
Homework 13 Selected Solutions
Math 1920 November 29, 2018

18.1

5) Solution: In this function P = x2y and Q = 0, therefore ∂Q
∂x −

∂P
∂y = −x2. We obtain the following

integral:

I =

∫
C
x2ydx =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA =

∫∫
D
−x2dA.

Converting to polar coordinates, this gives

I =

∫ 2π

0

∫ 1

0

−r2 cos2 θ · rdrdθ = −π
4
,

after computing the iterated integral.

12) Solution: We denote by C the path from A to B, and D is the region enclosed by C and the segment
BA. By Green’s theorem,∫

C+BA
F · dr =

∫
C
F · dr +

∫
BA

F · dr =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA

Parametrizing AB by 〈−1, t〉 with t from 0 to −1, we get∫
BA

F · dr =

∫ −1
0

〈−1, t〉 · 〈0, 1〉dt = 4

Since Q = 4x and P = x3, we have ∂Q
∂x −

∂P
∂y = 4 and hence∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA =

∫∫
D

4dA = 4 ·Area(D) = 16.

Substituting this into the first expression above,∫
C
F · dr = 20.

Figure 1: Problem 12
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24) Solution: ∫
C1

F · dr−
∫
C2

F · dr =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA

Substituting the given information gives∫
C1

F · dr− 12 =

∫∫
D
−3dxdy = −3Area(D).

It is clear that Area(D)= 60− 4π. Using this above,∫
C1

F · dr = 12− 3(60− 4π) = 12π − 168.

26) Solution: Let R > 0 be sufficiently small so that the circle CR is contained in C. Let D denote the
region between CR and C. We apply Green’s Theorem to the region D, where the curves C and CR is
are both oriented counterclockwise as in the diagram. This gives∫

C
F · dr−

∫
CR

F · dr =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA.

Now,
∂F2

∂x
=

y2 − x2

(x2 + y2)2

∂F1

∂y
=

y2 − x2

(x2 + y2)2
.

Since we are given that
∫
CR F · dr = 2π, substituting above we obtain∫

C
F · dr− 2π =

∫∫
D

0dA = 0

or ∫
C
F · dr = 2π.

27) Solution: The vector field (A) does not have spirals nor it is a “shear flow”. Therefore, the curl
appears to be zero. The vector field (B) rotates in the counterclockwise direction, hence we expect the
curl to be positive. The vector field (C) perhaps rotates more strongly clockwise than counterclockwise
around the origin, indicating a negative curl (however, this is not completely clear, and concluding
that it has a zero curl is also reasonable). Finally, in vector field (D) the fluid flows straight toward
the origin without spiraling. We expect the curl to be zero.

32) Solution:

a) We parametrize the segment from (x1, y1) to (x2, y2) by

x = tx2 + (1− t)x1, y = ty2 + (1− t)y1, 0 ≤ t ≤ 1.

Then, dx = (x2 − x2)dt and dy = (y2 − y1)dt. Therefore,

−ydx+ xdy = (x1y2 − x2y1)dt.

We obtain the following integral:

1

2

∫
C
−ydx+ xdy =

1

2

∫ 1

0

(x1y2 − x2y1)dt =
1

2
(x1y2 − x2y1).
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b) Let Ai = (xi, yi), i = 1, 2, . . . , n, and let C be the closed curve determined by the polygon. By
the formula for the area enclosed by a simple close curve, the area of the polygon is

A =
1

2

∫
C
−ydx+ xdy

We use additivity of the line integrals and the result in part (a) to write the integral as follows:

A =
1

2

(
n−1∑
i=1

∫
AiAi+1

−ydx+ xdy +

∫
AnA1

−ydx+ xdy

)

=
1

2

(
n−1∑
1

(xiyi+1 − xi+1yi) + (xny1 − x1yn)

)

If we define (xn+1, yn+1) = (x1, y1), we obtain the sum

A =
1

2

n∑
i

(xiyi+1 − xi+1yi).

