17.4

10) Solution: The tangent vectors are:

$$
\begin{gathered}
\mathbf{T}_{r}=\frac{\partial \Phi}{\partial r}=\frac{\partial}{\partial r}\left(r \cos \theta, r \sin \theta, 1-r^{2}\right)=\langle\cos \theta, \sin \theta,-2 r\rangle \\
\mathbf{T}_{\theta}=\frac{\partial \Phi}{\partial \theta}=\frac{\partial}{\partial \theta}\left(r \cos \theta, r \sin \theta, 1-r^{2}\right)=\langle-r \sin \theta, r \cos \theta, 0\rangle
\end{gathered}
$$

The normal vector is $N=(r, \theta)=\mathbf{T}_{r} \times \mathbf{T}_{\theta}=r\langle 2 r \cos \theta, 2 r \sin \theta, 1\rangle$.
Now we compute the tangency point and the normal vector at this point:

$$
\begin{gathered}
P=\Phi\left(\frac{1}{2}, \frac{\pi}{4}\right)=\left(\frac{1}{2 \sqrt{2}}, \frac{1}{2 \sqrt{2}}, \frac{3}{4}\right) \\
\mathbf{N}\left(\frac{1}{2}, \frac{\pi}{4}\right)=\frac{1}{2}\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 1\right\rangle .
\end{gathered}
$$

The equation of the plane through P, with normal vector $\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 1\right\rangle$ is:

$$
\left\langle x-\frac{1}{2 \sqrt{2}}, y-\frac{1}{2 \sqrt{2}}, z-\frac{3}{4}\right\rangle \cdot\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 1\right\rangle=0 .
$$

Simplifying,

$$
2 \sqrt{2} x+2 \sqrt{2} y+4=5
$$

21) Solution: We let $z=g(x, y)=1-x-y$ and use the formula for the surface integral over the graph of $z=g(x, y)$, where \mathcal{D} is the parameter domain in the $x y$-plane. That is:

$$
\iint_{\mathcal{S}} f(x, y, z) \mathrm{d} S=\iint_{\mathcal{D}} f(x, y, g(x, y)) \sqrt{1+g_{x}^{2}+g_{y}^{2}} \mathrm{~d} x \mathrm{~d} y
$$

We have $g_{x}=-1$ and $g_{y}=-1$ therefore:

$$
\sqrt{1+g_{x}^{2}+g_{y}^{2}}=\sqrt{3}
$$

We express the function $f(x, y, z)=z$ in terms of the parameters x and y :

Figure 1: Problem 21

$$
f(x, y, g(x, y))=z=1-x-y
$$

The domain of integration is the triangle \mathcal{D} in the $x y$-plane shown in the figure.
This way,

$$
\iint_{S} f(x, y, z) \mathrm{d} S=\int_{0}^{1} \int_{0}^{1-y}(1-x-y) \sqrt{3} \mathrm{~d} x \mathrm{~d} y=\frac{\sqrt{3}}{6}
$$

24) Solution: We can use spherical coordinates to parametrize the cap S.

$$
\Phi(\theta, \phi)=(2 \cos \theta \sin \phi, 2 \sin \theta \sin \phi, 2 \cos \phi), \quad 0 \leq \theta \leq 2 \pi, \quad 0 \leq \phi \leq \phi_{0}
$$

where ϕ_{0} is determined by $\cos \phi_{0}=\frac{1}{2}$, that is, $\phi_{0}=\frac{\pi}{3}$. The length of the normal vector in spherical coordinates is:

$$
\|\mathbf{n}\|=R^{2} \sin \phi=4 \sin \phi
$$

We express the function $f(x, y, z)=z^{2}\left(x^{2}+y^{2}+z^{2}\right)^{-1}$ in terms of the parameters:

$$
f(\Phi(\theta, \phi))=(2 \cos \phi)^{2} 4^{-1}=\cos ^{2} \phi
$$

Using the theorem on computing the surface integral we get:

$$
\iint_{S} f(x, y, z) \mathrm{d} S=\iint_{\mathcal{D}} f(\Phi(\theta, \phi))\|\mathbf{n}\| \mathrm{d} \phi \mathrm{~d} \theta=\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{3}}\left(\cos ^{2} \phi\right) \cdot 4 \sin \phi \mathrm{~d} \phi \mathrm{~d} \theta=\frac{7 \pi}{3}
$$

after computing the iterated integral.
30) Solution: The sphere of radius R centered at the origin has the following parametrization in spherical coordinates:

$$
\Phi(\theta, \phi)=(R \cos \theta \sin \phi, R \sin \theta \sin \phi, R \cos \phi), \quad 0 \leq \theta \leq 2 \pi, \quad 0 \leq \phi \leq \pi
$$

