HW 6 Selected Solutions

15.6

8)

Recall $\frac{\partial f}{\partial u}=\nabla f \cdot\left\langle\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}\right\rangle$. Here $f(x, y)=x^{2}+y^{2}, x=e^{u+v}$, and $y=u+v$ so

$$
\frac{\partial f}{\partial u}=\langle 2 x, 2 y\rangle \cdot\left\langle e^{u+v}, 1\right\rangle=\left\langle 2 e^{u+v}, 2 u+2 v\right\rangle \cdot\left\langle e^{u+v}, 1\right\rangle=2 e^{2(u+v)}+2 u+2 v
$$

26)

Let z be defined by $z^{4}+z^{2} x^{2}-y-8=0$. From the formula for implicit differentiation $\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}$ where $F(x, y, z)=z^{4}+z^{2} x^{2}-y-8$. So

$$
\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}=-\frac{2 z^{2} x}{4 z^{3}+2 z x^{2}}=-\frac{2 x z}{4 z^{2}+2 x^{2}}
$$

$$
\frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}=-\frac{-1}{4 z^{3}+2 z x^{2}}=\frac{1}{4 z^{3}+2 z x^{2}}
$$

We plug in the points $(3,2,1)$ and $(3,2,-1)$ respectively for:

$$
\frac{\partial z}{\partial x}(3,2,1)=-\frac{6}{22}, \frac{\partial z}{\partial y}(3,2,1)=\frac{1}{22}, \quad \frac{\partial z}{\partial x}(3,2,-1)=\frac{6}{22}, \frac{\partial z}{\partial y}(3,2,1)=-\frac{1}{22}
$$

44)

A function f is homogeneous of degree n if $f(\lambda x, \lambda y, \lambda z)=\lambda^{n} f(x, y, z)$ for all λ.

Suppose f is homogeneous of degree n. Define $F(t)=f(t x, t y, t z)$ for some choice of x, y, z. Then

$$
F^{\prime}(t)=\frac{d}{d t} f(t x, t y, t z)=\frac{d}{d t} t^{n} f(x, y, z)=n t^{n-1} f(x, y, z)
$$

So $F^{\prime}(1)=n f(x, y, z)$.
But we can compute F^{\prime} another way. Write $\mathbf{r}(t)=\langle t x, t y, t z\rangle$, so that $F(t)=f(\mathbf{r}(t))$ then, using the chain rule,

$$
F^{\prime}(t)=\nabla f_{\mathbf{r}(t)} \cdot \mathbf{r}^{\prime}(t)=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle_{\mathbf{r}(t)} \cdot\langle x, y, z\rangle
$$

As $\mathbf{r}(1)=\langle x, y, z\rangle$ we have

$$
F^{\prime}(1)=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle_{(x, y, z)} \cdot\langle x, y, z\rangle=\frac{\partial f}{\partial x} x+\frac{\partial f}{\partial y} y+\frac{\partial f}{\partial z} z
$$

And so $n f(x, y, z)=\frac{\partial f}{\partial x} x+\frac{\partial f}{\partial y} y+\frac{\partial f}{\partial z} z$ as required, as they are both equal to $F^{\prime}(1)$.

Math 1920 Homework 6 Selected Solutions

15.7

PQ2)
The first point is a saddle. The second point is not even a critical point so can't be an extrema nor a saddle. The last two points are, respectively, a local min and local max.

20)

Let $f(x, y)=(x+y) \ln \left(x^{2}+y^{2}\right)$, then

$$
f_{x}=\ln \left(x^{2}+y^{2}\right)+2 x \frac{x+y}{x^{2}+y^{2}}, \quad f_{y}=\ln \left(x^{2}+y^{2}\right)+2 y \frac{x+y}{x^{2}+y^{2}}
$$

These are not defined precisely when $x=y=0$, but there f is not defined either. We set them equal to 0 and solve

$$
\left(x^{2}+y^{2}\right) \ln \left(x^{2}+y^{2}\right)+2 x(x+y)=0=\left(x^{2}+y^{2}\right) \ln \left(x^{2}+y^{2}\right)+2 y(x+y)
$$

From this we find $2 y(x+y)=2 x(x+y)$ and so $(x+y)(2 y-2 x)=0$. Thus, $x=-y$ or $x=y$. If $x=y$ we find

$$
0=\ln \left(2 x^{2}\right)+\frac{(2 x)(2 x)}{2 x^{2}}=\ln \left(2 x^{2}\right)+2
$$

which implies that $-2=\ln \left(2 x^{2}\right)$ and so $e^{-2}=2 x^{2}$ therefore $x= \pm \frac{1}{\sqrt{2} e}$.
On the other hand if $y=-x$ then

$$
\ln \left(2 x^{2}\right)+2 x \frac{0}{2 x^{2}}=0
$$

and so $\ln \left(2 x^{2}\right)=0$ which implies $x= \pm \frac{1}{\sqrt{2}}$. So our critical points are

$$
\left(\frac{1}{\sqrt{2} e}, \frac{1}{\sqrt{2} e}\right),\left(-\frac{1}{\sqrt{2} e},-\frac{1}{\sqrt{2} e}\right),\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right), \text { and }\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)
$$

