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We find sharp bounds for the number of moves required to bring a permutation 
to the form n(n - lx..., 1 if a move consists of inverting some increasing substrings. 

If  we invert every maximal increasing substring in each move we need at most 
n - 1 moves. 

If  n is even and we start with 1, 2,..., n and we do not invert the entire 
permutation at once, then we need at least n moves. 

The lower bound implies that when n > 4 is even, n points which are not 
collinear determine at least n different directions, as do n + 1. These bounds are 
sharp. 

What is the least number of different directions determined by n 
noncollinear points? This question seems to have been first considered by 
Scott [4] who observed that 2N + 1 points may determine as few as 2N 
directions (e.g., if they are the vertices and center of a regular 2N-gon or if 
they form a centrally symmetric configuration with 2N - 1 of the points 
lying on a line) if they are allowed to be coplanar. He also gave a lower 
bound. The best lower bound for n points, prior to ours, was [fn], obtained 
by Burton and Purdy [ 11. The bound given here is best possible for plane 
sets but the problem remains open for nonplanar sets. 

We employ the purely combinatorial approach devised for the planar 
problem by Goodman and Pollack [3]. They formulated two conjectures 
about the number of moves required to unravel permutations which we prove 
here as Theorems 1 and 2. Theorem 2 implies the bound given in the title. 

The theorems are about changing a permutation of 1, 2,..., n to 
n(n - l),..., 1 by a sequence of moves each of which consists of inverting a 
disjoint set of increasing substrings. In the geometric context the 
permutations are the orthogonal projections of the set of points on a line. 
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The line is rotated and a move occurs when the normal of the line passes 
through a direction determined by two or more of the points. (Goodman and 
Pollack [2] found that not every sequence of moves can be generated in this 
way.) 

THEOREM 1. If each move consists of inverting every maximal 
increasing substring, then we reach n(n - l),..., 1 in at most n - 1 moves. 

THEOREM 2. Let n be even. If we start with 12 . . . n and we do not 
invert the entire permutation in one piece, then the number of moves required 
to reach n(n - 1) . . . 1 is at least n. 

Proof of Theorem 1. It will sufice to prove that for any k, the numbers 
<k will be to the right of the numbers k + l,..., n after at most n - 1 moves. 
We shall call the numbers of the first set small, the others will be called 
large. 

Let W, be the s - 1 pattern associated with the initial permutation and let 
Wi be the pattern of the permutation obtained after move i. Let V, be 
s a** sl + .a 1 (k s’s and n - k /‘s). Let Vi be obtained from Vi_, by changing 
each sl into Is. 

The patterns of the Vr are very simple. In the middle, s’s and Es alternate 
and there may be strings of identical letters at the ends. The rightmost s 
reaches box n (the right-end position) after move n - k which is also when 
the rightmost 1 starts moving. After k - 1 more moves, the rightmost 1 
arrives in box n-kso that V,-, is l...ls...s. 

We claim that the jth 1 (from the left) in Wi is no farther from the left end 
than the jth I in Vi. This is clear for i = 0. Suppose it is true for i - 1. We 
prove it for i. We prove the assertion first for j = 1. In the W-sequence the 
leftmost 1 moves to the left by at least 1 in each move until it reaches box 1. 
In the V-sequence it moves to the left by exactly 1 position in each move 
until it reaches box 1. Thus the statement is true for j = 1. Let then j be the 
smallest value, if any, for which it fails. The jth 1 in W,-, did not move then 
in move j, whereas the jth 1 in V,-, moved by one place. Since the jth 1 in 
W,-, is not to the right of the jth I in Vi-, they must be in the same place in 
these two words. Since, however, the jth 1 in Wiel does not move in move i, 
it must be immediately preceded by the j- 1 th 1, while in Vi- I it is preceded 
by an s. This would imply the j - 1 th 1 in Wi- i is to the right of thej - 1 th 
1 in Vi-, , contrary to assumption. It follows now that W,,- , is 1 v.4 1s ... s 
and Theorem 1 is proved. 

Proof of Theorem 2. The argument we shall use will be easier to visualize 
if we allow ourselves to talk about barriers which we think of as separating 
consecutive boxes. The barrier which really interests us is the one between 
box no. fn and box no. in + 1. (Remember n is even.) We call it the center 
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barrier. Changing 12 es* n to n(n - 1) a.. 1 requires that each number be 
carried across the center barrier in some move. Thus there must be a total of 
at least n crossings of the center barrier. 

