

Math 1920

Prelim 2

1

Name ____

7 November 2017

7:30-9:00 pm

Pla	Place an X in the box by your discussion section number								
-		201	Aleksandra Niepla	MW 7:30-8:20P		214	Shrinidhi Pandurangi	TR 9:05–9:55A	
-		202	Aleksandra Niepla	MW 8:35-9:25P		215	Andres Fernandez	TR 9:05–9:55A	
-		203	Andres Fernandez	TR 8:00-8:50A		216	Dylan Peifer	TR 9:05–9:55A	
-		204	Dylan Peifer	TR 8:00-8:50A		217	Feng Liang	TR 12:20–1:10P	
-		205	Thomas Reeves	TR 8:00-8:50A		218	Max Jenquin	TR 12:20–1:10P	
-		206	Bram Wallace	TR 8:00-8:50A		219	Feng Liang	TR 1:25-2:15P	
		207	Shrinidhi Pandurangi	TR 8:00-8:50A		220	Ryan McDermott	TR 1:25-2:15P	
-		209	Bill Wu	TR 8:00-8:50A		221	Itamar Oliveira	MW 7:30-8:20P	
-		210	Thomas Reeves	TR 9:05–9:55A		222	Itamar Oliveira	MW 8:35-9:25P	
-		211	Bram Wallace	TR 9:05–9:55A		223	Max Jenquin	TR 1:25–2:15P	
-		213	Bill Wu	TR 9:05–9:55A		224	Ryan McDermott	TR 2:30–3:20P	

INSTRUCTIONS—PLEASE READ NOW

• Write your name and check the box with your discussion section number *right now*.

• There are 6 problems and this booklet has 7 sheets. You may use the back of each sheet as scratch paper.

• You have 90 minutes to complete the exam. You may leave early, but if you finish within the last 15 minutes, please remain in your seat.

• Show your work and simplify your answers. To receive full credit, your answers must be neatly written and logically organized.

• You are allowed a one-sided letter size sheet of notes. No books or electronic devices or any other resources are allowed.

• Academic integrity is expected of all Cornell University students at all times, whether in the presence or absence of members of the faculty. Understanding this, I declare I shall not give, use, or receive unauthorized aid in this examination.

Please sign below to indicate that you have read and agree to these instructions.

0FFICIAL USE ONLY 1. / 15 2. / 15 3. / 15 4. / 15 5. / 20 6. / 20 Total / 100

Signature of Student

Math 1920

1 (15 points). Find the global minima and maxima of the function f(x, y, z) = -x + 2y + z over the solid ellipsoid given by $x^2 + y^2 + \frac{1}{4}z^2 \le 1$.

2 (15 points). Let \mathscr{W} be the solid enclosed between the surface $z = \sqrt{x^2 + y^2}$ and the plane z = h, where *h* is a positive constant.

- (a) Find the volume of \mathscr{W} .
- (b) Find the centroid of \mathscr{W} . (Recall that the centroid is the center of mass with respect to a constant density function equal to 1.) You may use the symmetries of \mathscr{W} to shorten your calculations.

(The answers will depend on *h*.)

3 (15 points). Find the work done by the force $\mathbf{F}(x, y, z) = \langle yz, xz, xy \rangle$ along the path $\mathbf{r}(t) = \langle t, t^2, t^3 \rangle$ for $0 \le t \le T$. (The answer will depend on *T*.)

Math 1920

4 (15 points). Let *a* be a constant and let **F** be the vector field

$$\mathbf{F}(x,y) = \left\langle x \ln y + y e^x, \frac{1}{2} x^2 y^a + e^x + 1 \right\rangle.$$

The domain of **F** is the planar region \mathcal{D} defined by y > 0.

- (a) Is \mathscr{D} simply connected?
- (b) For what value of *a* is **F** conservative?
- (c) For the value of *a* you found in part (b), find a potential of **F**.

5 (20 points). Let $f(x, y) = x^3 + y^3 - 3xy$.

- (a) Find all critical points of f in the plane \mathbf{R}^2 .
- (b) For each critical point state whether it is a local minimum, local maximum, or saddle point.
- (c) Does *f* have global extrema? Explain your answer.

6 (20 points). Let \mathcal{W} be the solid enclosed by the two spheres $x^2 + y^2 + z^2 = R^2$ and $x^2 + y^2 + (z - R)^2 = R^2$, where *R* is a positive constant.

- (a) Sketch the solid \mathcal{W} . Include sufficient detail, such as coordinate axes and some indication of scale.
- (b) Set up the integral $\iiint xyz \, dV$ in cylindrical coordinates with the variables in the order $dz \, dr \, d\theta$. Write the answer as an integral with explicit limits of integration. Do not attempt to evaluate the integral.
- (c) In the integral of part (b) change the order of integration to $dr dz d\theta$. Do not attempt to evaluate the answer.