We compute the second partials:

$$
\begin{aligned}
f_{x x} & =\frac{4 x}{x^{2}+y^{2}}+\frac{2(x+y)}{x^{2}+y^{2}}-\frac{4 x^{2}(x+y)}{\left(x^{2}+y^{2}\right)^{2}} \\
f_{x y} & =\frac{2 y}{x^{2}+y^{2}}+\frac{2 x}{x^{2}+y^{2}}-\frac{4 x y(x+y)}{\left(x^{2}+y^{2}\right)^{2}} \\
f_{x y} & =\frac{4 y}{x^{2}+y^{2}}+\frac{2(x+y)}{x^{2}+y^{2}}-\frac{4 y^{2}(x+y)}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

and apply the second derivative test

Critical point	$f_{x x}$	$f_{y y}$	$f_{x y}$	D	Type
$\left(\frac{1}{\sqrt{2} e}, \frac{1}{\sqrt{2} e}\right)$	$2 e \sqrt{2}$	$2 e \sqrt{2}$	0	$8 e^{2}$	Local min
$\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2} e}\right)$	$-2 e \sqrt{2}$	$2 e \sqrt{2}$	0	$8 e^{2}$	Local max
$\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$	$2 \sqrt{2}$	$-2 \sqrt{2}$	0	-8	Saddle point
$\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$	$-2 \sqrt{2}$	$2 \sqrt{2}$	0	-8	Saddle point

46)

The volume of such a box is $V(x, y, z)=x y z$ which we are trying to maximize with the constraints $x+\frac{1}{2} y+\frac{1}{3} z=1, x, y, z \geq 0$. We can solve the constraint for z and we find $z=1-3 x-\frac{3}{2} y$ and substitute this into V for

$$
V(x, y)=x y\left(1-3 x-\frac{3}{2} y\right)
$$

We find the critical points of this function in the first quadrant. The first partials are

$$
V_{x}=3 y-6 x y-\frac{3}{2} y^{2}, \quad V_{y}=3 x-3 x^{2}-3 x y
$$

Setting the second equation equal to 0 we find $x=0$ or $y=1-x$. The first we can ignore as $V(0, y)=0$ and we are trying to maximize. Using $y=1-x$ in V_{x} and setting it to 0 we find $x=1, \frac{1}{3}$. If $x=1$ then $y=0$, which gives 0 volume. Otherwise $x=1 / 3$ and so $y=2 / 3$. At $x=1 / 3, y=2 / 3$ we know $z=1$.

This is the only critical point of the function that doesn't give is 0 and the value of V where is $2 / 9$.
48)

We want to minimize the distance to a point from $(1,0,0)=P$. This is the same as minimizing the square distance from the point, so we want to minimize $f(x, y, z)=(x-1)^{2}+y^{2}+z^{2}$ subject to the constraint $z=x+y+1$.

Plugging this into our function we find $f(x, y)=(x-1)^{2}+y^{2}+(x+y+1)^{2}$ is what we want to minimize. The partials of f are

$$
f_{x}=2(x-1)+2(x+y+1), \quad f_{y}=2 y+2(x+y+1)
$$

If we set these equal to 0 we find $y=x-1$ and $x=1 / 3$ and so the point is $(1 / 3,-2 / 3,2 / 3)$.
56)

We want to find the critical points of $E(m, b)$, we find the first partials

$$
E_{m}=\sum_{j=1}^{n} 2\left(-x_{j}\right)\left(y_{j}-m x_{j}-b\right), \quad E_{b}=\sum_{j=1}^{n}-2\left(y_{j}-m x_{j}-b\right)
$$

We set these equal to 0 and re-arrange

$$
\begin{aligned}
0 & =E_{m} \\
& =\sum_{j=1}^{n} 2\left(-x_{j}\right)\left(y_{j}-m x_{j}-b\right) \\
& =-2 \sum_{j=1}^{n} x_{j} y_{j}+2 m \sum_{j=1}^{n} x_{j}^{2}+b \sum_{j=1}^{n} x_{j} \\
0 & =E_{b} \\
& =\sum_{j=1}^{n}-2\left(y_{j}-m x_{j}-b\right) \\
& =-2 \sum_{j=1}^{n} y_{j}+2 \sum_{j=1}^{n} m x_{j}+2 \sum_{j=1}^{n} b
\end{aligned}
$$

If we clear the 2 s move the negative things over to one side, and note that the sum of $b n$-times is $n b$ we derive

$$
m\left(\sum_{j=1}^{n} x_{j}\right)+b n=\sum_{j=1}^{n} y_{j}, \quad m \sum_{j=1}^{n} x_{j}^{2}+b \sum_{j=1}^{n} x_{j}=\sum_{j=1}^{n} x_{j} y_{j}
$$

So there is a critical point here as required. Why is it a global min?
Well observe that for sufficiently large m, b that $E(m, b)$ is increasing as m or b tend to infinity. This means, for any point $E_{0}=E\left(m_{0}, b_{0}\right)$ that there is an R such that $E(m, b)>E_{0}$ if $|m|>R$ and $|b|>R$. On the domain where $|m| \leq R$ and $|b| \leq R$ (which is closed and bounded) E has a minimal value. The observation before shows that that it must be a global minimum. As there is only one critical point, and we can show (say with the 2nd derivative test) that it is a local minimum, it must be the global minimum too.

