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BRACING RECTANGULAR FRAMEWORKS. I

ETHAN D. BOLKER" AND HENRY CRAPOt

Abstract. This paper describes the economical placing of diagonal braces in the walls and ceiling of a
rectangular one story building. It begins with the definition of the structure geometry of a graph embedded in
Euclidean space: a combinatorial geometry (matroid) on the set of potential braces. When the embedded
graph is a plane grid of squares the geometry is graphic. Then, for example, minimal rigidifying sets of braces
correspond to spanning trees in a complete bipartite graph. The methods used in the plane case are extended
to analyze how sets of wall and ceiling braces in a one story building can be dependent.

1. Introduction. Interest has rekindled in the theory of the rigidity of structures.
This paper uses the ideas of combinatorial geometry (matroid theory) and elementary
linear algebra to study the ways to brace a one-story building. The problem began as a
class project in Janos Baracs’ design course in the school of architecture at the
University of Montreal. Working with a model, one student analyzed all ways to brace a
3 x 3 one story building using four wall and four roof braces. The theory we develop
below makes sense of his experimental results.

We begin by defining the general notion of a structure, an embedded graph in R",
and its structure geometry, which describes how potential braces depend upon each
other. Then we show that for a plane grid of squares the structure geometry is described
combinatorially by a bipartite graph. Then we proceed to analyze how in a one story
building wall and roof braces interact mechanically. That analysis makes possible the
construction of taller buildings, one story at a time. In a sequel to this paper [3] one of
us, Bolker, begins an analysis of the global structure of tall buildings. An earlier version
of the present work can be found in [4], [5]. The exposition there is more leisurely, more
suitable for architects.

2. Sruetures. A structure is a graph on a set V of vertices together with a map
p" V R. The dimension N is usually 2 or 3, and we think of the points p(V) as joined
by rigid bars which correspond to the edges of the given graph. Assume that two points

ba, b move with velocities respectively. A brace between those two points
bimposes a linear constraint on the vectors the brace permits no infinitesimal

change in the distance from a to b, so

0= II(b+t )-(a + t )
t=0

I[(b-a)+ t( )[1
,=o

bThat is true if and only if the vector is perpendicular to the vector b a. (This is
our only use of differential calculus.) Thus

(1) (u -") ( a) 0,

or, equivalently, the two motion vectors must have equal projections on the brace:

.( a).(2) (-a)=

This mechanical principle is the starting point for our study of structures.
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A motion I of the structure is a function from V to Rv which we think of as
assigning a vector /z at each point a so as to satisfy (2) along each brace. Since
condition (2) is linear, the set M of motions is a vector space. Note that motions in M
are infinitesimal: there are motions which are not mechanisms, linkages which visibly
move in the prescribed manner. Figures l(a) and l(b) are mechanisms. The square in
Figure l(a) can be distorted by the vectors shown. The motion in Figure l(b) is a
rotation. The motion in Figure 1 (c) is infinitesimal only.

The dimension ofM is the number of degrees offreedom of the structure. M has a
subspace E of dimension N(N + 1)/2 containing the infinitesimal generators of the
Euclidean motions. Figure l(b) shows one member of E. The number of internal degrees
offreedom is dim M/E dim M-N(N+ 1)/2.

Let G be the set of edges of our original graph which are not part of the structure.
When we wish to brace the structure we think of adding to it elements of G. For any set
C of potential braces, the motion space M(C) of the braced structure is a subspace of
M. The codimension

dimM-dimM(C),

the number of degrees of freedom removed by those braces, is the rank r(C) of that set
of braces.

The rank r(C) is also the rank of a certain set of vectors. It follows from the
mechanical principle that each brace can be regarded as an element ot the dual space M*
(more precisely, as a one dimensional subspace of M*): only those motions are
permitted which are orthogonal to the brace, so regarded. Thus any set C ot cross-braces
gives rise to a set of vectors in M*, and the rank r(C) is the dimension of the span of
those vectors.

