MATH 1920 - Fall 2018 - Prelim 1 Practice 1 Solutions

1. Since the particle has constant speed, $\|\mathbf{r}'(t)\|$ is constant. Thus $\|\mathbf{r}'(t)\|^2 = \mathbf{r}'(t) \cdot \mathbf{r}'(t)$ is also constant with respect to t. So,

$$0 = \frac{d}{dt} \mathbf{r}'(t) \cdot \mathbf{r}'(t)$$

$$= \mathbf{r}''(t) \cdot \mathbf{r}'(t) + \mathbf{r}'(t) \cdot \mathbf{r}''(t) \qquad \text{(product rule)}$$

$$= 2(\mathbf{r}'(t) \cdot \mathbf{r}''(t)).$$

Then $\mathbf{r}'(t) \cdot \mathbf{r}''(t) = 0$, which means the velocity and acceleration vectors are always perpendicular to one another.

2. (a) The flux across the screen is $\overrightarrow{v} \cdot \overrightarrow{S}$ where $\overrightarrow{S} = S\overrightarrow{n}$, and S is the area of the screen and \overrightarrow{n} is a unit vector perpendicular to the screen. We have

$$\overrightarrow{v} = \langle 2, 1, -1 \rangle
S = \pi(9)^2 = 81\pi
\overrightarrow{n} = \frac{\langle 3, 4, 5 \rangle}{\|\langle 3, 4, 5 \rangle\|} = \frac{\langle 3, 4, 5 \rangle}{\sqrt{3^2 + 4^2 + 5^2}} = \frac{1}{5\sqrt{2}} \langle 3, 4, 5 \rangle.$$

So the flux is

$$\overrightarrow{v} \cdot (S\overrightarrow{n}) = \langle 2, 1, -1 \rangle \cdot \left((81\pi) \frac{1}{5\sqrt{2}} \langle 3, 4, 5 \rangle \right)$$

$$= \frac{81\pi}{5\sqrt{2}} (\langle 2, 1, -1 \rangle \cdot \langle 3, 4, 5 \rangle)$$

$$= \frac{81\pi}{5\sqrt{2}} ((2)(3) + (1)(4) + (-1)(5))$$

$$= \frac{81\pi}{5\sqrt{2}} (5)$$

$$= \frac{81\pi}{5\sqrt{2}}.$$

(b) Note that

$$\overrightarrow{v} \cdot (S\overrightarrow{n}) = S \|\overrightarrow{v}\| \|\overrightarrow{n}\| \cos \theta = S \|\overrightarrow{v}\| \cos \theta$$

where θ is the angle between \overrightarrow{v} and \overrightarrow{n} . This is maximized when $\cos \theta = 1$, so $\theta = 0$. That is, the flow rate acoss the screen is as large as possible when the normal vector \overrightarrow{n} to the screen is **parallel** to $\langle 2, 1, -1 \rangle$.

- (c) $\mathbf{r}(t) = \langle 1, 2, 3 \rangle + t \langle 2, 1, -1 \rangle$.
- (d) We need to know if there exists t such that $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$ lies in the plane

3x + 4y + 5z = 6. If this happens, then

$$3x(t) + 4y(t) + 5z(t) = 6$$

$$3(1+2t) + 4(2+t) + 5(3-t) = 6$$

$$3 + 6t + 8 + 4t + 15 - 5t = 6$$

$$26 + 5t = 6$$

$$5t = -20$$

$$t = -4$$

However, the bug only follows $\mathbf{r}(t)$ for $t \geq 0$, so we conclude that the bug **cannot** hit the screen if it continues down the river.

