Problem 1 - Probability

a) We want $\iint_{D} p(x, y) d x d y$ to be the probability of finding the particle in the rectangular region $R=[0,1] \times[1,0]$. Since the particle is always there, the value of the integral should be 1. Thus

$$
\begin{aligned}
1 & =\int_{0}^{1} \int_{0}^{1} k \sin ^{2}(2 \pi x) \sin ^{2}(2 \pi y) d x d y \\
& =k\left(\int_{0}^{1} \sin ^{2}(2 \pi x) d x\right)\left(\int_{0}^{1} \sin ^{2}(2 \pi y) d y\right) \\
& =k\left[\frac{x}{2}-\frac{\sin (4 \pi x)}{8 \pi}\right]_{0}^{1}\left[\frac{y}{2}-\frac{\sin (4 \pi y)}{8 \pi}\right]_{0}^{1} \\
& =k\left[\frac{1}{2}-0\right]\left[\frac{1}{2}-0\right] \\
& =\frac{k}{4}
\end{aligned}
$$

so that we must have $k=4$.
b) To find the probability that the particle will be in a particular region we take the integral of the probability density function over that region:

$$
\begin{aligned}
\int_{0}^{1 / 4} \int_{0}^{1 / 2} 4 \sin ^{2}(2 \pi x) \sin ^{2}(2 \pi y) d x d y & =4\left(\int_{0}^{1 / 2} \sin ^{2}(2 \pi x) d x\right)\left(\int_{0}^{1 / 4} \sin ^{2}(2 \pi y) d y\right) \\
& =4\left[\frac{x}{2}-\frac{\sin (4 \pi x)}{8 \pi}\right]_{0}^{1 / 2}\left[\frac{y}{2}-\frac{\sin (4 \pi y)}{8 \pi}\right]_{0}^{1 / 4} \\
& =4\left[\frac{1}{4}-0\right]\left[\frac{1}{8}-0\right] \\
& =\frac{1}{8} .
\end{aligned}
$$

Thus the probability that the particle is in the region $\left[0, \frac{1}{2}\right] \times\left[0, \frac{1}{4}\right]$ is $\frac{1}{8}$.
c) The most probable locations are the ones with highest probability density. To see why, consider an infinitesimally small region of area $d A$ around a point. The probability in that region is $p(x, y) d A$. Hence the probability is scaled by the value of $p(x, y)$ for infinitesimal regions around all points in R. Thus we need to maximize $p(x, y)$.
Option 1: Optimization techniques. Find the x and y where $\partial p / \partial x=0$ and $\partial p / \partial y=0$. Remember that this technique will give both maxima and minima, so you will need to classify the locations you determine through this method. Also remember to check the boundaries of R !

Option 2: We can save ourselves a lot of computation by using what we know about $\sin ^{2} t$. Note that $4 \sin ^{2}(2 \pi x) \sin ^{2}(2 \pi y)$ is a product of 3 non-negative numbers, since $0 \leq \sin ^{2} t \leq 1$. Then this product will be maximized when $\sin ^{2}(2 \pi x)$ and $\sin ^{2}(2 \pi y)$ equal 1 (their maximum value) at the same location (note that depending on the functions involved, this may not always be possible - in which case you will have to resort to option 1).

$$
\begin{array}{lll}
\sin ^{2} t=1 & t=\pi / 2+n \pi & =\pi / 2,3 \pi / 2, \ldots \\
\sin ^{2}(2 \pi x)=1 & x=\frac{\pi / 2+n \pi}{2 \pi} & =\frac{1}{4}, \frac{3}{4} \\
\sin ^{2}(2 \pi y)=1 & y=\frac{\pi / 2+n \pi}{2 \pi} & =\frac{1}{4}, \frac{3}{4}
\end{array}
$$

All 4 combinations of x and y coordinates chosen from the options above, i.e. $\left(\frac{1}{4}, \frac{1}{4}\right)$, $\left(\frac{1}{4}, \frac{3}{4}\right),\left(\frac{3}{4}, \frac{1}{4}\right),\left(\frac{3}{4}, \frac{3}{4}\right)$ will maximize the probability density with $p(x, y)=4$. However the probability of finding the particle at any one of these points is zero because the region we would integrate over is a point.

Problem 2 - Expectation

Using the fact that we can separate the double integral into the multiplication of two integrals we find that

$$
\begin{aligned}
E[x] & =\int_{0}^{1} \int_{0}^{1} 4 x \sin ^{2}(2 \pi x) \sin ^{2}(2 \pi y) d y d x \\
& =4\left(\int_{0}^{1} x \sin ^{2}(2 \pi x) d x\right)\left(\int_{0}^{1} \sin ^{2}(2 \pi y) d y\right) \\
& =4\left(\frac{1}{4}\right)\left(\frac{1}{2}\right) \\
& =\frac{1}{2}
\end{aligned}
$$

and similarly

$$
\begin{aligned}
E[y] & =\int_{0}^{1} \int_{0}^{1} 4 y \sin ^{2}(2 \pi x) \sin ^{2}(2 \pi y) d y d x \\
& =4\left(\int_{0}^{1} \sin ^{2}(2 \pi x) d x\right)\left(\int_{0}^{1} y \sin ^{2}(2 \pi y) d y\right) \\
& =4\left(\frac{1}{2}\right)\left(\frac{1}{4}\right) \\
& =\frac{1}{2} .
\end{aligned}
$$

So the expectation value of the particle's location is $\left(\frac{1}{2}, \frac{1}{2}\right)$. Note that this is not one of the most probable locations. In fact, density here is 0 .

In case you were curious, a graph of the probability density function is shown below. In the graph we can easily see the 4 peaks found in $\mathbf{1 c}$) and the symmetry that explains the expectation value from 2 being found in the center.

TAKE HOME POINTS - applications of probability density

- The integral of the probability density function $p(x, y)$ in a region $D, \iint_{D} p(x, y) d A$, is the probability of being in that region.
- If R is the entire domain then the probability of being anywhere in the domain R is 1, i.e. $\iint_{R} p(x, y) d A=1$. Often a normalization constant (such as k in 1a)) is used to ensure that a probability density function is normalized, which means exactly that the above condition holds.
- The expectation value of x is the weighted average $\iint_{D} x p(x, y) d A$
- Notice the parallel between probability density and mass density: expectation value is equivalent to the center of mass, and the most probable location is the position of maximum density. These are not necessarily the same.