The length of the normal vector is

$$
\|\mathbf{N}\|=R^{2} \sin \phi
$$

Using the integral for the surface area gives:

$$
\operatorname{Area}(S)=\iint_{\mathcal{D}}\|\mathbf{N}\| \mathrm{d} \theta \mathrm{~d} \phi=\int_{0}^{2 \pi} \int_{0}^{\pi} R^{2} \sin \phi \mathrm{~d} \phi \mathrm{~d} \theta=4 \pi R^{2}
$$

41) Solution: We compute the area of the portion of the sphere between the planes a and b. The portion S_{1} of the sphere has the parametrization

$$
\Phi(\theta, \phi)=(R \cos \theta \sin \phi, R \sin \theta \sin \phi, R \cos \phi)
$$

where

$$
\mathcal{D}_{1}: \quad 0 \leq \theta \leq 2 \pi, \quad \phi_{0} \leq \phi \leq \phi_{1}
$$

If we assume $0<a<b$, then the angles ϕ_{0} and ϕ_{1} are determined by

$$
\begin{aligned}
\cos \phi_{0} & =\frac{b}{R} \Rightarrow \phi_{0}=\cos ^{-1} \frac{b}{R} \\
\cos \phi_{1} & =\frac{a}{R} \Rightarrow \phi_{1}=\cos ^{-1} \frac{a}{R}
\end{aligned}
$$

The length of the normal vector is $\|\mathbf{N}\|=R^{2} \sin \phi$. We obtain the following integral:

$$
\operatorname{Area}\left(S_{1}\right)=\iint_{\mathcal{D}_{1}}\|\mathbf{N}\| \mathrm{d} \phi \mathrm{~d} \theta=\int_{0}^{2 \pi} \int_{\phi_{0}}^{\phi_{1}} R^{2} \sin \phi \mathrm{~d} \phi \mathrm{~d} \theta=2 \pi R(b-a)
$$

The area of the part S_{2} of the cylinder of radius R between the planes $z=a$ and $z=b$ is:

$$
\operatorname{Area}\left(S_{2}\right)=2 \pi R(b-a)
$$

We see that the two areas are equal:

$$
\operatorname{Area}\left(S_{1}\right)=\operatorname{Area}\left(S_{2}\right)
$$

17.5

11) Solution: We parametrize the surface by $\Phi(x, y)=(x, y, 1-x-y)$. The tangent and normal vectors are

$$
\begin{gathered}
\mathbf{T}_{x}=\frac{\partial \Phi}{\partial x}=\langle 1,0,-1\rangle \\
\mathbf{T}_{y}=\frac{\partial \Phi}{\partial y}=\langle 0,1,-1\rangle \\
\mathbf{N}=\mathbf{T}_{x} \times \mathbf{T}_{y}=\langle 1,1,1\rangle
\end{gathered}
$$

We also have:

$$
\mathbf{F}(\Phi(x, y)) \cdot \mathbf{N}=-y^{2}-2+x
$$

The we evaluate the surface integral as follows:

$$
\iint_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}=\iint_{\mathcal{D}} \mathbf{F}(\Phi(x, y)) \cdot \mathbf{N} \mathrm{d} x \mathrm{~d} y=\int_{0}^{1} \int_{0}^{1-y}\left(-y^{2}-2+x\right) \mathrm{d} x \mathrm{~d} y=-\frac{11}{12}
$$

Figure 2: Problem 41 -
Section 17.4
20) Solution: We parametrize the sphere of radius R centered at the origin by

$$
\Phi: \quad x=R \cos \theta \sin \phi, \quad y=R \sin \theta \sin \phi, \quad z=R \cos \phi, \quad 0 \leq \theta<2 \pi, \quad 0 \leq \phi \leq \pi
$$

The outward pointing normal is $\mathbf{N}=\left(R^{2} \sin \phi\right) \mathbf{e}_{r}$. On the sphere $r=R$ we get $\mathbf{F} \cdot \mathbf{N}=\sin \phi$, hence

$$
\iint_{\mathcal{S}} \mathbf{F} \cdot \mathrm{d} \mathbf{S}=\iint_{\mathcal{D}}(\mathbf{F} \cdot \mathbf{N}) \mathrm{d} \phi \mathrm{~d} \theta=\int_{0}^{2 \pi} \int_{0}^{\pi}(\sin \phi) \mathrm{d} \phi \mathrm{~d} \theta=4 \pi
$$

