
MATH 1920 - Fall 2018 - Prelim 1 Practice 3 Solutions

1. (a) We find the partial derivaties of f(x, y) at (4, 1):

fx(x, y) =
2x

1 + y2
=⇒ fx(4, 1) =

2 · 4
1 + 12

=
8

2
= 4

fy(x, y) = − x2

(1 + y2)2
· 2y =⇒ fy(4, 1) = − 42

(1 + 12)2
· 2 · 1 = −16

22
· 2 = 8

Next we find f(4, 1) =
42

1 + 12
=

16

2
= 8. So the equation of the tangent plane

has the form

L(x, y) = f(4, 1) + fx(4, 1)(x− 4) + fy(4, 1)(y − 1)

= 8 + 4(x− 4)− 8(y − 1)

= 4x− 8y.

To put this plane in the form ax + by + cz = d, we write z = 4x − 8y, so
4x− 8y − z = 0.

(b) The value of f(x, y) at (4.01, 0.98) is approximately equal to the value of L(x, y)
at (4.01, 0.98) because L(x, y) is the best linear approximation to f(x, y) at (4, 1).
So,

f(4.01, 0.98) ≈ L(4.01, 0.98)

= 4(4.01)− 8(0.98)

= 16.04− 7.84

= 8.2.

2. (a) Since
−→
AB and

−→
AC are two vectors in the plane containing A, B, and C, a normal

vector to the plane is given by their cross product:

n =
−→
AB ×

−→
AC

= 〈0,−3, 0〉 × 〈−1, 2, 1〉

=

∣∣∣∣∣∣
i j k
0 −3 0
−1 2 1

∣∣∣∣∣∣
= [(−3)(1)− (2)(0)]i− [(0)(1)− (−1)(0)]j + [(0)(2)− (−1)(−3)]k

= 〈−3, 0,−3〉.
The plane also contains the point A = (1, 1, 1), so an equation for the plane is

〈−3, 0,−3〉 · 〈x− 1, y − 1, z − 1〉 = 0

−3(x− 1) + 0(y − 1)− 3(z − 1) = 0

−3x+ 3− 3z + 3 = 0

−3x+ 6 = 3z

−x+ 2 = z.

So z = −x+ 2 is the plane containing A, B, and C.
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(b) If D is on the plane, then we must have z = −x+ 2 for x = 1, y = 2, and z = a.
That is, a = −1 + 2, so a = 1. This is the only value of a for which D lies on the
plane containing A, B, and C.

(c) The area of the triangle formed by A, B, and C is half the area of the parallelogram

determined by
−→
AB and

−→
AC. The area of that parallelograph is given by ‖

−→
AB ×

−→
AC‖. Thus area of the triangle formed by A, B, and C is

1

2
‖
−→
AB ×

−→
AC‖ =

1

2
‖〈−3, 0,−3〉‖

=
1

2

√
(−3)2 + 02 + (−3)2

=
1

2

√
18

=
3

2

√
2.

(d) To find the distance of D to the plane, we

• Compute the vector
−−→
AD

• Compute the projection projn(
−−→
AD) of

−−→
AD onto the normal vector n to the

plane

• Compute the length of projn(
−−→
AD)

We have
−−→
AD = 〈0, 1, a− 1〉, so

projn(
−−→
AD) =

(
n ·
−−→
AD

n · n

)
n

=

(
〈−3, 0,−3〉 · 〈0, 1, a− 1〉
〈−3, 0,−3〉 · 〈−3, 0,−3〉

)
〈−3, 0,−3〉

=

(
−3(a− 1)

9 + 9

)
〈−3, 0,−3〉

=

(
−a− 1

6

)
〈−3, 0,−3〉

=

〈
a− 1

2
, 0,

a− 1

2

〉
.
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Thus the distance from D to the plane is

‖projn(
−−→
AD) =

∥∥∥∥〈a− 1

2
, 0,

a− 1

2

〉∥∥∥∥
=

√(
a− 1

2

)2

+ 02 +

(
a− 1

2

)2

=

√
1

4
(a− 1)2 +

1

4
(a− 1)2

=

√
1

2
(a− 1)2

=
1√
2
|a− 1|.