The set G of potential braces together with the rank function r defined above on
subsets of G is the structure geometry (matroid) of the structure. Dependence and
independence of sets of braces is vector dependence. Statements about the structure
geometry can be translated into mechanical terms.

A set ot braces is independent if the removal of any one of its members introduces a
new degree of freedom. The closure of a set C of braces is the set of braces dependent on
C: those whose addition to C removes no degree of freedom. A circuit is a minimal
dependent set of braces. If, as is usually the case, the points of the structure lie in no
proper subspace of RN, then a set of braces spans if and only if the structure so braced
has no internal degrees of freedom, that is, is rigid. A basis is a minimal rigidifying set of
braces. A copoint is a maximal nonrigidifying set" one internal degree of freedom
remains. We shall illustrate all these mechanical ideas in the next section, when we
analyze the structure geometry for a grid of squares in the plane.

Note that any element ofM* can be thought of as a constraint on the motions of the
structure. Those vectors which happen to correspond to potential braces are the ones
which make up the structure geometry.

3. Grids of squares. The structure we study now is the m x n grid of unit squares in
the plane. We shall allow as potential braces only the diagonals of the squares. We begin
by describing the motion space. Classify the unit braces as "North-South" and
"East-West", and call each sequence of points adjacent in one direction a line of points.
By the mechanical principle, the points on any line can move only in such a way that
their velocity vectors have equal projections on that line. The common projection is the
amount by which the line moves along itself.

Thus each motion of the grid results in a directed motion of every line along itself, a
scalar quantity associated with each line. Since the velocity vector at any vertex is given
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by the projections of that vector onto the N-S and E-W lines through that vertex, each
motion of the grid is determined by the motion it produces in the lines of the grid.
Furthermore, an elementary line motion, in which the points on one line move in one
direction along the line, and all other points remain fixed, is a motion of the grid. We
have:

THEOREM 1. The line motionsform a basis for the motion space Mofthe square grid.
The dimension of M is thus the number of lines, m + n + 2, so the grid has that

many degrees of freedom. There are m + n 1 internal degrees of freedom; that is the
rank of the structure geometry. We shall soon see which sets of m + n 1 braces rigidify
the grid.

(a)

a=l b=1/2

c=0 rotation about this point

(c)

FIG. 1

Since we have coordinatizedM using the line motions as a basis, we can see explicitly
how the action of the dual vector corresponding to a cross-brace is represented as taking
the inner product with respect to a fixed vector. Consider the square in which a
cross-brace is placed. Let the motion of the N-S lines bounding the square be given by
scalars a, b the motion of the E-W lines by c, d as in Figure 1 (b). If the square is braced
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along the NE diagonal the velocity vectors at the ends of the brace are (d, a) and (c, b).
These vectors have equal projections on the diagonal in the direction (1, 1) so
a + d b + c. If we were to brace the other diagonal instead, then (c, a) and (d, b) must
have equal projections on the vector (-1, 1) so -c + a -d + b, and a + d b + c. Since
the two possible cross-braces yield the same constraint a + d b c 0 on the motion
space they are dependent. In the structure geometry each is in the closure of the other.
We shall speak of "bracing a square", and will ignore the distinction between the two
diagonals.

A motion of the grid is thus permitted when the square above is braced if and only if
the inner product of that motion (written as an m + n / 2-tuple of line motions) is
orthogonal to the rn + n + 2-tuple which has a value 1 (-1) in the places corresponding
to the West and South (East and North) walls of the braced square, and is 0 elsewhere.

The set of all cross braces, coordinated as above as vectors of length m + n + 2,
together form an mn by m +n +2 matrix of rank m +n-1. The case m n 3 is
illustrated in Figure 2.

