Math 1920 Homework 3 Selected Solutions

13.6

24)

We substitute h into the equation for the hyperboloid and re-arrange to find

$$
4 h^{2}-1=x^{2}+4 y^{2}
$$

And so this only has solutions for $4 h^{2}-1 \geq 0$. If $4 h^{2}-1=0$ then $h= \pm \frac{1}{2}$, in these cases, the unique solution is when $x=y=0$ and h determined, i.e. the intersection is a point. If $|h|<1 / 2$ then the inequality has no solutions, and so there is no intersection. Otherwise, if $|h|>1 / 2$ then the intersection is an ellipse as

$$
c=x^{2}+4 y^{2}
$$

is an ellipse for $c>0$.

13.7

PQ2)
(b) is true. The z-axis is $r=0$.

PQ4)

0 and π corresponding to the positive an negative parts of the z-axis.
24)

The inequality $1 \leq r \leq 3$ implies that the projection of the region onto the $x y$ plane is contained in the annulus $1 \leq \sqrt{x^{2}+y^{2}} \leq 3$. The inequality $0 \leq \theta \leq \frac{\pi}{2}$ restricts our annulus to the first quadrant, and $0 \leq z \leq 4$ gives us height for:

28)

Since $x^{2}+y^{2}=r^{2}$ we get $r^{2}+z^{2}=4$ and so $r=\sqrt{4-z^{2}}$.
52)
$x^{2}+y^{2}+z^{2} \leq 1$ becomes $\rho^{2} \leq 1$. The inequalities $x \geq 0$ and $y \geq 0$ together determine that $0 \leq \theta \leq \frac{\pi}{2}$ and $y=x$ is equivalent to $\theta=\frac{\pi}{4}$ or $\frac{5 \pi}{4}$. Combining these we obtain

$$
\left\{(\rho, \theta, \phi): 0 \leq \rho \leq 1, \theta=\frac{\pi}{4}\right\}
$$

58)

$\rho=2$ is the sphere of radius 2 centered at the origin, and $\phi=\frac{\pi}{3}$ is a right circular cone with point at the origin as shown:

They intersect in a horizontal circle centered somewhere on the z-axis and with some radius. To find these values, we take a point on the circle for which we can easily compute the coordinates.

For instance, let P be the point in the intersection with y-coordinate 0 and positive x and coordinate, i.e., $P=\left(x_{0}, 0, z_{0}\right)$. We know $x_{0}^{2}+z_{0}^{2}=4$ as P lies on the sphere radius two, and we know $\cos \frac{\pi}{4}=\frac{\sqrt{2}}{2}=\frac{z_{0}}{2}$, as P lies in the cone. Consequently, the center of the circle is $(0,0, \sqrt{2})$ and its radius is the x-coordinate of $P: \sqrt{2}$.

14.1

PQ2)
Projecting onto the $x z$-plane means setting your y-coordinate 0 so we get the curve $\left\langle t, 0, e^{t}\right\rangle$ which is the graph of $z=e^{x}$ in the $x z$-plane.

PQ4)

$(-2,2,3)$.
12)
(c) is a straight line, so it matches with (A). Each of (a)'s coordinates are bounded so it matches with (C). This leaves (b) with (B)

20)

We can write $\mathbf{r}(t)=\langle 6,9,4\rangle+\langle 3 \sin t, 0,3 \cos t\rangle$ so the center is $(6,9,4)$ and the radius is 3 . The y coordinate is constant and so the circle is in the plane $y=9$.
32)
(b) and (c) are true, (a) is false.
34)

The do not collide, because if they did the y-coordinates would have to be equal, i.e., $t^{2}=4 t^{2}$ and so $t=0$, but the x and z coordinates are not the same for $t=0$.

To check intersection, we try to solve $\mathbf{r}_{1}(t)=\mathbf{r}_{2}(s)$, i.e.,

$$
\left\langle t, t^{2}, t^{3}\right\rangle=\left\langle 4 s+6,4 s^{2}, 7-s\right\rangle
$$

From the first and second coordinates we find

$$
\begin{aligned}
(4 s+6)^{2} & =4 s^{2} \\
16 s^{2}+48 s+36 & =4 s^{2} \\
12 s^{2}+48 s+36 & =0 \\
s^{2}+4 s+3 & =0 \\
(s+3)(s+1) & =0
\end{aligned}
$$

so $s=-3$ or $s=-1$ solves both the first and second coordinate, with $t=-6$ and $t=2$ as the corresponding t values. We check these work for the third equation:

$$
\begin{aligned}
\left.t^{3}\right|_{t=-6}=-216 \neq 10 & =\left.(7-s)\right|_{s=-3} \\
\left.t^{3}\right|_{t=2}=8 & =\left.(7-s)\right|_{s=-1}
\end{aligned}
$$

So $s=-1, t=2$ works while the other does not. Hence they intersect.

14.2

22)

a) First we compute $\mathbf{r}_{1} \times \mathbf{r}_{2}$:

$$
\mathbf{r}_{1} \times \mathbf{r}_{2}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
t^{2} & 1 & 2 t \\
1 & 2 & e^{t}
\end{array}\right|=\left\langle e^{t}-4 t, 2 t-t^{2} e^{t}, 2 t^{2}-1\right\rangle
$$

we differentiate it and find

$$
\frac{d}{d t}\left(\mathbf{r}_{1}(t) \times \mathbf{r}_{2}(t)\right)=\left\langle e^{t}-4,2-2 t e^{t}-t^{2} e^{t}, 4 t\right\rangle
$$

then plug in $t=1$

$$
\langle e-4,2-3 e, 4\rangle .
$$

b) Using the product rule we know $\frac{d}{d t}\left(\mathbf{r}_{1}(1) \times \mathbf{r}_{2}(1)\right)=\mathbf{r}_{1}(1) \times \mathbf{r}_{2}^{\prime}(1)+\mathbf{r}_{1}^{\prime}(1) \times \mathbf{r}_{2}(1)$ which is

$$
\langle 1,1,2\rangle \times\langle 0,0, e\rangle+\langle 2,0,2\rangle \times\langle 1,2, e\rangle=\cdots=\langle e-4,2-3 e, 4\rangle
$$

52)

$\mathbf{r}^{\prime \prime}(t)=\left\langle e^{2 t-2}, t^{2}-1,1\right\rangle$ so $r^{\prime}(t)=\left\langle\frac{1}{2} e^{2 t-2}+c_{1}, \frac{1}{3} t^{3}-t+c_{2}, t+c_{3}\right\rangle$. Using $\mathbf{r}^{\prime}(1)=\langle 2,0,0\rangle$ we find

$$
\mathbf{r}^{\prime}(t)=\left\langle\frac{1}{2} e^{2 t-2}+\frac{3}{2}, \frac{1}{3} t^{3}-t+\frac{2}{3}, t-1\right\rangle
$$

So then $\mathbf{r}(t)=\left\langle\frac{1}{4} e^{2 t-2}+\frac{3}{2} t+d_{1}, \frac{1}{12} t^{4}-\frac{1}{2} t^{2}+\frac{2}{3} t+d_{2}, \frac{1}{2} t^{2}-t+d_{3}\right\rangle$. Using our other initial condition we find

$$
\mathbf{r}(t)=\left\langle\frac{1}{4} e^{2 t-2}+\frac{3}{2} t-\frac{7}{4}, \frac{1}{12} t^{4}-\frac{1}{2} t^{2}+\frac{2}{3} t-\frac{1}{4}, \frac{1}{2} t^{2}-t+\frac{3}{2}\right\rangle .
$$

