
MATH 1920 - Fall 2018 - Prelim 1 Practice 1 Solutions

1. Since the particle has constant speed, ‖r′(t)‖ is constant. Thus ‖r′(t)‖2 = r′(t) · r′(t)
is also constant with respect to t. So,

0 =
d

dt
r′(t) · r′(t)

= r′′(t) · r′(t) + r′(t) · r′′(t) (product rule)

= 2(r′(t) · r′′(t)).

Then r′(t) · r′′(t) = 0, which means the velocity and acceleration vectors are always
perpendicular to one another.

2. (a) The flux across the screen is −→v ·
−→
S where

−→
S = S−→n , and S is the area of the

screen and −→n is a unit vector perpendicular to the screen. We have

−→v = 〈2, 1,−1〉
S = π(9)2 = 81π

−→n =
〈3, 4, 5〉
‖〈3, 4, 5〉‖

=
〈3, 4, 5〉√

32 + 42 + 52
=

1

5
√

2
〈3, 4, 5〉.

So the flux is

−→v · (S−→n ) = 〈2, 1,−1〉 ·
(

(81π)
1

5
√

2
〈3, 4, 5〉

)
=

81π

5
√

2
(〈2, 1,−1〉 · 〈3, 4, 5〉)

=
81π

5
√

2
((2)(3) + (1)(4) + (−1)(5))

=
81π

5
√

2
(5)

=
81π√

2
.

(b) Note that
−→v · (S−→n ) = S‖−→v ‖‖−→n ‖ cos θ = S‖−→v ‖ cos θ

where θ is the angle between −→v and −→n . This is maximized when cos θ = 1, so
θ = 0. That is, the flow rate acoss the screen is as large as possible when the
normal vector −→n to the screen is parallel to 〈2, 1,−1〉.

(c) r(t) = 〈1, 2, 3〉+ t〈2, 1,−1〉.
(d) We need to know if there exists t such that r(t) = 〈x(t), y(t), z(t)〉 lies in the plane
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3x+ 4y + 5z = 6. If this happens, then

3x(t) + 4y(t) + 5z(t) = 6

3(1 + 2t) + 4(2 + t) + 5(3− t) = 6

3 + 6t+ 8 + 4t+ 15− 5t = 6

26 + 5t = 6

5t = −20

t = −4.

However, the bug only follows r(t) for t ≥ 0, so we conclude that the bug cannot
hit the screen if it continues down the river.

3. The three points form a syzygy when the vector from r1(t) to r2(t) is parallel to the
vector from r2(t) to r3(t). Let

v =
−−−−−−→
r1(t)r2(t) = 〈1, 3 + t,−2− t〉

w =
−−−−−−→
r2(t)r3(t) = 〈t,−4− t, 0〉

These are parallel provided w = λv. Then 〈t,−4 − t, 0〉 = λ〈1, 3 + t,−2 − t〉.
Component-wise, 

t = λ
−4− t = λ(3 + t)

0 = λ(−2− t)
Plugging in t = λ into the second equation, we get

−4− t = t(3 + t)

0 = t2 + 4t+ 4

0 = (t+ 2)2 =⇒ t = −2.

We check that this satisfies the third equation, again substituting λ = t:

λ(−2− t) = t(−2− t) = (−2)(−2− (−2)) = (−2)(0) = 0. X

So at time t = −2 the points form a syzygy.

4. The laser beam always shoots along the tangent vector to r(t). At time t0, the tangent
vector to r(t) is r′(t0) = 〈− sin t0, cos t0〉. We can parametrize the path of the laser by

L(t) = r(t0) + tr′(t0) = 〈2 + cos t0, sin t0〉+ t〈− sin t0, cos t0〉, t ≥ 0

We wish to find t such that L(t) = 〈4, 0〉. That is, we want{
2 + cos t0 − t sin t0 = 4

sin t0 + t cos t0 = 0
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We solve the second equation for t to get t = − sin t0
cos t0

. Plugging this into the first

equation,

2 + cos t0 −
(
− sin t0

cos t0

)
sin t0 = 4

2 cos t0 + cos2 t0 + sin2 t0 = 4 cos t0

2 cos t0 + cos2 t0 + (1− cos2 t0) = 4 cos t0

1 = 2 cos t0

cos t0 =
1

2
.