A

4

b
B C

c d

7 8 9

5" E

g

h

FIG. 2(a)

lines a b c d e g h

cross
braces

-1 -1
-1 -1

-1 -1
-1

-1 -1
-1 -1

-1
-1

-1 -1

FIG. 2(b)

A glance at the left and right halves of this matrix will reveal that this coor-
dinatization of the cross-braces is the direct sum of separate coordinatizations of the
N-S halls and of the E-W halls. We can better study the geometry of the rows of that
matrix if we can exhibit them as vectors with two rather than four nonzero entries. The
way to do that is to describe motions (modulo translations) in terms of the shears they
produce in the various halls.

Let S be the real vector space of dimension m + n consisting of all assignments of
scalars to the halls (pairs of adjacent lines) in the m + n grid of squares. We call S the
space of shears. Define a linear transformation
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on the motion space M as follows. Heading N or E down a hall, if the line to the left
moves with velocity a, and that to the right with velocity b, then we say the hall
undergoes a shear b- a. For any motion Ix, make this computation for all halls. The
result is a scalar assigned to each hall, an element of the space $ which we call o-(ix).

The kernel of r consists of those motions tz in which all the N-S lines have one
velocity, all the E-W lines another. That is, the kernel is the space T of translations of
the grid, a 2-dimensional subspace of the 3-dimensional subspace E of rigid motions.

If we fix one vertex q of the grid, we can compute, given any shear s S, a motion
z(s): each line moves an amount equal to the sum of the shears on the halls between it
and the parallel line through q. The composite r z is the identity on $, while the
composite - o- maps each motion Ix to the relative motion ’(r(Ix)), relative to the point
q.

Since T ker r and Im r Im r - S, we have a split exact sequence

0- T-M--__S O.

A rotation r with angular velocity o has image o,(r)= o(1, , 1) irrespective of
-1the center of the rotation. Thus E is exactly the inverse image o- ) of the one-

dimensional subspace spanned by the vector p (1, ., 1). The space M/E of internal
motions is isomorphic to the quotient space S/.

Since each cross-brace, when regarded as a linear functional, is zero on rigid
motions, and thus is zero on translations, these linear functionals are well-defined as
functionals on the shear space S. The value

a+d-b-c=(d-c)-(b-a)

is the shear in the E-W hall through the braced square, less the shear in the N-S hall
through that square. It is that linear functional on $ which must be zero when the square
is braced.

In this way, the cross-braces are coordinated in $* as inner product with vectors
with only two nonzero coordinates. Since the transformation r*: $* M* is injective,
the rank of any set of braces is the same computed in $* as in M*. For the 3 x 3 grid, the
shear coordinatization is given in Figure 3.

halls A B C D E F

cross
braces

-1
-1

-1
-1

-1
-1

-1
-1

-1

FIG. 3

Observe that the set G of all cross braces, regarded as elements of S*, spans the
subspace )z of codimension 1 in $*. That is so since when all squares are braced,
only rigid motions of the grid are possible.

Now we can recognize the structure geometry of the grid. Recall that for any graph,
the geometry of the graph is that combinatorial geometry whose points are the edges of
the graph and whose circuits are the polygons of the graph.
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There is a standard coordinatization for the geometry of a graph which exhibits it as
a vector geometry. The dimension of the coordinatizing space is the number of vertices
of the graph, and each edge is coordinatized as a vector with two nonzero entries 1, 1 in
positions corresponding to its ends.

We sketch for the reader the proof that these vectors coordinatize precisely the
geometry of the graph. A linear relation among such vectors (and thus among the
corresponding edges) cannot involve exactly one edge at any vertex. Starting from any
edge in the relation, we may proceed to an adjacent edge also in the relation, and
continue until we complete a polygon all of whose edges are in the relation. So far we see
that every dependent set of edges contains a polygon. But the vectors corresponding to
the edges of a polygon are themselves in an obvious linear relation. Thus the minimal
dependent sets in the geometry of a graph are the polygons of that graph.

