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1 What is Linear Programming?

1.1 Definitions

Linear Programming is about maximizing or minimizing a linear function
subject to linear constraints. Linear means

∑n
i=1 cixi.

Parts of a linear program:

1. Objective function: the linear function that you want to maximize or
minimize.

2. Constraints of the form of
∑n

i=1 cixi on the left hand side and ≤ , =,
or ≥ a constant on the right hand side.

A feasible solution is a set of values for the xi that satisfy the constraints.
A linear program with no feasible solutions is infeasible.
An optimal solution is a feasible solution that maximizes/minimizes the

objective function. Note: a linear program may have more than one optimal
solution, or none at all.

We can express a linear program more succinctly as:

max !c • !x

subject to A!x ≤ !b

!x ≥ 0 [xi ≥ 0 ∀i]

It is in standard inequality form, or if it had = instead of ≤, it would be in
standard equality form.
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1.2 First Example

Consider the linear program in Bland’s article in the Scientific American:
Let xi = the amount of barrels of product i to produce:

i = 1: ale, i = 2: beer

maximize profit z = 13x1 + 23x2

subject to 5x1 + 15x2 ≤ 480 [Limit on Corn]

4x1 + 4x2 ≤ 160 [Limit on Hops]

35x1 + 20x2 ≤ 1190 [Limit on Malt]

x1, x2 ≥ 0

The same linear program, but using matrices and vectors:

maximize profit z =
(

13, 23
)T •

(
x1, x2

)T

subject to




5 15
4 4
35 20




(

x1

x2

)
≤




480
160
1190





!x ≥ !0

If we simplify the constraints (divide by a positive number on both sides),
the linear program becomes:

maximize profit z = 13x1 + 23x2

subject to x1 + 3x2 ≤ 96 [Limit on Corn]

x1 + x2 ≤ 40 [Limit on Hops]

7x1 + 4x2 ≤ 238 [Limit on Malt]

x1, x2 ≥ 0

and

maximize profit z =
(

13, 23
)T •

(
x1, x2

)T

subject to




1 3
1 1
7 4




(

x1

x2

)
≤




96
40
238





!x ≥ !0

2



where !x =

(
x1

x2

)

The feasible region of this linear program is a polygon.
In general, the feasible region of any linear program is a polytope (basi-

cally an n-dimensional polygon). Also, all feasible regions of linear programs
are convex.

Definition 1 (Convexity). A set S is convex if and only if for every x,
y ∈ S, then the line segment {λx + (1− λ)y : 0 ≤ λ ≤ 1} is in S.

Proposition 1. The feasible reagion of any linear program is convex.

Proof. I prove the case when the linear program is in standard inequality
form. The same proof applies to any feasible reagion of a linear program.

Let !x and !y be any two points in the feasible region of the linear program.
Let λ ∈ [0, 1]. Then we have that

A!x ≤ !b and A!y ≤ !b

⇒ λA!x ≤ λ!b and (1− λ)A!y ≤ (1− λ)!b

⇒ λA!x + (1− λ)A!y ≤ λ!b + (1− λ)!b

⇒ A(λ!x + (1− λ)!y) ≤ !b [Linearity of matrix multiplication]

Therefore λ!x + (1−λ)!y is in the feasile region of the linear program and the
feasible region is convex.

2 Solving a Linear Program

One method of solving a linear program is the Simplex Method. The method
was created by George Dantzig in 1947 (Source: Wikipedia).

First, some of definitions:

Definition 2 (Basis). A basis is an index set B such that the columns of
the matrix A corresponding to the indices in B is invertible. We call the
corresponding matrix AB.
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Example:

If A =

(
1 0 1 0
1 2 0 1

)

and B = {1, 3}

Then AB =

(
1 1
1 0

)

Definition 3 (Basic Feasible Solution). A basic feasible solution to A!x = !b,
!x ≥ !0 corresponding to the basis B is a feasible solution where xi = 0 if
i /∈ B.

Example: A basic feasible solution of
(

1 0 1 0
1 2 0 1

)
!x =

(
3
2

)

corresponding to B = {1, 3} is





x1

x2

x3

x4



 =





2
0
1
0





Fact 1. Basic feasible solutions corresponding to a basis exist and are unique.

Let us use the simplex method on the linear program from Bland’s article.
First, we convert the linear program to standard equality form. We do this
by adding slack variables, one per constraint.

maximize profit z = 13x1 + 23x2

subject to x1 + 3x2 + x3 = 96 [Limit on Corn]

x1 + x2 + x4 = 40 [Limit on Hops]

7x1 + 4x2 + x5 = 238 [Limit on Malt]

x1, x2, x3, x4, x5 ≥ 0

To start the simplex method, we assume that we have a feasible solution
to the linear program.
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In this case, we see immediately that !x =
(

0 0 96 40 238
)T

is a
basic feasible solution to this linear program corresponding to B = {3, 4, 5}.
The objective function has value 0.