3. The three points form a syzygy when the vector from $\mathbf{r}_1(t)$ to $\mathbf{r}_2(t)$ is parallel to the vector from $\mathbf{r}_2(t)$ to $\mathbf{r}_3(t)$. Let

$$\mathbf{v} = \overrightarrow{\mathbf{r}_1(t)\mathbf{r}_2(t)} = \langle 1, 3+t, -2-t \rangle$$

$$\mathbf{w} = \overrightarrow{\mathbf{r}_2(t)\mathbf{r}_3(t)} = \langle t, -4-t, 0 \rangle$$

These are parallel provided $\mathbf{w} = \lambda \mathbf{v}$. Then $\langle t, -4 - t, 0 \rangle = \lambda \langle 1, 3 + t, -2 - t \rangle$. Component-wise,

$$\begin{cases} t = \lambda \\ -4 - t = \lambda(3+t) \\ 0 = \lambda(-2-t) \end{cases}$$

Plugging in $t = \lambda$ into the second equation, we get

$$-4 - t = t(3 + t)$$

$$0 = t^{2} + 4t + 4$$

$$0 = (t + 2)^{2} \implies t = -2.$$

We check that this satisfies the third equation, again substituting $\lambda = t$:

$$\lambda(-2-t) = t(-2-t) = (-2)(-2-(-2)) = (-2)(0) = 0.$$

So at time t = -2 the points form a syzygy.

4. The laser beam always shoots along the tangent vector to $\mathbf{r}(t)$. At time t_0 , the tangent vector to $\mathbf{r}(t)$ is $\mathbf{r}'(t_0) = \langle -\sin t_0, \cos t_0 \rangle$. We can parametrize the path of the laser by

$$\mathbf{L}(t) = \mathbf{r}(t_0) + t\mathbf{r}'(t_0) = \langle 2 + \cos t_0, \sin t_0 \rangle + t\langle -\sin t_0, \cos t_0 \rangle, \quad t \ge 0$$

We wish to find t such that $L(t) = \langle 4, 0 \rangle$. That is, we want

$$\begin{cases} 2 + \cos t_0 - t \sin t_0 = 4\\ \sin t_0 + t \cos t_0 = 0 \end{cases}$$

We solve the second equation for t to get $t = -\frac{\sin t_0}{\cos t_0}$. Plugging this into the first equation,

$$2 + \cos t_0 - \left(-\frac{\sin t_0}{\cos t_0}\right) \sin t_0 = 4$$

$$2 \cos t_0 + \cos^2 t_0 + \sin^2 t_0 = 4 \cos t_0$$

$$2 \cos t_0 + \cos^2 t_0 + (1 - \cos^2 t_0) = 4 \cos t_0$$

$$1 = 2 \cos t_0$$

$$\cos t_0 = \frac{1}{2}.$$

Then either $t_0 = \frac{\pi}{3}$ or $t_0 = \frac{5\pi}{3}$. Also $t = -\frac{\sin t_0}{\cos t_0} = -\frac{\sin t_0}{1/2} = -2\sin t_0$. Since the laser beam only shoots forward, we must have $t \ge 0$. Then $\sin t_0 < 0$, which means only the solution $t_0 = \frac{5\pi}{3}$ works.

5. (a) Along y = 0:

$$\lim_{x \to 0} \frac{\sin(x \cdot 0)}{x^2 + 0^2} = \lim_{x \to 0} \frac{0}{x^2} = 0.$$

Along y = x,

$$\lim_{x \to 0} \frac{\sin x \cdot x}{x^2 + 2} = \lim_{x \to 0} \frac{\sin(x^2)}{2x^2}$$

$$= \lim_{x \to 0} \frac{\cos(x^2) \cdot 2x}{4x} \qquad \text{(L'Hôpital's Rule)}$$

$$= \lim_{x \to 0} \frac{1}{2} \cos(x^2)$$

$$= \frac{1}{2} \cos(0)$$

$$= \frac{1}{2}.$$

The limits are different along two different paths to (0,0) so the limit does not exist.

