
32)

Let f(x, y, z) = xy + z

3 and P = (3,�2,�1). Then rf =
⌦
y, x, 3z2

↵
, rf

P

=
h�2, 3, 3i, and so the direction of the origin is �P/ kPk. We dot these together
to compute the directional derivative:

rf

P

· (�P/ kPk) = h�2, 3, 3i · h�3, 2, 1ip
15

=
15p
15

=
p
15.

34)

I assume positive y is north and positive x is east. Let z = x

2 + y

2 � y and
we are at point (1, 2, 3). a) The slope in the east direction is just the partial
derivative with respect to x: 2x|

x=1 = 2. The slope is the tangent of the angle
of inclination so tan�1 2 is the angle.

b) Similarly as in part a) but we compute the partial with respect to y:
2y � 1|

y=2 = 3 with angle tan�1 3.
c) In the north east direction we want the directional derivative in directionD

1p
2
,

1p
2

E
. We compute the gradient (of f(x, y) = x

2 + y

2 � y) and dot it with

this vector

rf(1,2) ·
⌧

1p
2
,

1p
2

�
= h2, 3i ·

⌧
1p
2
,

1p
2

�
=

5p
2
.

With corresponding angle tan�1 5/
p
2.

d) The direction of steepest slope is the direction of the gradient vector, and
the slope is its length which is

p
22 + 32 =

p
13.

52)

f(x, y, z) = x

2
/2 + y

3
/3 + z

4
/4 works (as does f plus any constant).

15.6

8)

Recall @f

@u

= rf ·
D

@x

@u

,

@y

@u

E
. Here f(x, y) = x

2 + y

2, x = e

u+v, and y = u+ v so

@f

@u

= h2x, 2yi ·
⌦
e

u+v

, 1
↵
=

⌦
2eu+v

, 2u+ 2v
↵
·
⌦
e

u+v

, 1
↵
= 2e2(u+v) + 2u+ 2v

26)

Let z be defined by z

4 + z

2
x

2 � y � 8 = 0. From the formula for implicit
di↵erentiation @z

@x

= �F

x

F

z

where F (x, y, z) = z

4 + z

2
x

2 � y � 8. So

@z

@x

= �F

x

F

z

= � 2z2x

4z3 + 2zx2
= � 2xz

4z2 + 2x2

3
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@z

@y

= �F

y

F

z

= � �1

4z3 + 2zx2
=

1

4z3 + 2zx2

We plug in the points (3, 2, 1) and (3, 2,�1) respectively for:

@z

@x

(3, 2, 1) = � 6

22
,

@z

@y

(3, 2, 1) =
1

22
,

@z

@x

(3, 2,�1) =
6

22
,

@z

@y

(3, 2, 1) = � 1

22

44)

A function f is homogeneous of degree n if f(�x,�y,�z) = �

n

f(x, y, z) for all
�.

Suppose f is homogeneous of degree n. Define F (t) = f(tx, ty, tz) for some
choice of x, y, z. Then

F

0(t) =
d

dt

f(tx, ty, tz) =
d

dt

t

n

f(x, y, z) = nt

n�1
f(x, y, z).

So F

0(1) = nf(x, y, z).
But we can compute F

0 another way. Write r(t) = htx, ty, tzi, so that
F (t) = f(r(t)) then, using the chain rule,

F

0(t) = rfr(t) · r0(t) =
⌧
@f

@x

,

@f

@y

,

@f

@z

�

r(t)

· hx, y, zi

As r(1) = hx, y, zi we have

F

0(1) =

⌧
@f

@x

,

@f

@y

,

@f

@z

�

(x,y,z)

· hx, y, zi = @f

@x

x+
@f

@y

y +
@f

@z

z.

And so nf(x, y, z) = @f

@x

x + @f

@y

y + @f

@z

z as required, as they are both equal to

F

0(1).
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15.7

PQ2)

The first point is a saddle. The second point is not even a critical point so can’t
be an extrema nor a saddle. The last two points are, respectively, a local min
and local max.

20)

Let f(x, y) = (x+ y) ln(x2 + y

2), then

f

x

= ln(x2 + y

2) + 2x
x+ y

x

2 + y

2
, f

y

= ln(x2 + y

2) + 2y
x+ y

x

2 + y

2

These are not defined precisely when x = y = 0, but there f is not defined
either. We set them equal to 0 and solve

(x2 + y

2) ln(x2 + y

2) + 2x(x+ y) = 0 = (x2 + y

2) ln(x2 + y

2) + 2y(x+ y).

From this we find 2y(x + y) = 2x(x + y) and so (x + y)(2y � 2x) = 0. Thus,
x = �y or x = y. If x = y we find

0 = ln(2x2) +
(2x)(2x)

2x2
= ln(2x2) + 2

which implies that �2 = ln(2x2) and so e

�2 = 2x2 therefore x = ± 1p
2e
.