We will write the constraints in this form:

z − 13x1 − 23x2 = 0

x1 + 3x2 + x3 = 96

x1 + x2 + x4 = 40

7x1 + 4x2 + x5 = 238

where xi ≥ 0 ∀i. This is the tableau corresponding to the basis B = {3, 4, 5}
The simplex method now solves the linear program by looking for ways

to improve the solution, while keeping all of the xi nonnegative. The simplex
method works in the following way:

1. Check for improvements. We look at the coefficients of the Xi in the
first row. If any are negative, then we know that we can improve the
solution, otherwise, we have an optimal solution to the linear program.

2. Choose an entering variable. Pick one of the variables whose coefficients
is negative in the first row to enter the basis.

3. Ratio test. Say we picked j to enter to the basis. To increase the
objective function, we want to increase xj as much as possible. We
can increase xj as much as the smallest positive number of (number on
right hand side)/(coefficient of xj over all of the rows but the first row).
If all of these coefficients of the xj are negative, then we can increase
xj as much as we want: then the linear program is unbounded. That is,
we can find a feasible solution with an arbitrarily large objective value.

4. Choose leaving variable. We pick any variable that achieved the mini-
mum positive ratio in the ratio test to leave the basis.

5. Pivot on the leaving variable. Use row operations to change the tableau
so each basis variable is in exactly one row of the tableau, and no basis
variables are in the first row of the tableau.

6. Now repeat the above steps until the linear program is determined to
be unbounded or until an optimal solution is found.

5



Note: The simplex method only examines basic feasible solutions, which
are extreme points (corners) of the feasible region. Because, the feasible
region is convex and the objective function is linear, any local maximum of
the feasible region is a global maximum. This means that it is ok for the
simplex method just to examine the extreme points of the feasible reagion.

There are times when he have a choice in deciding which variable en-
ters/leaves the basis. Such as in the beginning of the example. There are
various rules for choosing which variables to pivot on, such as choose the vari-
able with the largest coefficient in the first row of the tableau to leave/enter,
or choose the one with the smallest subscript.

For the tableau above, if x1 enters the basis, then it takes 3 pivots to
solve the linear program, and if x2 enters the basis, then it takes 2 pivots to
solve the linear program.

In both cases, using the simplex method yields the final tableau

z + 5x3 + 8x4 = 800

x2 +
1

2
x3 −

1

2
x4 = 28

x1 −
1

2
x3 +

3

2
x4 = 12

−3

2
x3 −

17

2
x4 + x5 = 42

with basis B = {1, 2, 5} and optimal solution !x =
(

12, 28, 0, 0, 42
)T

There are no other times in this example where we have to choice between
variables that enter/leave the basis.

3 Examples of Linear Programs

3.1 Kinds of Linear Programs

Fact 2 (Fundamental Theorem of Linear Programming). Every linear pro-
gram is either infeasible, has an optimal solution, or is unbounded.

The example we used is an example of a linear program with an optimal
solution.
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An example of an infeasible linear program is:

maximize x1 + x2

subject to x1 + x2 ≤ 10

x1 + x2 = 11

x1, x2 ≥ 0

An example of an unbounded linear program is:

maximize x1

subject to x1 − x2 ≥ 0

x1, x2 ≥ 0

3.2 Running time of the simplex method

In practice, the simplex method runs very fast. However the simplex method
is not a polynomial time algorithm. An example of where the simplex method
requres exponentially many pivots is:

maximize 4x1 + 2x2 + x3

subject to x1 ≤ 5

4x1 + x2 ≤ 25

8x1 + 4x2 + x3 ≤ 125

x1, x2, x3 ≥ 0

(From http://glossary.computing.society.informs.org/notes/Klee-Minty.pdf)
This example requires 7 pivots, when using the pivot rule to choose the

entering/leaving variable to be the one whose coefficient in the first row of
the tableau has the largest absolute value.

An example of a program that cycles (the same basis is reached more
than once, which would cause the pivot sequence to cycle) is:

maximize 10x1 − 57x2 − 9x3 − 24x4

subject to 0.5x1 − 5.5x2 − 2.5x3 + 9x4 ≤ 0

0.5x1 − 5.5x2 − 2.5x3 + 9x4 ≤ 0

0.5x1 − 1.5x2 − 0.5x3 + x4 ≤ 0

x1 ≤ 1

x1, x2, x3, x4 ≥ 0
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when the pivot rules are:

• Choose the entering variable to be the one whose coefficient in the first
row of the tableau has the largest absolute value

• Choose the leaving variable to be the one with the smallest subscript

(Source: ORIE 320 course notes 9/29/05, a provided .pdf file)
Robert Bland proved that the simplex method never cycles when the pivot

rule is to choose the entering variable with the smallest subscript to enter
and to leave the basis whenever possible. Therefore, the simplex method
always terminates.