(b) Method 1: In polar coordinates, we have

$$\lim_{r \to 0} \frac{(r \cos \theta)^2 \sqrt{|r \sin \theta|}}{r^2} = \lim_{r \to 0} \frac{r^2 \cos^2 \theta \sqrt{r} \sqrt{|\sin \theta|}}{r^2}$$
$$= \lim_{r \to 0} \sqrt{r} \cos^2 \theta \sqrt{|\sin \theta|}$$
$$= 0$$

so
$$\lim_{(x,y)\to(0,0)} \frac{x^2\sqrt{|y|}}{x^2+y^2} = 0.$$

Method 2: Note that $0 \le \frac{x^2}{x^2 + y^2} \le 1$. Thus

$$0 \le \frac{x^2\sqrt{|y|}}{x^2 + y^2} \le \sqrt{|y|}.$$

Since $\lim_{(x,y)\to(0,0)}\sqrt{|y|}=\sqrt{|0|}=0$, by the Squeeze Theorem we conclude that

$$\lim_{(x,y)\to(0,0)} \frac{x^2\sqrt{|y|}}{x^2+y^2} = 0.$$

6. (a)

$$\mathbf{r}(t) = \int \mathbf{v}(t) dt + \mathbf{c}$$

$$= \int \langle t, \pi \cos(\pi t), 1 \rangle dt + \mathbf{c}$$

$$= \left\langle \frac{1}{2} t^2, \sin(\pi t), t \right\rangle + \langle c_1, c_2, c_3 \rangle.$$

Since $\mathbf{r}(0) = \langle 0, 1, -1 \rangle$,

$$\langle 0, 1, -1 \rangle = \left\langle \frac{1}{2} (0)^2, \sin(\pi \cdot 0), 0 \right\rangle + \left\langle c_1, c_2, c_3 \right\rangle$$
$$\langle 0, 1, -1 \rangle = \left\langle 0, 0, 0 \right\rangle + \left\langle c_1, c_2, c_3 \right\rangle$$
$$\langle 0, 1, -1 \rangle = \left\langle c_1, c_2, c_3 \right\rangle.$$

Thus $\mathbf{r}(t) = \left\langle \frac{1}{2}t^2, \sin(\pi t) + 1, t - 1 \right\rangle$.

(b) The speed v(t) is the magnitude of the velocity vector:

$$v(t) = \|\mathbf{v}(t)\| = \|\langle t, \pi \cos(\pi t), 1 \rangle\| = \sqrt{t^2 + \pi^2 \cos^2(\pi t) + 1}.$$

(c) We need to know the values of t for which $\mathbf{r}(t) = \langle 0, 1, -1 \rangle$ and for which $\mathbf{r}(t) = \langle 8, 1, 3 \rangle$. Since $\mathbf{r}(t) = \langle \frac{1}{2}t^2, \sin(\pi t), t - 1 \rangle$, we can look at the z-components to determine

$$\left\langle \frac{1}{2}t^2, \sin(\pi t), t - 1 \right\rangle = \langle 0, 1, -1 \rangle \implies t = 0$$

$$\left\langle \frac{1}{2}t^2, \sin(\pi t), t - 1 \right\rangle = \langle 8, 1, 3 \rangle \implies t = 4$$

Then the distance traveled by the particle between these points is

$$\int_0^4 \|\mathbf{v}(t)\| \ dt = \int_0^4 \sqrt{t^2 + \pi^2 \cos^2(\pi t) + 1} \ dt.$$

7. The intersection lies on the cylinder $y^2 + z^2 = 4$, so its projection onto the yz-plane lies on the circle $y^2 + z^2 = 4$. Thus we can take $y(t) = 2\cos(t)$ and $z(t) = 2\sin(t)$. Since we also want the curve to lie on the surface $x = y^2z$, we must have $x(t) = y(t)^2z(t) = 8\cos^2t\sin t$. In order to trace the curve out exactly once, we choose $0 \le t < 2\pi$. Thus the parametrization is

$$\langle 8\cos^2 t \sin t, 2\cos t, 2\sin t \rangle, \quad 0 \le t < 2\pi.$$

Note that there are many other parametrizations that are also correct.