On the other hand if y = �x then

ln(2x2) + 2x
0

2x2
= 0

and so ln(2x2) = 0 which implies x = ± 1p
2
. So our critical points are

(
1p
2e

,

1p
2e

), (� 1p
2e

,� 1p
2e

), (
1p
2
,� 1p

2
), and (� 1p

2
,

1p
2
)

1



We compute the second partials:

f

xx

=
4x

x

2 + y

2
+

2(x+ y)

x

2 + y

2
� 4x2(x+ y)

(x2 + y

2)2

f

xy

=
2y

x

2 + y

2
+

2x

x

2 + y

2
� 4xy(x+ y)

(x2 + y

2)2

f

xy

=
4y

x

2 + y

2
+

2(x+ y)

x

2 + y

2
� 4y2(x+ y)

(x2 + y

2)2

and apply the second derivative test

Critical point f

xx

f

yy

f

xy

D Type

( 1p
2e
,

1p
2e
) 2e

p
2 2e

p
2 0 8e2 Local min

(� 1p
2e
,� 1p

2e
) �2e

p
2 2e

p
2 0 8e2 Local max

( 1p
2
,� 1p

2
) 2

p
2 �2

p
2 0 �8 Saddle point

(� 1p
2
,

1p
2
) �2

p
2 2

p
2 0 �8 Saddle point

46)

The volume of such a box is V (x, y, z) = xyz which we are trying to maximize
with the constraints x + 1

2y + 1
3z = 1, x, y, z � 0. We can solve the constraint

for z and we find z = 1� 3x� 3
2y and substitute this into V for

V (x, y) = xy(1� 3x� 3

2
y).

We find the critical points of this function in the first quadrant. The first partials
are

V

x

= 3y � 6xy � 3

2
y

2
, V

y

= 3x� 3x2 � 3xy

Setting the second equation equal to 0 we find x = 0 or y = 1� x. The first we
can ignore as V (0, y) = 0 and we are trying to maximize. Using y = 1�x in V

x

and setting it to 0 we find x = 1, 1
3 . If x = 1 then y = 0, which gives 0 volume.

Otherwise x = 1/3 and so y = 2/3. At x = 1/3, y = 2/3 we know z = 1.
This is the only critical point of the function that doesn’t give is 0 and the

value of V where is 2/9.

48)

We want to minimize the distance to a point from (1, 0, 0) = P . This is the
same as minimizing the square distance from the point, so we want to minimize
f(x, y, z) = (x� 1)2 + y

2 + z

2 subject to the constraint z = x+ y + 1.
Plugging this into our function we find f(x, y) = (x� 1)2 + y

2 +(x+ y+1)2

is what we want to minimize. The partials of f are

f

x

= 2(x� 1) + 2(x+ y + 1), f

y

= 2y + 2(x+ y + 1)

If we set these equal to 0 we find y = x � 1 and x = 1/3 and so the point is
(1/3,�2/3, 2/3).
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56)

We want to find the critical points of E(m, b), we find the first partials

E

m

=

nX

j=1

2(�x

j

)(y
j

�mx

j

� b), E

b

=

nX

j=1

�2(y
j

�mx

j

� b)

We set these equal to 0 and re-arrange

0 = E

m

=

nX

j=1

2(�x

j

)(y
j

�mx

j

� b)

= �2

nX

j=1

x

j

y

j

+ 2m

nX

j=1

x

2
j

+ b

nX

j=1

x

j

0 = E

b

=

nX

j=1

�2(y
j

�mx

j

� b)

= �2

nX

j=1

y

j

+ 2

nX

j=1

mx

j

+ 2

nX

j=1

b

If we clear the 2s move the negative things over to one side, and note that the
sum of b n-times is nb we derive

m

0

@
nX

j=1

x

j

1

A+ bn =

nX

j=1

y

j

, m

nX

j=1

x

2
j

+ b

nX

j=1

x

j

=

nX

j=1

x

j

y

j

.

So there is a critical point here as required. Why is it a global min?
Well observe that for su�ciently large m, b that E(m, b) is increasing as m

or b tend to infinity. This means, for any point E0 = E(m0, b0) that there is
an R such that E(m, b) > E0 if |m| > R and |b| > R. On the domain where
|m|  R and |b|  R (which is closed and bounded) E has a minimal value. The
observation before shows that that it must be a global minimum. As there is
only one critical point, and we can show (say with the 2nd derivative test) that
it is a local minimum, it must be the global minimum too.

15.8

PQ2)

In the first drawing rf is tangent to the constraint g. As no matter how you
approach the point along the constraing you are moving away from the 1-level
set and moving towards the 2-level set, we can assume it is a max.

In the second drawing you still have tangency, but as you approach from one
side you are getting bigger, and the other side getting smaller, so it is neither a
max nor a min.
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