34) Solution: Let D be the circle x2 + y2 = 9 together with its interior. The divergence of F is

div(F) = 5,

so that the flux is ∮
F · nds =

∫∫
D

div(F)ds = 5

∫∫
D

1ds.

This integral is five times the area of a circle of radius 3, so the answer is 5 · π · 32 = 45π.

40) Solution: Using the result

flux =

∫∫
D

div(F)dA

we have, using polar coordinates:

flux =

∫∫
D

div(F)dA =

∫∫
D
x2dA =

∫ 2π

0

∫ 2

0

(r cos θ)2(r)drdθ

= 4π.

18.2

1) Solution: We must show that ∫
C
F · dr =

∫∫
S

curl(F) · dS

We first compute the line integral around the boundary curve. This curve is the unit circle oriented in
the counterclockwise direction, so we parametrize it by

γ(t) = (cos t, sin t, 0), 0 ≤ t ≤ 2π.

Then,

F(γ(t)) · γ′(t) = 〈2 cos t sin t, cos t, sin t〉 · 〈− sin t, cos t, 0〉 = −2 cos t sin2 t+ cos2 t.
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Then

∫
C
F · dr =

∫ 2π

0

(
−2 cos t sin2 t+ cos2 t

)
dt = π.

Now we compute the flux of the curl through the surface. We parametrize it by

Φ(θ, t) = (t cos t, t sin θ, 1− t2), 0 ≤ t ≤ 1, 0 ≤ θ ≤ 2π.

Notive that Tθ = 〈−t sin θ, t cos θ, 0〉 and Tt = 〈cos θ, sin θ,−2t〉, so

Tθ ×Tt = 〈−2t2 cos θ,−2t2 sin θ,−t〉.

Since the normal is supposed to be pointing upward, the z-coordinate of the normal vector must be
positive. Therefore, the normal vector is 〈2t2 cos θ, 2t2 sin θ, t〉.
The curl in the parameters is:

curl(F) = 〈1, 0, 1− 2t cos θ〉.

This way,

∫∫
S

curl(F) · dS =

∫ 2π

0

∫ 1

0

tdtdθ = π.

The values of the integrals are equal, as stated in Stokes’ Theorem.

6) Solution: curl(F) is

curl(F) =

〈
xy√
y2 + 1

− 2z,−
√
y2 + 1,−1

〉
.

We compute the flux of the curl through the surface by using Stokes’ Theorem and computing the line
integral around the boundary circle. The oriented boundary of this surface is the triangle at height
z = 2, oriented clockwise (when viewed from above). By Stokes’ Theorem, the flux of the curl is equal
to the line integral of F around the oriented boundary. The restriction of F to the boundary, where
z = 2 is

F =
〈
x+ y, 0, x

√
y2 + 1

〉
.

Next, parametrize the three sides of this triangle for 0 ≤ t ≤ 1:

〈1− t, 0, 2〉, 〈0, t, 2〉, 〈t, 1− t, 2〉.

Thus ds on the three sides is

〈−1, 0, 0〉dt, 〈0, 1, 0〉dt, 〈1,−1, 0〉dt,

and the dot products are (the z-components of F is not relevant because ds has zero z-component):

F · ds = 〈1− t, 0, ∗〉 · 〈−1, 0, 0〉dt = (t− 1)dt

F · ds = 〈t, 0, ∗〉 · 〈0, 1, 0〉dt = 0

F · ds = 〈1, 0, ∗〉 · 〈1,−1, 0〉dt = dt

Therefore, the line integral around the oriented boundary is equal to
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∫ 1

0

(t− 1)dt+ 0 +

∫ 1

0

dt =
1

2
,

and thus the flux of curl(F) through the surface is 1
2 .

15) Solution:

(a) The induced orientation is defined so that as the normal vector travels along the boundary curve,
the surface lies to its left. Therefore, the boundary circles on top and bottom have opposite
orientations, which are shown in the figure below.