In our coordinatization for the braces of a plane grid, each brace is an element of S*
with two nonzero entries 1, -1. This is the coordinatization of the geometry of some
graph, but what graph? The vertices and edges must be the columns and rows of the
matrix exemplified by Figure 3. That is, the vertices and edges of the graph are the halls
and cross-braces of the grid. Since each N-S hall is related by a brace to each E-W hall,
the graph in question, for the m x n grid, is the complete bipartite graph K,,.n. Since the
coordinatizations agree, we have proved the following theorem.

THEOREM 2. The geometry G of cross-braces of an rn n portion of a plane square
grid is isomorphic to the geometry of the complete bipartite graph K,,,n.

All structural information is contained in this bipartite graph. Spanning trees
correspond to minimal bracing schemes (Fig. 4(a)). Circuits correspond to polygons (Fig.
4(b)). A brace b depends upon a set A of braces if and only if there is a polygon which
contains the edge b in the set A U {b}. The closure of A is obtained by adjoining to A
all braces which depend on it. A can be constructed inductively by adding at each stage
those edges which, together with edges already in or added to A, complete a quadrila-
teral.

E-W

(a)

E-W

(b)

FIG. 4
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All symmetries of the complete bipartite graph are symmetries of the geometry of
cross-braces of the grid. The rank of a set of cross-braces is completely unaffected by an
arbitrary permutation of the E-W or of the N-S halls of the grid. Even in a fairly large
grid, it is easy to list, up to these symmetries, all the combinatorially distinct circuits or
minimal bracing schemes. Moreover, the symmetry proves the odd fact that the squares
on the perimeter of the grid have no special structural significance by virtue of their
special position.

Next we shall study the rank of a set A of braces. WhenA is regarded as a subgraph
of Km, it determines a partition 7r zr(A) of the halls (vertices) into edge connected
components. It is easy to compute 7r directly from the grid, without first drawing the
corresponding graph (Fig. 5(a)). Sets A and A’ determine the same partition if and only
if they have the same closure, so partitions into edge connected components (some of
which may contain isolated vertices) correspond to closed sets of braces. Let I rl be the
number of parts of zr.

A B C D

H

A B C D

An independent set of rank 7

E F G H I

zr {ACDEGI, BFH}

(a)

///’/,
and its closure, a copoint

(b)

FIG. 5

A C D B

E G I F H
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LEMMA 3. Let 7r ,r(A ). The space S c S o]’ shears permitted when A is braced is
the space of vectors of shears constant on the parts of r.

(3) DimS=lTrl and r(A)=r(Tr)=rn+n-

Proof. We have seen that each brace in A constrains, motions by forcing the shears
in the two halls containing the brace to be equal. Since equality is transitive, $ is as
claimed; its dimension is clearly I1. The assertion about r(A) follows since r(A) is the
codimension of M(A)= S cS. El

Equation (3) is really astatement about the homology of the subgraph A of K,.,,
and so follows directly from Theorem 2. We have chosen to prove it as a part of Lemma
3 to keep its mechanical significance nearer the surface.

We can take further advantage of Lemma 3 and the fact that every motion of a grid
of squares integrates to a mechanism to picture vividly the motions in S. The squares
corresponding to a particular part of zr must undergo the same rotation in any such
motion (Fig. 5(c)).

7r {ACDEGI, BFH} zr {ACDFH, BEGI}

(c) (d)

FIG. 5 (cont.)

A copoint (Figure 5) of the structure geometry has rank rn + n 2 and lTr] 2 (Fig.
5(b)). It leaves one internal degree of freedom. The complementary set of squares, a
bond, are deformed into congruent rhombi, in two different orientations corresponding
to the two components of the graph complementary to the copoint (Fig. 5(c)). Moreover
in a bipartite graph the complement of a copoint 7r is again a copoint provided each of
the two parts of rr contains an edge. Thus we can draw Figure 5(d) dual to Figure 5(c).
Figure 6 is self dual in this sense.