Let us call a move in which at least one number crosses the center barrier 
a crossing move. A string straddling the center barrier, not necessarily 
symmetrically, is reversed in such a move. If d is the distance from the 
center barrier to the nearer end barrier of this string, then exactly 2d 
numbers will cross the center barrier in this move. Let d, , d, ,..., dt be the d’s 
corresponding to the crossing moves. We have 

2d, + +.. + 2d, > n. (1) 

Before the ith crossing move we have an increasing string extending a 
distance >di on either side of the center barrier. Just after the move we have 
a decreasing string extending a distance >di on either side of the center 
barrier. To build up the former and to dismantle the latter requires a certain 
number of noncrossing moves, which we shall count on the basis of the 
following two facts: 

(I) A decreasing string can get shortened by not more than 1 at each 
end in one move. 

(II) An increasing string can get longer by at most 1 at each end in 
one move. 

The reason for (I) is that a move consists of inverting increasing strings. 
Therefore only the end members of a decreasing string can be moved in any 
move. The reason for (II) is that a number that is moved will be part of a 
decreasing string after the move. The interior members of an increasing 
string must therefore have been in place already before the move. 

By (I) the center barrier will still be inside a decreasing string di - 1 
moves after the ith crossing move. By (II) it will take at least di+ , additional 
moves to build up an increasing string extending a distance >di+ , on either 
side of the center barrier. Thus there are at least di + di+ i - 1 noncrossing 
moves between the ith and the i + 1 th crossing moves. 

Thus far we have t crossing moves and between them, 
(d,+d,-1)+.-a + (d,-, + d, - 1) noncrossing moves. By (1) the number 
of these moves is >n + 1 -d, - dt. The proof will be complete if we can 
show that the number of moves before the first crossing move plus the 
number of moves after the last crossing move is at least d, + d, - 1. This is 
most easily done by bringing in more of the original context from which the 
problem we are solving was drawn. In that context the permutations 
represent projections of n points onto a rotating line, the first and the last 
permutation representing positions of the line 180” apart. The choice of the 
first position is arbitrary; it is more natural to continue the rotation both 
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ways which gives an ultimately periodic sequence of permutations. This is 
the simple reason why the inequality which holds for the number of 
noncrossing moves between two crossing moves will also be valid for the 
number of noncrossing moves before the first and after the last crossing 
moves. 

In the following discussion one should think of a permutation as just a 
linear ordering of it different objects whose nature does not imply any 
particular order. This is not a good way to think about permutations when 
one is discussing permutation groups but the group property plays no role 
here. 

An allowable sequence of permutations,..., Pi, Pi,, ,..., is a periodic 
sequence of permutations with an even period p such that 

(1) The move from Pi to Pi+, consists of reversing one or more 
nonoverlapping substrings of Pi. 

(2) For any pair of objects a, b the succesive moves which reverse the 
order of a and b are exactly -$ apart. 

Item (2) implies that Pi+p,2 is obtained by reversing Pi. 
Each pair of elements is interchanged exactly once in the sequence of 

permutations in Theorem 2. Let p be twice the number of moves and denote 
the permutations by P, ,..., P,,,2. We extend this to an allowable sequence by 
defining Pi+plz to be Pi reversed. 

Property (2) implies that if in any permutation of an allowable sequence 
we number the objects 1,2,.., n (in the order in which they occur), then the 
next -$ moves consist of reversing increasing strings. Indeed, each pair 
whose order is inverted in these moves is inverted for the first time since the 
numbering. 

The definition of a crossing move and the corresponding number d do not 
depend on the numbering of the objects. The total number of noncrossing 
moves before the first and after the last crossing move in the original 
sequence of permutations is the same as the number of noncrossing moves 
between the tth and the t + 1 th crossing moves in the extended sequence. 
There must be at least two crossing moves per half period because we are 
not allowed to reverse an entire permutation in one piece. Thus there is some 
half-period of the allowable sequence which contains both the tth and the 
t + 1 st crossing moves. We can number the objects in the order in which 
they occur in the first permutation of this half-period. The argument we gave 
above then assures us that there are at least d, + d,, 1 - 1 = d, + d, - 1 
noncrossing moves between these two crossing moves. This completes the 
proof of Theorem 2. 
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