Selected Solutions to HW 7

15.8

PQ2)
In the first drawing ∇f is tangent to the constraint g. As no matter how you approach the point along the constraing you are moving away from the 1-level set and moving towards the 2-level set, we can assume it is a max.

In the second drawing you still have tangency, but as you approach from one side you are getting bigger, and the other side getting smaller, so it is neither a \max nor a min.

Let x, y, z be the lengths of the edges of the box, so we want to maximize $f(x, y, z)=x y z$ subject to $x+y+z=300$ and $x, y, z \geq 0$. We let $G(x, y, z)=$ $x+y+z-300$ and using Lagrange multipliers we want to solve

$$
\nabla f=(y z, x z, x y)=\lambda(1,1,1)=\lambda \nabla G
$$

We have the equations $x y=y z=x z=\lambda$. If any of λ, x, y, or $z=0$ then $f=0$ which is not a maximum, so we assume that all parameters are non-zero.

With this assumption from, say, $x y=y z$ we derive $x=z$ and similarly $x=y=z$. Using this in the constraint G we find $3 x=300$ so $x=y=z=100$ gives the maximum value for f.
26)

We want to find the maximum value of $f(x, y)=x^{2} y^{3}$ on the unit circle. We express this constraint as $G(x, y)=x^{2}+y^{2}-1=0$. Using the multipliers we want to solve

$$
\left(2 x y^{3}, 3 x^{2} y^{2}\right)=\lambda(2 x, 2 y)
$$

or $2 x y^{3}=\lambda 2 x, 3 x^{2} y^{2}=\lambda 2 y$. If $x=0$ or if $y=0$ then $f(x, y)=0$ which is clearly not a maximum. So we can assume neither x nor y, and consequently λ are all non-zero.

Using that we can rearrange the equations freely and find $y^{3}=\lambda=3 x^{2} y / 2$ and so $y^{2}=3 x^{2} / 2$. We can plug this into our constraint to find $x^{2}+3 x^{2} / 2=1$ or $x^{2}=2 / 5$. We get 4 possible points

$$
\left(\sqrt{\frac{2}{5}}, \sqrt{\frac{3}{5}}\right),\left(\sqrt{\frac{2}{5}},-\sqrt{\frac{3}{5}}\right),\left(-\sqrt{\frac{2}{5}}, \sqrt{\frac{3}{5}}\right),\left(-\sqrt{\frac{2}{5}},-\sqrt{\frac{3}{5}}\right)
$$

You can eyeball that f is biggest when $y>0$ so $\left(\sqrt{\frac{2}{5}}, \sqrt{\frac{3}{5}}\right),\left(-\sqrt{\frac{2}{5}}, \sqrt{\frac{3}{5}}\right)$ give the maximum (they both work as the both give the same f value), which is $\frac{2}{5}\left(\frac{3}{5}\right)^{\frac{3}{2}}$

