Math 1920 Homework 2 Selected Solutions

13.4

PQ2)
The length of $\mathbf{e} \times \mathbf{f}$ is

$$
\|\mathbf{e}\|\|\mathbf{f}\| \sin \theta
$$

where $\theta=\pi / 6$ is the angle between them. As e and \mathbf{f} are unit vectors this quantity is

$$
1 \cdot 1 \cdot \sin \left(\frac{\pi}{6}\right)=\frac{1}{2}
$$

PQ4)

In both cases the answer is $\mathbf{0}$, because, in both cases the angle between the vectors is 0 , i.e., the vectors are parallel.

PQ6)

$\mathbf{v} \times \mathbf{w}=\mathbf{0}$ when either \mathbf{v} or \mathbf{w} are equal to $\mathbf{0}$ or \mathbf{v} and \mathbf{w} are parallel.
24)

We know that the length of $\mathbf{v} \times \mathbf{w}$ is $\|\mathbf{v}\|\|\mathbf{w}\| \sin \theta=3 \cdot 3 \cdot 1 / 2$. We also know that both of \mathbf{v} and \mathbf{w} are in the $x z$-plane and so a vector parallel to both of then is \mathbf{k} (or anything parallel to it). Finally we know that $\mathbf{v}, \mathbf{w}, \mathbf{v} \times \mathbf{w}$ is right handed. From the diagram this means that $\mathbf{v} \times \mathbf{w}$ points in the negative y direction:

$$
\mathbf{v} \times \mathbf{w}=\frac{9}{2} \cdot(-\mathbf{k})=-\frac{9}{2} \mathbf{k}
$$

36)

From the figure $\mathbf{u}=\langle 1,0,4\rangle, \mathbf{v}=\langle 1,3,1\rangle$, and $\mathbf{w}=\langle-4,2,6\rangle$, and the volume of the parallelepiped spanned by these vectors is given by the (absolute value of
the) triple scalar product

$$
\begin{aligned}
\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w}) & =\left|\begin{array}{rrr}
1 & 0 & 4 \\
1 & 3 & 1 \\
-4 & 2 & 6
\end{array}\right| \\
& =1 \cdot(3 \cdot 6-1 \cdot 2)-0 \cdot(1 \cdot 6-1 \cdot(-4))+4(1 \cdot 2-3 \cdot(-4)) \\
& =1 \cdot 16-0+4 \cdot 14 \\
& =72
\end{aligned}
$$

44)

The triangle spanned by vectors \mathbf{v} and \mathbf{w} has area $\|\mathbf{v} \times \mathbf{w}\| / 2$, so we want to find two vectors spanning the triangle. The points of the triangle are $P=$ $(1,1,5), Q=(3,4,3)$, and $R=(1,5,7)$ and so vectors spanning it are $\overrightarrow{P Q}=$ $\langle 2,3,-2\rangle$ and $\overrightarrow{P R}=\langle 0,4,2\rangle$. We compute

$$
\begin{aligned}
\overrightarrow{P Q} \times \overrightarrow{P R} & =\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & 3 & -2 \\
0 & 4 & 2
\end{array}\right| \\
& =\mathbf{i}(3 \cdot 2-(-2) \cdot 4)-\mathbf{j}(2 \cdot 2-(-2) \cdot 0)+\mathbf{k}(2 \cdot 4-3 \cdot 0) \\
& =14 \mathbf{i}-4 \mathbf{j}+8 \mathbf{k}
\end{aligned}
$$

its length is $\sqrt{14^{2}+(-4)^{2}+8^{2}}=2 \sqrt{69}$ and so the area of the triangle is $\sqrt{69}$.

13.5

PQ2)
\mathbf{k} is normal to plane (c). A normal to (a) is \mathbf{i} and to (b) is \mathbf{j}.
PQ4)
$y=1$ is parallel to the plane $y=0$ which is precisely the $x z$-plane.
28)

The plane must contain $P=(-1,0,1)$ and $\mathbf{r}(t)=\langle t+1,2 t, 3 t-1\rangle$. A direction vector for \mathbf{r} is $\langle 1,2,3\rangle$ (from the coefficients of t), and we know this is parallel to the plane. Also for every value of $t, \overrightarrow{\operatorname{Pr}(t)}$ is parallel to the plane, in particular $\overrightarrow{\operatorname{Pr}(0)}=\langle 2,0,-2\rangle$ is another vector parallel to the plane. As these two vectors are not parallel, their cross-product is normal to the plane

$$
\begin{aligned}
\langle 1,2,3\rangle \times\langle 2,0,-2\rangle & =\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 2 & 3 \\
2 & 0 & -2
\end{array}\right| \\
& =\langle-4,8,-4\rangle
\end{aligned}
$$

For convenience we scale this to $\mathbf{n}=\langle-1,2,-1\rangle$ and so an equation for the plane is

$$
\mathbf{n} \cdot\langle x, y, z\rangle=d
$$

for a value of d we need to find. We plug in P to compute it

$$
d=\langle-1,2,-1\rangle \cdot\langle-1,0,1\rangle=0
$$

and so

$$
\mathbf{n} \cdot\langle x, y, z\rangle=-x+2 y-z=0
$$

is the equation.
42)

The intersection of the plane $x-z=6$ and line $\mathbf{r}(t)=\langle 1,0,-1\rangle+t\langle 4,9,2\rangle$ can be found by substituting the expressions from the equation of the line in that of the plane:

$$
(1+4 t)-(-1+2 t)=1+4 t+1-2 t=2+2 t=6
$$

and so $t=2$ is the t value so that $\mathbf{r}(t)$ is in the plane, i.e., the intersection is $\mathbf{r}(2)=\langle 9,18,3\rangle$.

54)

Say the plane has equation $a x+b y+c z=d$. We know the intersection of this plane with the $x y$-plane is $\mathbf{r}(t)=t\langle 2,1,0\rangle$, but we can also find this by setting $z=0$ in the equation for the plane (as the equation for the $x y$-plane is $z=0$) this tells us that

$$
a x+b y=d
$$

must be the equation for the line parametrized by \mathbf{r}. The equation for this line can be recovered because we know $x=2 t, y=t, z=0$ i.e. that $x=2 y$ and, as this line goes through the origin we know the d above is 0 , and $b=-2 a$. There is no constraint on c and so the planes are all of the form:

$$
a x-2 a y+c z=0
$$

66)

The intersection of $2 x+y-3 z=0$ and $x+y=1$ can be found by substitution. Using the fact that $y=1-x$ from plane (2) we know

$$
2 x+(1-x)-3 z=x-3 z+1=0
$$

Therefore $x=3 z-1$ and so we can form the parametric equations:

$$
z=t, \quad x=3 t-1, \quad y=1-(3 t-1)=2-3 t
$$