Then either t0 = π
3

or t0 = 5π
3

. Also t = − sin t0
cos t0

= −sin t0
1/2

= −2 sin t0. Since the laser

beam only shoots forward, we must have t ≥ 0. Then sin t0 < 0, which means only the
solution t0 = 5π

3
works.

5. (a) Along y = 0:

lim
x→0

sin(x · 0)

x2 + 02
= lim

x→0

0

x2
= 0.

Along y = x,

lim
x→0

sinx · x
x2+2

= lim
x→0

sin(x2)

2x2

= lim
x→0

cos(x2) · 2x
4x

(L’Hôpital’s Rule)

= lim
x→0

1

2
cos(x2)

=
1

2
cos(0)

=
1

2
.

The limits are different along two different paths to (0, 0) so the limit does not
exist.

(b) Method 1: In polar coordinates, we have

lim
r→0

(r cos θ)2
√
|r sin θ|

r2
= lim

r→0

r2 cos2 θ
√
r
√
| sin θ|

r2

= lim
r→0

√
r cos2 θ

√
| sin θ|

= 0

so lim
(x,y)→(0,0)

x2
√
|y|

x2 + y2
= 0.
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Method 2: Note that 0 ≤ x2

x2 + y2
≤ 1. Thus

0 ≤
x2
√
|y|

x2 + y2
≤
√
|y|.

Since lim
(x,y)→(0,0)

√
|y| =

√
|0| = 0, by the Squeeze Theorem we conclude that

lim
(x,y)→(0,0)

x2
√
|y|

x2 + y2
= 0.

6. (a)

r(t) =

∫
v(t) dt+ c

=

∫
〈t, π cos(πt), 1〉 dt+ c

=

〈
1

2
t2, sin(πt), t

〉
+ 〈c1, c2, c3〉.

Since r(0) = 〈0, 1,−1〉,

〈0, 1,−1〉 =

〈
1

2
(0)2, sin(π · 0), 0

〉
+ 〈c1, c2, c3〉

〈0, 1,−1〉 = 〈0, 0, 0〉+ 〈c1, c2, c3〉
〈0, 1,−1〉 = 〈c1, c2, c3〉.

Thus r(t) =
〈
1
2
t2, sin(πt) + 1, t− 1

〉
.

(b) The speed v(t) is the magnitude of the velocity vector:

v(t) = ‖v(t)‖ = ‖〈t, π cos(πt), 1〉‖ =
√
t2 + π2 cos2(πt) + 1.

(c) We need to know the values of t for which r(t) = 〈0, 1,−1〉 and for which r(t) =
〈8, 1, 3〉. Since r(t) =

〈
1
2
t2, sin(πt), t− 1

〉
, we can look at the z-components to

determine 〈
1

2
t2, sin(πt), t− 1

〉
= 〈0, 1,−1〉 =⇒ t = 0〈

1

2
t2, sin(πt), t− 1

〉
= 〈8, 1, 3〉 =⇒ t = 4

Then the distance traveled by the particle between these points is∫ 4

0

‖v(t)‖ dt =

∫ 4

0

√
t2 + π2 cos2(πt) + 1 dt.
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7. The intersection lies on the cylinder y2 +z2 = 4, so its projection onto the yz-plane lies
on the circle y2 + z2 = 4. Thus we can take y(t) = 2 cos(t) and z(t) = 2 sin(t). Since
we also want the curve to lie on the surface x = y2z, we must have x(t) = y(t)2z(t) =
8 cos2 t sin t. In order to trace the curve out exactly once, we choose 0 ≤ t < 2π. Thus
the parametrization is

〈8 cos2 t sin t, 2 cos t, 2 sin t〉, 0 ≤ t < 2π.

Note that there are many other parametrizations that are also correct.
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