Consider a set of squares at the corners of a rectangle. They form a rank 3
subgeometry of the structure geometry: all four braces form a circuit while any three
are a basis. Two diagonally opposite braces are a copoint in the rank 3 geometry of those
corner braces, so the other two squares will always be congruent rhombi, rotated
relative to each other, whatever motions are applied to the whole grid. A copoint of this
kind transmits information from one corner of the grid to the other. (Fig. 7.)
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FIG. 6

Rhombi R and R’ are congruent.

FIG. 7

Finally, let us define a simple motion of the grid as one which deforms a minimal
set of squares, and thus leaves square a copoint of squares. Note that every motion of
the grid leaves square some closed set of squares, but not necessarily a copoint of
squares. A motion given by the shear down a single hall is simple, so simple motions
span the motion space, but most motions are not simple. For instance, a line motion is
simple only if the line is on the perimeter of the grid.

4. The one-story building. A one-story building is an m x n grid of squares
supported by vertical bars of equal length over fixed points in a plane. Let/x be a motion
of the building. Since /x is 0 at the base of each vertical member, the mechanical
principle says/x must be horizontal at the top. Thus/x is a motion of the roof in its own
plane. The motion space M for the building is isomorphic to the motion space for the
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roof grid. However, since the entire floor is fixed, all motions of the roof are internal
motions of the building. There are thus m + n + 2 internal degrees of freedom.

To brace the building, we place cross-braces in certain wall and roof panels. A wall
brace prevents the line ofthat wall in the rooffrom moving along itself. The line is blocked:
the line motion is 0. Note that two wall braces anywhere along the same wall form a
dependent set. Any brace in a wall braces the whole wall. Since the line motions are
independent, any set of wall braces in different walls is independent.

Next we consider the effect on shears of blocking lines. Blocking two perpendicular
lines has no effect on shears, but prevents all translations of the ceiling relative to the
floor. We can then use S, the space of shears, for the motion space. Architecture
demands, and we shall assume, that two such lines be always blocked, so that we can
analyze the structure geometry of the building as a vector geometry in S*. Observe that
when two perpendicular lines are blocked their intersection in the roof is pinned. It
cannot move.

Let B be a set of wall braces. Let -= z(B) be the partition of the set of halls
between braced walls into regions between consecutive braced walls. Halls which are
outside all braced walls do not appear in U z. Since we are assuming B contains two
perpendicular walls, Izl Inl- 2.

LEMMA 4. Let z z(B). The space $ c S o[shears permitted when B is braced is the
space of vectors of shears summing to 0 on the parts of ’.

r(B)= r0-)= m + n -dim S,.

Proof. The relative motion of two parallel lines is the sum of the shears between
them. Thus if two such lines are blocked, the shears between them must sum to 0. Since,
as we have observed, a set of blocked lines is an independent set of constraints on
motions, the space of motions allowed when B is braced has codimension [B[in M, and
hence codimension IBI-2 [’[ in $. 71

Let A be a set of roof braces and B a set of wall braces. Recall how in 3 we
constructed the partition zr(A) of the set of halls. The motions permitted when A U B is
braced depend only on zr(A) and z(B):

and

M(A U B) M(zr, z) S n &,

r(A U B)= r(r, z)= m + n -dim (S N S,).

We shall study that rank by seeing how the roof braces A cause dependencies in the
wall braces B. That is, we shall study

(4) rO’) dim S-dim (S NS).

Then the full rank can be recovered using

r(zr, "r)= r(Tr) + r(’r).