In general, examples that take a long time for the simplex method to run
or that cause the simplex method to cycle are rare. In practice, the simplex
method works fast.

Although the simplex method is not a polynomial time algorithm, there
are algorithms to solve linear programming in polynomial time, such as the
ellipsoid method.

4 Extras

There are probably many computer packages that can solve linear programs.
AMPL (Algebraic Mathematical Programming Language) is one of them.

4.1 Finding a feasible solution to a linear program

Sometimes it is difficult to find a feasible solution to a linear program. Con-
sider the following example:

maximize x1 + 2x2

subject to x1 + x2 = 10

x1 − x2 ≤ −5

x1, x2 ≥ 0
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Now add a slack variable:

maximize x1 + 2x2

subject to x1 + x2 = 10

x1 − x2 + x3 = −5

x1, x2, x3 ≥ 0

Modify to:

maximize x1 + 2x2

subject to x1 + x2 = 10

−x1 + x2 − x3 = 5

x1, x2, x3 ≥ 0

To find a basic feasible solution to this problem, we introduce artificial
variables, u1 and u2. If we can find a solution to the equations where u1 =
u2 = 0, then we have a feasible solution to the linear program.

We do this by using the simplex method to solve the linear program

maximize − u1 − u2

subject to x1 + x2 + u1 = 10

−x1 + x2 − x3 + u2 = 5

x1, x2, x3, u1, u2 ≥ 0

Where it is easy to identify an initial basis B, which is the basis containing
the two artifical variables, and a basic feasible solution to this linear program
is x1 = x2 = x3 = 0, u1 = 10, and u2 = 5. Now, if the optimal solution to
this linear program has objective value 0, then the optimal solution to this
linear program is a feasible solution to the original program. Otherwise, the
original linear program has no feasible solution.

Because the simplex method only modified the tableaus using row reduc-
tions, we can apply the same row operations to the tableaus of the original
linear program. If we remove the artifical variables from the tableau of
the above linear program (this linear program is feasible), we get a feasible
tableau with which to start the linear program.

In this case, the simplex method yields the final tableau:

z + 4x1 + u1 + u2 = 0

2x1 + x3 + u1 − u2 = 5

x1 + x2 + u1 = 10
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with the indicies of x2 and x3 as the basis B and optimal solution x1 = 0,
x2 = 10, x3 = 5, u1 = 0, and u2 = 0. We use this information to get:

z − x1 − 2x2 = 0

2x1 + x3 = 5

x1 + x2 = 10

which becomes a feasible tableau for the linear program when appropriate
row operations are used:

z + x1 = 20

2x1 + x3 = 5

x1 + x2 = 10

with basis B = {2, 3} and optimal solution x1 = 0, x2 = 10, and x3 = 5,
with an objective value of 20.

4.2 Proving that a feasible solution is optimal

When the simplex method solved the linear program:

maximize profit z = 13x1 + 23x2

subject to 5x1 + 15x2 ≤ 480 [Limit on Corn]

4x1 + 4x2 ≤ 160 [Limit on Hops]

35x1 + 20x2 ≤ 1190 [Limit on Malt]

x1, x2 ≥ 0

How do we know that the solution x1 = 12 and x2 = 28 is an optimal
solution?

You can check that this solution is feasible and has objective value 800.
To prove that it is optimal, we find an upper bound on the objective

function. Here is how, take the first constraint and add 2 times the second
constraint to it. We get:

13x1 + 23x2 ≤ 800

So we have found an upper bound on our objective function. Because we
already have a feasible solution with objective value of 800, we know that
this upper bound it tight, and therefore that our feasible solution is optimal.

The information found from the final tableau from using the simplex
method can be used to generate these numbers.
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5 Sources

The following sources were used for this talk:
Optimization 1 (ORIE 320) lecture notes for the Fall 2005 course
”The Allocation of Resources by Linear Programming” by Robert Bland

in the June 1981 issue of Scientific American, volume 244, number 6, pages
126-144.

”Klee-Minty Polytope Shows Exponential Time Complexity of Simplex
Method” by Harvey J. Greenberg. Found on the website
http://glossary.computing.society.informs.org/notes/Klee-Minty.pdf on Jan-
uary 29, 2007.

The Wikipedia article ”Simplex Algorithm.” Found at
http://en.wikipedia.org/wiki/Simplex method.
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