(b) We first compute the integral around the boundary circles using the following parametrizations:

C1 : γ1(t) = (2 cos t, 2 sin t, 6), t from 2π to 0

C1 : γ1(t) = (2 cos t, 2 sin t, 1), t from 0 to 2π

Observe that:

F(γ1(t)) · γ′1(t) = 〈72 sin t, 0, 0〉 · 〈−2 sin t, 2 cos t, 0〉 = −144 sin2 t.

F(γ2(t)) · γ′2(t) = 〈2 sin t, 0, 0〉 · 〈−2 sin t, 2 cos t, 0〉 = −4 sin2 t.

The line integral is thus∫
C
F · dr =

∫
C1

F · dr +

∫
C2

F · dr =

∫ 0

2π

(−144 sin2 t)dt+

∫ 2π

0

(−4 sin2 t)dt = 140π.

The curl is

curl(F) = 〈0, 2yz,−z2〉.

We parametrize S by

Φ(θ, z) = (2 cos θ, 2 sin θ, z), 0 ≤ θ ≤ 2π, 1 ≤ z ≤ 6.

The outward pointing normal is 〈2 cos θ, 2 sin θ, 0〉, hence

curl(F)(Φ(θ, z)) ·N = 〈0, 4z sin θ,−z2〉 · 〈2 cos θ, 2 sin θ, 0〉 = 8z sin2 θ

We obtain the following integral:∫∫
S

curl(F) · dS =

∫ 6

1

∫ 2π

0

8z sin2 θdθdz = 140π.

The line integral and the flux have the same value. This verifies Stokes’ Theorem.

Figure 2: Problem 15a
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18) Solution: We first compute the surface integral directly. The spherical cap is parametrized by

Φ(θ, φ) = (cos θ sinφ, sin θ sinφ, cosφ), 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

3
.

The outward pointing normal is sinφ(cos θ sinφ, sin θ sinφ, cosφ), hence

F(Φ(θ, φ)) ·N = 〈0,− cosφ, 1〉 ·N = − sin θ sin2 φ cosφ+ sinφ cosφ.

We obtain the following integral:

∫∫
S
F · dS =

∫ 2π

0

∫ π
3

0

(− sin θ sin2 φ cosφ+ sinφ cosφ)dφdθ =
3π

4
.

We now evaluate the flux using Stokes’ Theorem. A straightforward computation shows that F =
curl(A), where A = 〈0, x, xz〉. By Stokes,∫∫

S
F · dS =

∫∫
S

curl(A) · dS =

∫
C
A · dr.

To compute the line integral, we notice that the boundary curve is the circle x2 + y2 = 3
4 in the plane

z = 1
2 . We parametrize C by

γ(t) =

(√
3

2
cos t,

√
3

2
sin t,

1

2

)
, 0 ≤ t ≤ 2π.

Hence,

A(γ(t)) · γ′(t) =

〈
0,

√
3

2
cos t,

√
3

4
cos t

〉
·

〈
−
√

3

2
sin t,

√
3

2
cos t, 0

〉
=

3

4
cos2 t.

We obtain the following line integral:

∫
C
A · dr =

∫ 2π

0

3

4
cos2 tdt =

3π

4
,

which implies ∫∫
S
F · dS =

3π

4
.

This agrees with the other computation of the flux, as expected.

Figure 3: Problem 18

6



23) Solution: Since we are interested in
∮
C F · ds, we can also consider

∫∫
curl(F) · dS, by Stokes’

Theorem. The curl is 〈4y − 2, 0, 1− 2y〉 anf the normal to the plane is 〈a, b, c〉. They are orthogonal if

〈4y − 2, 0, 1− 2y〉 · 〈a, b, c〉 = 0,

which means
(4a− 2c)y + (c− 2a) = 0.

We conclude that c = 2a and b arbitrary solves the problem. In other words, the plane ax+by+2az = 0
does the job.

27) Solution:

Let C be the unit circle centered at the origin in the xy-plane. Since F has a vector potential (say, A),
we have by Stokes’ Theorem:∫∫

S
F · dS =

∫∫
S

curl(A) · dS =

∮
C
A · dr = 25.
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