We note that this distance is zero if and only if a = 1, i.e., D is on the plane if
and only if a = 1 (as we found in part (b)).

3. When φ = 0, ρ = 4 cos(0) = 4, and this corresponds to
x = 4 sin(0) cos θ = 0

y = 4 sin(0) cos θ = 0

z = 4 cos(0) = 4

So the point (0, 0, 4) lies on the graph. When φ = π
2
, ρ = 4 cos

(
π
2

)
= 0, and this

corresponds to 
x = 0 sin

(
π
2

)
cos θ = 0

y = 0 sin
(
π
2

)
sin θ = 0

z = 0 cos
(
π
2

)
= 0

So the point (0, 0, 0) lies on the graph as well. Given that the equation describes a
sphere centered on the z-axis, and given that the graph contains the points (0, 0, 0)
and (0, 0, 4), it must be a sphere of radius 2 centered at (0, 0, 2). We prove this by
showing that every point on the graph satisfies x2 + y2 + (z − 2)2 = 4, the equation of
a circe of radius 2 centered at (0, 0, 2).

If the point (x, y, z) satisfies ρ = 4 cosφ, then we have

x = ρ sinφ cos θ = (4 cosφ) sinφ cos θ,

y = ρ sinφ sin θ = (4 cosφ) sinφ sin θ,

z = ρ cosφ = (4 cosφ) cosφ.

Thus
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x2 + y2 + (z − 2)2 = (4 cosφ sinφ cos θ)2 + (4 cosφ sinφ sin θ)2 +
(
4 cos2 φ− 2

)2
= 16 cos2 φ sin2 φ cos2 θ + 16 cos2 φ sin2 φ sin2 θ +

(
4 cos2 φ− 2

)2
= 16 cos2 φ sin2 φ (cos2 θ + sin2 θ)︸ ︷︷ ︸

1

+
(
4 cos2 φ− 2

)2
= 16 cos2 φ sin2 φ+ (16 cos4 φ− 16 cos2 φ+ 4)

= 16 cos2 φ (sin2 φ+ cos2 φ)︸ ︷︷ ︸
1

−16 cos2 φ+ 4

= 16 cos2 φ− 16 cos2 φ+ 4

= 4.

This shows that the graph of ρ = 4 cosφ lies entirely on the sphere of radius 2 centered
at (0, 0, 2). Moreover, as θ ranges from 0 to 2π and φ ranges from 0 to π

2
, we see that

the entire sphere will be traced out.

4. (a) We notice that f(x, y) and g(x, y) both have rotational symmetry around the

z-axis: in polar coordinates we have f(r, θ) =
√

3− r2 and g(r, θ) =
r2

2
, neither

of which depend on θ. So the intersection of f(x, y) and g(x, y) should look
like a circle in the xy-plane when we project it onto the xy-plane. Thus we can
choose x(t) = a cos t and y(t) = a sin t for some constant a. Note then that
x(t)2 + y(t)2 = a2. We want f(x(t), y(t)) = g(x(t), y(t)), i.e.,

√
3− x(t)2 − y(t)2 =

x(t)2 + y(t)2

2
√

3− a2 =
a2

2

3− a2 =
a4

4
0 = a4 + 4a2 − 12

0 = (a2 + 6)(a2 − 2).

Thus either a2 = −6 or a2 = 2. The first is impossible since a2 ≥ 0, so a2 = 2
and we can choose a =

√
2. Finally, the z-coordinate of r1(t) is

f(x(t), y(t)) = g(x(t), y(t)) =
(
√

2 cos t)2 + (
√

2 sin t)2

2
=

(
√

2)2

2
= 1

So r1(t) = 〈
√

2 cos t,
√

2 sin t, 1〉.
(b) Note that 〈1, 1, 1〉 = r1

(
π
4

)
. We need a direction vector for the tangent line to

r1(t) at t = π
4
, which is given by r′1

(
π
4

)
. We have

r′1(t) = 〈−
√

2 sin t,
√

2 cos t, 0〉
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so
r′1

(π
4

)
=
〈
−
√

2 sin
(π

4

)
,
√

2 cos
(π

4

)
, 0
〉

= 〈−1, 1, 0〉

We also know the tangent line to r1(t) at (1, 1, 1) goes through the point (1, 1, 1).
So a parametrization of the tangent line is given by

r2(t) = 〈1, 1, 1〉+ t〈−1, 1, 0〉

5. The spherical equations ρ = 2, 0 ≤ θ ≤ 2π, and 0 ≤ φ ≤ π
2

describe the upper
hemisphere of a sphere of radius 2 centered at (0, 0, 0), shown below.

