
Math 1920 Homework 7 Selected Solutions

16.1

PQ2)

Assuming f is continuous on R = [0.9, 1.1] ⇥ [1.9, 2.1] and f(1, 2) = 4 we can
approximate

RR
R f dA by assuming f is constant on R, i.e.,

ZZ

R
f dA ⇡

Z

R
4 dA = area(R) · 4 = (0.2) · (0.2) · 4 = 0.16

PQ4)

The interpretation of
RR

R f dA is the signed volume under the surface described
by z = f(x, y) over the region R in the xy-plane. Positive volume lies above
this plane and negative lies below.

PQ6)

(b) and (c) are functions which integrate to 0 over the region by the inverse-
symmetry of f over the y-axis, i.e., f(x, y) = �f(�x, y). As the region is
symmetrical in the y-axis the ”positive part” of the integral cancels out the
”negative part”.

(a) and (d) both have positive integrals because the functions are almost
always positive on the region.
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Firstly observe that
RR

R 2 + x

2

y dA =
RR

R 2 dA +
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R x

2

y dA. As R = [0, 1] ⇥
[�1, 1], R has a line of symmetry in the x-axis, and, further, if we let f(x, y) =
x

2

y we note that f(x, y) = �f(x,�y), so f is ”odd in the x-axis”. Consequently,RR
R x

2

y dA = 0 and so
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y dA =
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R
2 dA = area(R) · 2 = 4.
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Let R = [0, 1]⇥ [1, 2], then
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16.2

PQ2)

There are many, for instance, an annulus (a disk with a central disk cut out,
like a flattened washer).

PQ4)

The maximum possible value is 4 · area(D) = 4⇡, i.e., (b).
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42)

f(x, y) = x+1, and our region R is the triangle with vertices (1, 1), (5, 3), (3, 5).
We split the region down the line x = 3. Our lower limit is the line going from
(1, 1) to (5, 3), which has equation 2y = x+1. Our upper limits have equations
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y = 2x� 1 and y = 8� x, the first for the left part of the region and the latter
for the right. Using this we compute our integral
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The average y-coordinate is 0 by symmetry. For x we change to polar coordi-
nates:
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16.3

PQ2)

(b) is not because the limits of the middle integral involve z, but we have
already integrated with respect to z when you get around to computing the
middle integral. (a) is fine.

10)
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f@V =
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16)

We find the equation of the upper surface: The vectors h�4, 4, 0i and h�4, 0, 6i
live in the plane generated by the upper triangle, and so their cross product
8 h3, 3, 2i is normal. An equation for the plane is then 3x+3y+2z = 12 and so
we can solve for z = 6� 3

2x� 3
2y. Now we find the equation for the line in the

xy-plane. This line has equation 3x+ 3y = 12 (plugging z = 0 into the eqn for
the plane). We solve this for y and find y = 4� x. This means we can express
our integral as

ZZZ

V
e

z

dV =

Z 4

0

Z 4�x
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Z 6� 3x
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2
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e

z

dz dy dx

which after a lengthy computation we find to be 1
9 (4e

6 � 100).
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The upper surface is z = 2+x

2+y

2 and the lower surface is the plane 1�x�y.
The projection of the region onto the xy-plane is the triangle enclosed by the
line y = 1� x so our triple integral is
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Z 1�x
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(a) The upper face z = 2 � y intersects the first quadrant of the xy-plane in
the line y = 2 and so the projection of W onto the xy-plane is the triangle D
defined by 0  x  1, 2z  y  2. Hence W is the region 0  x  1, 2x  y 
2, 0  z  2� y. So Z 1

0

Z 2

2x

Z 2�y

0
z dz dy dx

which can be show to be equal to 1/3.
(b) For the yz-plane the projection is given by the region bounded by y+z =

2 and the positive y and z axes, i.e., 0  y  2 and 0  z  2 � y. We can
bound x by 0  x  y/2 for

Z 2

0

Z 2�y

0

Z
y/2

0
z dx dz dy

which, of course, is also equal to 1/3.
(c) Finally, we find the points on the intersection of the faces 2x � y = 0

and y + z = 2. These are the points (x, 2x, 2 � 2x) and so the projection of
this onto the xz-plane is (x, 0, 2� 2x). This gives us inequalities 0  z  1 and
0  z  2� 2x. For y we have 2x  y  2� z where y = 2z is obtained bu the
equation y + z = 2 of the upper face.

Z 1

0

Z 2�2x

0

Z 2z

2x
z dy dz dx

Which can be computed, tediously, to be 1/3.

16.4

PQ2)

(a) This is a portion of the cylinder radius 2. So we have �1  z  2, 0  ✓  2⇡
and 0  r  2.

(b) We have z

2 = 4 � x

2 � y

2 and so z = �
p
4� r

2 for limits �
p
4� r

2 
z  0, 0  ✓  2⇡ and 0  r  2.

PQ4)

The area of a polar rectangle can be computed to be r(�r)(�✓) which explains
the factor of r in dA when expressed in polar coordinates.
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The region is the quarter disk of radius 4 in the first quadrant. So
Z 4

0

Z
⇡/2

0
✓ r d✓ dr = · · · = ⇡

2
.

is what we want
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