16.4

3) Solution: The domain \mathcal{D} is a quarter circle of radius 2 in the first quadrant. We can describe it by $0 \leq \theta \leq \frac{\pi}{2}, 0 \leq r \leq 2$ and f becomes $f(x, y)=\frac{1}{2} r^{2} \sin 2 \theta$. Using change of variables in polar coordinates,

$$
\iint_{\mathcal{D}} x y \mathrm{~d} A=\int_{0}^{\frac{\pi}{2}} \int_{0}^{2}\left(\frac{1}{2} r^{2} \sin 2 \theta\right) r \mathrm{~d} r \mathrm{~d} \theta=\int_{0}^{\frac{\pi}{2}} \int_{0}^{2} \frac{1}{2} r^{3} \sin 2 \theta \mathrm{~d} r \mathrm{~d} \theta=\int_{0}^{\frac{\pi}{2}} 2 \sin 2 \theta \mathrm{~d} \theta=2
$$

21) Solution: The region \mathcal{W} can be written as follows in cylindrical coordinates:

$$
\mathcal{W}: \quad-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}, \quad 0 \leq r \leq 3, \quad 0 \leq z \leq r \cos \theta
$$

Its volume is the triple integral of the constant function 1 over itself:

$$
\iiint_{\mathcal{W}} 1 \mathrm{~d} V=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{3} \int_{0}^{r \cos \theta} r \mathrm{~d} z \mathrm{~d} r \mathrm{~d} \theta=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{3} r^{2} \cos \theta \mathrm{~d} r \mathrm{~d} \theta=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 9 \cos \theta \mathrm{~d} \theta=18
$$

40) Solution: The region \mathcal{W} can be described as follows in cylindrical coordinates:

$$
\mathcal{W}: \quad 0 \leq \theta \leq 2 \pi, \quad b \leq r \leq a, \quad-\sqrt{a^{2}-r^{2}} \leq z \leq \sqrt{a^{2}-r^{2}}
$$

Then the volume is:

$$
\iiint_{\mathcal{W}} 1 \mathrm{~d} V=\int_{0}^{2 \pi} \int_{a}^{b} \int_{-\sqrt{a^{2}-r^{2}}}^{\sqrt{a^{2}-r^{2}}} r \mathrm{~d} z \mathrm{~d} r \mathrm{~d} \theta=\int_{0}^{2 \pi} \int_{a}^{b} 2 r \sqrt{a^{2}-r^{2}} \mathrm{~d} r \mathrm{~d} \theta=\int_{0}^{2 \pi} \frac{2}{3}\left(a^{2}-b^{2}\right)^{\frac{3}{2}} \mathrm{~d} \theta=\frac{4 \pi}{3}\left(a^{2}-b^{2}\right)^{\frac{3}{2}} .
$$

58) Solution: The triple integral over \mathbb{R}^{3} can be computed as the limit as $R \rightarrow \infty$ of the triple integral over the ball of radius R. These balls have the following definition in spherical coordinates:

$$
\mathcal{W}_{R}: \quad 0 \leq \theta \leq 2 \pi, \quad 0 \leq \phi \leq \pi, \quad 0 \leq \rho \leq R
$$

The function in spherical coordinates is $f(x, y, z)=\left(x^{2}+y^{2}+z^{2}+1\right)^{-2}=\left(\rho^{2}+1\right)^{-2}$. We obtain the following integral:
$I_{R}=\iiint_{\mathcal{W}_{R}}\left(x^{2}+y^{2}+z^{2}+1\right)^{-2} \mathrm{~d} V=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{R}\left(1+\rho^{2}\right)^{-2} \rho^{2} \sin \phi \mathrm{~d} \rho \mathrm{~d} \phi \mathrm{~d} \theta=4 \pi \int_{0}^{R}\left(1+\rho^{2}\right)^{-2} \rho^{2} \mathrm{~d} \rho$.
This last integral can be computed using the trigonometric substitution $\rho=\tan u, \mathrm{~d} \rho=\frac{1}{\cos ^{3} u} \mathrm{~d} u$. This will give

$$
I_{R}=4 \phi\left(\frac{\tan ^{-1} R}{2}-\frac{\sin 2\left(\tan ^{-1} R\right)}{4}\right)
$$

We now let $R \rightarrow \infty$. Using the limit $\lim _{R \rightarrow \infty} \tan ^{-1} R=\frac{\pi}{2}$, we obtain $I_{R}=\pi^{2}$.
60) Solution: The improper integral $I=\iint_{\mathcal{D}} r^{-a} \mathrm{~d} A$ is computed as the limit as $\varepsilon \rightarrow 0^{+}$of the double integrals over the annulus $\mathcal{D}_{\varepsilon}$ defined by

$$
\mathcal{D}_{\varepsilon}: \quad 0 \leq \theta \leq 2 \pi, \quad \varepsilon \leq r \leq 1
$$

Using polar coordinates, we obtain:

$$
\iint_{\mathcal{D}_{\varepsilon}}\left(\sqrt{x^{2}+y^{2}}\right)^{-a} \mathrm{~d} A=\int_{0}^{2 \pi} \int_{\varepsilon}^{1} r^{-a} r \mathrm{~d} r \mathrm{~d} \theta=2 \pi \int_{\varepsilon}^{1} r^{1-a} \mathrm{~d} r
$$

Taking the limit as $\varepsilon \rightarrow 0$, we conclude that $I=2 \pi \int_{0}^{1} r^{-(a-1)} \mathrm{d} r$. This integral converges only if $a-1<1$, or $a<2$.

