Math 1920, Workshop 4: Lagrange Multipliers in Economics: Solutions

(a) We will use Lagrange Multipliers to solve this problem i.e.

$$
\nabla Q(K, L)=\lambda \nabla B(K, L)
$$

Visually we are looking at the line $B(K, L)=800 K+40,000 L=40 \times 10^{6}$ and trying to find where it is tangent to a level curve of $Q(K, L)$. The coordinates will give us our optimal K and L values, while the level curve we are tangent to will give us the maximum possible output.
(b) Drawing the line $B(K, L)=40 \times 10^{6}$ on the graph below we can estimate that it will be tangent to a level curve at approximate coordinates $K=20,000$ and $L=6000$. The maximum profit i.e. the level curve which B is tangent to, is approximately $\$ 390$ million.

(c) Finding the gradients and using the lagrange conditions we get

$$
\begin{aligned}
(160,000)(.4) K^{-.6} L^{.6} & =800 \lambda & (160,000)(.6) K^{.4} L^{-.4} & =40,000 \lambda \\
80\left(\frac{L}{K}\right)^{.6} & =\lambda & 2.4\left(\frac{L}{K}\right)^{-.4} & =\lambda
\end{aligned}
$$

Setting these equal we get

$$
80\left(\frac{L}{K}\right)^{.6}=2.4\left(\frac{L}{K}\right)^{-.4} \quad \text { i.e. } \quad \frac{K}{L}=\frac{100}{3} \quad \text { i.e. } \quad 3 K=100 L
$$

Plugging this into our equation for $B(K, L)$ we get

$$
800 K+1200 K=40 \times 10^{6} \quad \text { i.e. } \quad 2000 K=40 \times 10^{6} \quad \text { i.e. } \quad K=20,000
$$

We can then solve for L to get $L=600$ and so our maximum value for $Q(K, L)$ will occur at $(20,000,600)$. Thus our visual estimate was spot on.

Extra Computation:
We can get a general solution for the critical points of

$$
Q(K, L)=A K^{\alpha} L^{1-\alpha} \quad \text { and } \quad B(K, L)=p K+w L=M
$$

First we must look at the gradients $\nabla Q=\lambda \nabla B$:

$$
A a K^{a-1} L^{1-a}=\lambda p \quad \text { and } \quad A(1-a) K^{a} L^{-a}=\lambda w
$$

Solving for p and w we get:

$$
p \frac{A a}{\lambda} K^{a-1} L^{1-a} \quad \text { and } \quad w=\frac{A(1-a)}{\lambda} K^{a} L^{-a}
$$

Plugging these into our equation for $B(K, L)=M$ we get

$$
\frac{A a}{\lambda} K^{a} L^{1-a}+\frac{A(1-a)}{\lambda} K^{a} L^{1-a}=M \quad \text { or } \quad \frac{A}{\lambda} K^{a} L^{1-a}=M
$$

Rearranging for λ we get

$$
\lambda=\frac{A}{M} K^{a} L^{1-a}
$$

Plugging this in to our original two equations and solving, we get the only critical point is

$$
(K, L)=\left(\frac{M a}{p}, \frac{M(1-a)}{w}\right)
$$

TAKE HOME POINTS

- The local extrema of a differentiable function f can occur where $\nabla f=0$ (or at the domain's boundary).
- If the variables also satisfy a constraint $g=0$, then the extrema occur where the level curves of f are tangent to $g=0$.
- If two curves are tangent, then their normals are parallel, i.e. scalar multiples of each other. Hence the extrema occur where $\nabla f=\lambda \nabla g$.
- λ is a scalar, called the Lagrange multiplier
- We need $g=0$ along with $\nabla f=\lambda \nabla g$ to solve for the optimal variables and λ.
- NOTE: $\nabla f=\lambda \nabla g$ and $g=0$, can be written as $\nabla(f-\lambda g)=0$. Hence optimizing f with a constraint g is equivalent to optimizing $f-\lambda g$ with no constraint.