Figure 8 is a lattice diagram of the relevant subspaces of S.
THEOREM 5.

r0")= dim (Actions ofS on S’).
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S dimension m + n

rO-) r(L) S"

FIG. 8

Proof. By "Actions of S on S’’ we mean the vector space of linear functionals on
S obtained by restricting the functionals in S c S* to S. One way to prove the
theorem is to make the routine argument in linear algebra which produces the natural
isomorphism

S/S CI S Actions of S+/- on S

A second way, more appropriate here, is to use a mechanical interpretation. S S* is
the space spanned by the vectors corresponding to braced walls. When the roof braces
in the closed set corresponding to 7r are in place the motion space for the grid is S
rather than S. Dependence among the vectors of S thought of as constraints on
motion is their dependence as functionals on SL 71

DEFINITION 6. The joint occupancy matrix L L(Tr, ’) of the two partitions or, " is
defined by

Lij number of halls (vertices) in the intersection of the ith part of zr
with the ]th part of -.

THEOREM 7. r’(r) r(L).
Proof. For any subspaces W c S, V c S* the rank of V as a space of actions on W is

the rank of the matrix f(xi) where fJ is a basis for V and. xi a basis for
W. If we choose for S* the basis dual to the standard one for S, so that functionals act by
taking inner products, we see that the characteristic vectors of the parts of r form a basis
for S (Lemma 4), while the characteristic vectors of the parts of zr form a basis for S
(Lemma 3). But the inner product of two such vectors, one from each basis, is the
cardinality of the intersection of the corresponding parts of 7r and

In the original version of this paper [3] we concentrated on r(r)=
dim S-dim (S fq S), the rank of a set of roof braces modulo a set of wall braces. The
difference r(cr)-r(zr) is the reduction in rank of a set of roof braces caused by the
bracing of certain walls.

THEOREM 8.

r(zr)- r(r)- Il- r(t),

the column nullity ofL.
Proof. For the proof see Fig. 8.
TrEOREM 9. DimS f’lS-lrl-r(t), the row nullity of L. The orthogonal

complement of the column space ofL is naturally isomorphic to S fq S.
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Proof. The first statement follows from Theorem 7, Equation (4) and Lemma 3.
The second is easy to prove. Suppose s S’. Then s is constant on each part of rr. Say it
has value s on the ith part. Then the inner product of the vector s’ with the/’th column
of L is the inner product of s with characteristic vector of the jth part of r. Now
s S f’)S if and only if the shears in s sum to 0 on every part of ’, if and only if s’ is
perpendicular to every column of L.

COROLLARY 10. An independent set A of roof braces and a set B of wall braces
together minimally brace a one-story building ifand only ifL(rr(A ), r(B )) is nonsingular.

Proof. The structure is rigid if and only if S VI S {0}, or, equivalently, the row
nullity of L is 0. The independent roof braces remain independent modulo the wall
braces if and only if the column nullity is 0 (Theorem 8). 71

To see how these ideas work in practice, consider the building shown in perspective
in Fig. 9(a) and schematically in Fig. 9(b), where braced walls are indicated with heavy
blOcked lines. Then

"n" {AEH, B, CFG, D} and - {AB, CD, EF, GH}.

(a)

A B C D

(b)

G

H

(c)

FIG. 9

(d)



BRACING RECTANGULAR FRAMEWORKS. 485

The joint occupancy matrix L is

A
B

C
D

E G
F H

AEH
B

CFG
D

1 0 1
1 0 0

0 1 1
0 1 0

1

it has rank 3. The roof braces by themselves are independent, but become dependent
with nullity 1 column nullity of L modulo the wall braces. The vector (-1, 1, 1, -1) is
orthogonal to every column of L. The corresponding shear, drawn in perspective in Fig.
9(c) and as a deformation of the roof in Fig. 9(d) takes the value -1 in halls A, D, E, H
and the value i in halls B, C, F, G. This is an infinitesimal motion only: nine nodes in the
roof are pinned in space by the braced walls.

Were the roof brace in hall G moved from hall C to hall D, the joint occupancy
matrix would be

ACEG
B D F H

AEH
B
CF
DG

1 0 1 1
1 0 0 0
0 1 1 0

0 1 0 1

which is nonsingular. The 10 braces, 6 in the walls and 4 in the roof, minimally brace the
building.