We see that the surface integral of \mathbf{F} does not depend on the radius R of the sphere.
23) Solution: We use spherical coordinates:

$$
x=\cos \theta \sin \phi, \quad y=\sin \theta \sin \phi, \quad z=\cos \phi
$$

with the parameter domain

$$
0 \leq \theta<2 \pi, \quad 0 \leq \phi \leq \frac{\pi}{2}
$$

The normal vector is

$$
\mathbf{N}=\mathbf{T}_{\phi} \times \mathbf{T}_{\theta}=\sin \phi\langle\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi\rangle .
$$

We express the function in terms of the parameters:

$$
\mathbf{v}=\langle 0,0, z\rangle=\langle 0,0, \cos \phi\rangle
$$

Hence,

$$
\mathbf{v} \cdot \mathbf{N}=\sin \phi \cos ^{2} \phi
$$

The flow rate of the fluid through the upper hemisphere S is equal to the flux of the velocity vector through S. That is,

$$
\iint S \mathbf{v} \cdot \mathrm{~d} \mathbf{S}=\int_{0}^{\frac{\pi}{2}} \int_{0}^{2 \pi} \sin \theta \cos ^{2} \phi \mathrm{~d} \theta \mathrm{~d} \phi=\frac{2 \pi}{3} \mathrm{~m}^{3} / \mathrm{s}
$$

24) Solution: We use the following parametrization for the surface:

$$
\begin{gathered}
\Phi: \quad x=2 r \cos \theta, \quad y=3 r \sin \theta, \quad z=0 \\
0 \leq \theta \leq \frac{\pi}{2}, \quad 0 \leq r \leq 1 .
\end{gathered}
$$

The tangent and normal vectors are:

$$
\begin{gathered}
\mathbf{T}_{r}=\langle 2 \cos \theta, 3 \sin \theta, 0\rangle, \quad \mathbf{T}_{\theta}=\langle-2 r \sin \theta, 3 r \cos \theta, 0\rangle \\
\mathbf{T}_{r} \times \mathbf{T}_{\theta}=6 r \mathbf{k}
\end{gathered}
$$

Since the normal points to the positive z-direction, the normal vector is, $\mathbf{N}=6 r \mathbf{k}=\langle 0,0,6 r\rangle$. We also have $\mathbf{v} \cdot \mathbf{N}=72 r^{4} \cos ^{2} \theta \sin \theta$. To compute the flux we proceed as follows:

$$
\iint_{S} \mathbf{v} \cdot \mathrm{~d} \mathbf{S}=\int_{0}^{\frac{\pi}{2}} \int_{0}^{1} 72 r^{4} \cos ^{2} \theta \sin \theta \mathrm{~d} r \mathrm{~d} \theta=4.8 \mathrm{~m}^{3} / \mathrm{s}
$$

29) Solution: The equation of the plane through the three vertices is $x+y+z=1$, hence the upward pointing normal vector is:

$$
\mathbf{N}=\langle 1,1,1\rangle
$$

and the unit normal vector:

$$
\mathbf{e}_{\mathbf{n}}=\left\langle\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right\rangle .
$$

We also have $\mathbf{v} \cdot \mathbf{e}_{\mathbf{n}}=\frac{2}{\sqrt{3}}$. The flow rate through \mathcal{T} is equal to the flux of \mathbf{v} through \mathcal{T}. That is,

$$
\iint_{S} \mathbf{v} \cdot \mathrm{~d} \mathbf{S}=\iint_{S} \frac{2}{\sqrt{3}} \mathrm{~d} S=\frac{2}{\sqrt{3}} \cdot \operatorname{Area}(S)
$$

The area of the equilateral triangle \mathcal{T} is $\frac{\sqrt{3}}{2}$, therefore $\iint_{S} \mathbf{v} \cdot \mathrm{~d} \mathbf{S}=1$.
Let \mathcal{D} denote the projection of \mathcal{T} onto the $x y$-plane. Then upward pointing normal is $\mathbf{N}=\langle 0,0,1\rangle$. Observe that $\mathbf{v} \cdot \mathbf{N}=2$ and hence:

$$
\iint_{D} \mathbf{v} \cdot \mathrm{~d} \mathbf{S}=\iint_{\mathcal{D}}(\mathbf{v} \cdot \mathbf{N}) \mathrm{d} S=\iint_{\mathcal{D}} 2 \mathrm{~d} S=1
$$

