ 2π

0

∫ π
3

0

(cos2 φ) · 4 sinφdφdθ =
7π

3
,

after computing the iterated integral.

30) Solution: The sphere of radius R centered at the origin has the following parametrization in spherical
coordinates:

Φ(θ, φ) = (R cos θ sinφ,R sin θ sinφ,R cosφ), 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π.

The length of the normal vector is
‖N‖ = R2 sinφ.

Using the integral for the surface area gives:

Area(S) =

∫∫
D
‖N‖dθdφ =

∫ 2π

0

∫ π

0

R2 sinφdφdθ = 4πR2.

41) Solution: We compute the area of the portion of the sphere between the planes a and b. The portion
S1 of the sphere has the parametrization

Φ(θ, φ) = (R cos θ sinφ,R sin θ sinφ,R cosφ)

where
D1 : 0 ≤ θ ≤ 2π, φ0 ≤ φ ≤ φ1.

If we assume 0 < a < b, then the angles φ0 and φ1 are determined by

cosφ0 =
b

R
⇒ φ0 = cos−1

b

R
,

cosφ1 =
a

R
⇒ φ1 = cos−1

a

R
.
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The length of the normal vector is ‖N‖ = R2 sinφ. We obtain the following integral:

Area(S1) =

∫∫
D1

‖N‖dφdθ =

∫ 2π

0

∫ φ1

φ0

R2 sinφdφdθ = 2πR(b− a).

The area of the part S2 of the cylinder of radius R between the planes z = a and z = b is:

Area(S2) = 2πR(b− a).

We see that the two areas are equal:

Area(S1) = Area(S2).

17.5

11) Solution: We parametrize the surface by Φ(x, y) = (x, y, 1−x− y). The tangent and normal vectors
are

Tx =
∂Φ

∂x
= 〈1, 0,−1〉,

Ty =
∂Φ

∂y
= 〈0, 1,−1〉,

N = Tx ×Ty = 〈1, 1, 1〉.

We also have:

F(Φ(x, y)) ·N = −y2 − 2 + x.

The we evaluate the surface integral as follows:

∫∫
S

F · dS =

∫∫
D
F(Φ(x, y)) ·Ndxdy =

∫ 1

0

∫ 1−y

0

(−y2 − 2 + x)dxdy = −11

12
.

Figure 2: Problem 41 -
Section 17.4
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20) Solution: We parametrize the sphere of radius R centered at the origin by

Φ : x = R cos θ sinφ, y = R sin θ sinφ, z = R cosφ, 0 ≤ θ < 2π, 0 ≤ φ ≤ π.

The outward pointing normal is N = (R2 sinφ)er. On the sphere r = R we get F ·N = sinφ, hence

∫∫
S
F · dS =

∫∫
D

(F ·N)dφdθ =

∫ 2π

0

∫ π

0

(sinφ)dφdθ = 4π.

We see that the surface integral of F does not depend on the radius R of the sphere.

23) Solution: We use spherical coordinates:

x = cos θ sinφ, y = sin θ sinφ, z = cosφ

with the parameter domain

0 ≤ θ < 2π, 0 ≤ φ ≤ π

2
.

The normal vector is

N = Tφ ×Tθ = sinφ〈cos θ sinφ, sin θ sinφ, cosφ〉.

We express the function in terms of the parameters:

v = 〈0, 0, z〉 = 〈0, 0, cosφ〉.

Hence,

v ·N = sinφ cos2 φ.

The flow rate of the fluid through the upper hemisphere S is equal to the flux of the velocity vector
through S. That is,

∫∫
Sv · dS =

∫ π
2

0

∫ 2π

0

sin θ cos2 φdθdφ =
2π

3
m3/s.

24) Solution: We use the following parametrization for the surface:

Φ : x = 2r cos θ, y = 3r sin θ, z = 0

0 ≤ θ ≤ π

2
, 0 ≤ r ≤ 1.

The tangent and normal vectors are:

Tr = 〈2 cos θ, 3 sin θ, 0〉, Tθ = 〈−2r sin θ, 3r cos θ, 0〉.

Tr ×Tθ = 6rk.

Since the normal points to the positive z-direction, the normal vector is, N = 6rk = 〈0, 0, 6r〉.
We also have v ·N = 72r4 cos2 θ sin θ. To compute the flux we proceed as follows:

∫∫
S

v · dS =

∫ π
2

0

∫ 1

0

72r4 cos2 θ sin θdrdθ = 4.8 m3/s.
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29) Solution: The equation of the plane through the three vertices is x+ y + z = 1, hence the upward
pointing normal vector is:

N = 〈1, 1, 1〉

and the unit normal vector:

en =

〈
1√
3
,

1√
3
,

1√
3

〉
.

We also have v · en = 2√
3
. The flow rate through T is equal to the flux of v through T . That is,∫∫

S

v · dS =

∫∫
S

2√
3

dS =
2√
3
·Area(S).

The area of the equilateral triangle T is
√
3
2 , therefore

∫∫
S
v · dS = 1.

Let D denote the projection of T onto the xy-plane. Then upward pointing normal is N = 〈0, 0, 1〉.
Observe that v ·N = 2 and hence:∫∫

D

v · dS =

∫∫
D

(v ·N)dS =

∫∫
D

2dS = 1.
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