6. In rectangular coordinates the equation for a sphere of radius 2 centered at the origin
is x2 + y2 + z2 = 4. We substitute the change of coordinates

x = r cos θ

y = r sin θ

z = z

to obtain

(r cos θ)2 + (r sin θ)2 + z2 = 4

r2 (cos2 θ + sin2 θ)︸ ︷︷ ︸
1

+z2 = 4

r2 + z2 = 4.

So in cylindrical coordinates the equation for a sphere of radius 2 centered at the origin
is r2 + z2 = 4.

7. (a) For (x, y) 6= (0, 0),

fx(x, y) = y
√
x2 + y2 + xy

2x

2
√
x2 + y2

= y
√
x2 + y2 + xy

x√
x2 + y2

fy(x, y) = x
√
x2 + y2 + xy

2y

2
√
x2 + y2

= x
√
x2 + y2 + xy

y√
x2 + y2
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(b) Using the limit definition of partial derivatives,

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

h · 0
√
h2 + 02 − 0 · 0

√
02 + 02

h
= lim

h→0
0 = 0

fy(0, 0) = lim
h→0

f(0, h)− f(0, 0)

h
= lim

h→0

0 · h
√

02 + h2 − 0 · 0
√

02 + 02

h
= lim

h→0
0 = 0

(c) In polar coordinates,

lim
r→0

r2 cos2 θr sin θ

r
= lim

r→0
r2 cos2 θ sin θ.

Note that | cos2 θ sin θ| ≤ 1 for all θ, so −1 ≤ cos2 θ sin θ. Thus

−r2 ≤ r2 cos2 θ sin θ ≤ r2.

We know that limr→0−r2 = limr→0 r
2 = 0, so by the squeeze theorem,

lim
r→0

r2 cos2 θ sin θ = 0.

So we conclude

lim
(x,y)→(0,0)

x2y√
x2 + y2

= 0.

(d) fx and fy are continuous at (0, 0) provided that

lim
(x,y)→(0,0)

fx(x, y) = fx(0, 0) = 0

lim
(x,y)→(0,0)

fy(x, y) = fy(0, 0) = 0

First we consider fx(x, y) in polar coordinates

lim
r→0

r sin θ · r + r cos θ · r sin θ · r cos θ

r
= lim

r→0
r2 sin θ + r2 cos2 θ sin θ

= lim
r→0

r2(sin θ + cos2 θ sin θ)

Since | sin θ + cos2 θ sin θ| ≤ 2 for all θ, −2 ≤ sin θ + cos2 θ sin θ ≤ 2. Thus

−2r2 ≤ r2(sin θ + cos2 θ sin θ) ≤ 2r2.

Since limr→0−2r2 = limr→0 2r2 = 0, by the squeeze theorem

lim
r→0

r2(sin θ + cos2 θ sin θ) = 0.

That is, lim
(x,y)→(0,0)

fx(x, y) = fx(0, 0), so fx is continuous at (0, 0).
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Next we consider fy(x, y) in polar coordinates

lim
r→0

r cos θ · r + r cos θ · r sin θ · r sin θ

r
= lim

r→0
r2 cos θ + r2 cos θ sin2 θ

= lim
r→0

r2(cos θ + cos θ sin2 θ)

Again we have | cos θ + cos θ sin2 θ| ≤ 2, so

−2r2 ≤ r2(cos θ + cos θ sin2 θ) ≤ 2r2.

Again by the squeeze theorem

lim
r→0

r2(cos θ + cos θ sin2 θ) = 0.

That is, lim
(x,y)→(0,0)

fy(x, y) = fy(0, 0), so fy is continuous at (0, 0).

Note that fx and fy (as found in part (a)) are continuous away from (0, 0). We
just showed that they are also continuous at (0, 0). So fx and fy are continuous
on an open disk containing (0, 0), from which we can conclude that f(x, y) is
differentiable at (0, 0).
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