When a fixed pattern of braced walls is used, addition of roof braces one at a time
either leaves the partition 7r unchanged, in which case the new brace depends on the
roof braces already in place, or it joins two parts of zr and alters L by replacing two rows
by their sum. Thus starting with the discrete partition we can produce minimal bracings
by adding roof braces one at a time, keeping L column independent at each step. Figure
10 shows three examples of bracing schemes which might be used on three successive
floors of a 5 x 5 building in which the outer two walls were braced on all sides on each
floor.

We know the circuits in the geometry of roof braces: they are the polygons in K,.n.
There are no nontrivial circuits in the geometry of wall braces: any set is independent.
The joint occupancy matrix allows us to find the circuits in the full structure geometry of
the building. Suppose A is a circuit in the geometry of the roof braces modulo a given set
B of wall braces. Then for some B’ c B, A [.J B’ is a circuit in the full structure geometry.
How can we determine B’? Consider removing a brace b from B. If b is in an extreme
braced wall, we eliminate a column of L. If b is internal, we merge two parts of - and
replace two columns of L by their sum. The brace b is in the circuit with A if and only if
its removal does not change the rank of A I.J B but does change the rank ofA modulo B.
Thus removing such a brace reduces the column nullity of L by 1, and reduces the
number of columns by 1, so it.preserves the rank of L.
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",

FIG. 10

For example, in Figure 11, the roof braces form a circuit modulo the given wall
braces, and the joint occupancy matrix

A C E G

B D F H

ABDEFH
C
G

2 1 2 1
0 1 0 0
0 0 0 1

has rank 2, column nullity 1. Removal of wall brace 3 eliminates the column GH, which
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A B C D

k’"

4 5 6

H

FIG. 11

reduces the rank of the matrix to 2 and leaves the column nullity unchanged. Thus wall
brace 3 (and similarly wall brace 6) are not in the circuit. Removal of wall brace 2
merges the parts EF and GH of z and produces a nonsingular matrix, with rank
unchanged. Thus wall brace 2 (and similarly wall braces 1, 4 and 5) is in the circuit. Note
that it is a circuit formed by exchange at the brace BF between the circuit AE, BF, 1, 2,
4, 5 and the circuit formed in the roof by adding the brace BF.

In our earlier paper [3] we studied the dependencies among the braces of a roof
tree T (minimal rigidifying set for the roof) caused by the bracing of certain walls. Let us
derive some of the results from that paper using our new methods.

Suppose we brace the four outer walls of a building. Then - {{E-W halls}, {N-S
halls}} and 7r {all halls}. The joint occupancy matrix is 1.. m, n l, which has column
nullity 1. Thus there is a unique circuit C using all four wall braces and some of the
braces T. How can we decide which? Let e be an edge in T. When we remove e the
partition 7r {all halls} splits into two parts. Let m’ and n’ be the number of E-W halls
and N-S halls in one part.

THEOREM 11. The roofbraces in the circuit Care those for which the vector (m ’, n ’) is
not a multiple of (m, n ).

Proof. When e is removed the joint occupancy matrix becomes

The circuit C contains e if and only if the removal of e does not change the rank of
T, or, equivalently, the column nullity of L’ is one less than that of L. Since L has column
nullity 1, e is in C if and only if L’ is nonsingular. The theorem then follows.

Theorem 11 has intersting consequences. First, permutation of rows and columns
leaves all structural information invariant. Thus in Figures 12(a) and 12(b) the dotted
lines indicate the roof braces which, together with the outside braced walls, form a
circuit. In fact, the structure Fig. 12(c) has a structure geometry isomorphic to that for
the structures in Figs. 12(a) and 12(b) even though it is not the result of permuting halls,
because the distribution of E-W and N-S halls in the parts of the partitions obtained by
deleting edges one at a time in turn is the same in both cases.
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(a) (b) (c)

FIG. 12

Second, Theorem 11 conveys the most information when the greatest common
divisor of m and n is large. For a square grid it shows that the set of braces on the
diagonal together with the four wall braces is a circuit. In fact, similar circuits occur
whenever the diagonal of the building meets intersections of walls.