16.5

1) Solution: The total mass M is obtained by integrating the mass density $\delta(x, y)=x^{2}+y^{2}$ over the square \mathcal{D} in the $x y$-plane. This gives

$$
M=\iint_{\mathcal{D}} \delta(x, y) \mathrm{d} x \mathrm{~d} y=\int_{0}^{1} \int_{0}^{1}\left(x^{2}+y^{2}\right) \mathrm{d} x \mathrm{~d} y=\int_{0}^{1}\left(\frac{1}{3}+y^{2}\right) \mathrm{d} y=\frac{2}{3}
$$

9) Solution: The given cone in cylindrical coordinates can be described by the following bounds:

$$
0 \leq r \leq 3, \quad 0 \leq \theta \leq 2 \pi, \quad r \leq x \leq 3
$$

The density function $\rho(x, y, z)=a e^{-b z}$ has the same expression in cylindrical coordinates. The total mass is:

$$
M=\int_{0}^{2 \pi} \int_{0}^{3} \int_{r}^{3} a e^{-b z} r \mathrm{~d} z \mathrm{~d} r \mathrm{~d} \theta=-\frac{a}{b} \int_{0}^{2 \pi} \int_{0}^{3}\left(r e^{-3 b}-r e^{-b r}\right) \mathrm{d} r \mathrm{~d} \theta=-\frac{a}{b} 2 \pi\left(\frac{9}{2} e^{-3 b}+\frac{3}{b} e^{-3 b}+\frac{1}{b^{2}} e^{-3 b}-\frac{1}{b^{2}}\right)
$$

Since $a=1.225 \times 10^{9}$ and $b=0.13$, the total mass is $\approx 2.593 \times 10^{10}$.
27) Solution: The octant \mathcal{W} is defined by $0 \leq \theta 2 \pi, 0 \leq \phi \leq \frac{\pi}{2}, 0 \leq \rho \leq 1$, so we have

$$
M_{x y}=\int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{1}(\rho \cos \phi)(\rho \sin \theta \sin \phi) \rho^{2} \sin \phi \mathrm{~d} \rho \mathrm{~d} \phi \mathrm{~d} \theta=\left(\int_{0}^{\frac{\pi}{2}} \sin \theta \mathrm{~d} \theta\right)\left(\int_{0}^{\frac{\pi}{2}} \cos \phi \sin ^{2} \phi \mathrm{~d} \phi\right)\left(\int_{0}^{1} \rho^{4} \mathrm{~d} \rho\right)=\frac{1}{15} .
$$

and

$$
M=\int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{1}(\rho \sin \theta \sin \phi) \rho^{2} \sin \phi \mathrm{~d} \rho \mathrm{~d} \phi \mathrm{~d} \theta=\left(\int_{0}^{\frac{\pi}{2}} \sin \theta \mathrm{~d} \theta\right)\left(\int_{0}^{\frac{\pi}{2}} \sin ^{2} \phi \mathrm{~d} \phi\right)\left(\int_{0}^{1} \rho^{3} \mathrm{~d} \rho\right)=\frac{\pi}{16} .
$$

We conclude that

$$
z_{C M}=\frac{1}{M} \iiint_{\mathcal{W}} z \rho(x, y, z) \mathrm{d} V=\frac{16}{15 \pi} \approx 0.34
$$

51) Solution:

$$
P(X \geq 12, Y \geq 12)=\int_{12}^{18} \int_{12}^{48-2 x} \frac{1}{9216}(48-2 x-y) \mathrm{d} x \mathrm{~d} y
$$

The result of the iterated integral is $P(X \geq 12, Y \geq 12)=\frac{1}{64}$.
54) Solution: Since the probability density function is 1 , the probability P is the integral of 1 over the region $\mathcal{W}=\left\{(x, y): 0 \leq x \leq 1, \quad 0 \leq y \leq 1, \quad x y \geq \frac{1}{2}\right\}$, which is just the area of \mathcal{W}. Now, \mathcal{W} is the area bounded by the curves $y=\frac{1}{2 x}$ and $y=1$ for $0 \leq x \leq 1$. Since these curves cross at $x=\frac{1}{2}$, the area is simply

$$
P=\int_{\frac{1}{2}}^{1}\left(1-\frac{1}{2 x}\right) \mathrm{d} x=\frac{1}{2}(1-\ln 2) .
$$