When m and n are relatively prime any roof tree forms a circuit with the four
braced outside walls, since (m’, n’) can never be a multiple of (m, n). An architect can
minimally brace such a building by removing any brace from any roof tree. If she leaves
a full roof tree she has a spanning circuit, which is architecturally useful because the
building remains rigid if any single brace fails.

5. Buildings with different shapes. The theory in 4 covers one story buildings
with nonrectangular floor plans as long as they are wall-convex" every wall is connected.
Such a building is shown in Fig. 13. The roof tree illustrated has nullity I and contains a

A B C D

H

FIG. 13

unique circuit. Since -= {GH, ABC} the analysis following Theorem 11 applies with
m 2, n 3, even though it is not the outside walls which are braced. Breaking the tree
at each brace in turn produces only two vectors (rn’, n’) which are multiples of (2, 3): AF
and BJ both yield (0, 0). Thus the circuit consists of all the other roofbraces, shown
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dotted, and the four wall braces. Buildings with courtyards and parallel wings are not
wall convex. We leave to the reader the analysis of bracing schemes for the building in
Fig. 14.

FIG. 14

Let us return now to a rectangular rn x n floor plan, but allow the rooms themselves
to be rectangular rather than just square. Suppose the ith hall has width hi,
1, , m + n. The argument in 3 which shows that the line motions form a basis for
the motion space M is unchanged, as is the definition of the map tr: M S, onto the
space of shears.

What is the vector in $* whose orthogonal complement in S contains the motions
permitted when the rectangle in Figure 15 is braced by its N-E diagonal? In that case,

hall
(N-S)

hallh (E-w)

FIG. 15

the vectors (d, a) and (c, b) must have equal projections on the diagonal which has
direction (hi, hi), so the vector (d- c, a- b) must be perpendicular to (hi, hi). Thus
hi" (d-c)+ hi" (a- b)= 0, or, equivalently (and more useful later)

hi hi

That suggests that we change our basis in S, replacing the unit shear si in hall by the
shear hisi. Since b a and d c are the coefficients of si and si, (b a)/hi and (d c)/hi
are the coefficients of our new basis vectors. Thus, relative to our new basis for S and its
dual basis, the brace in the rectangle above corresponds to the vector in S* with two
nonzero entries, -1, and 1, in the place corresponding to the two halls. Thus the
structure geometry for this grid is again the graphic geometry K,,,n. Theorem 2 remains
true.

It is no surprise that the dimensions of the rooms are irrelevant in the plane grid.
They do matter when we brace a one-story building on that grid. To see that we must
investigate how the wall braces act as constraints on shears. Lemma 4 must be modified.
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Relative to our new basis in S, a vector x ot shears is permitted when B is braced if and
only if for each part zi of -,

(5) Y hx O.
hk

Theorem 5 remains true, but Definition 6 must be changed.
DEFINIa’ON 12. The joint occupancy matrix L L(r, ’) of the two partitions 7r, " is

defined by

Lii the sum of the widths of the halls in the intersection of the ith part of r
with the th part of ’.

THEOREM 13. Theorems 7-10 remain true ]:or buildings with rectangular rooms
when the new joint occupancy matrix is used.

Proof. Use in S the basis introduced above. Then relative to the dual basis in S*, the
functional expressing the condition (5) is given by

hk if the kth hall is in -i,(fi)k
0 otherwise.

That, together with the altered Lemma 4, is enough to make the rest of the proofs of
Theorems 7-10 go through, mutatis mutandis. [3
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