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Introduction

Carl Friedrich Gauss was born on April 30, 1777, in Brunswick, Germany, the
son of Gebhard Dietrich Gauss, a bricklayer, and Dorothea Emerenzia Gauss. Carl
Friedrich’s mathematical talents showed themselves early: when he was three years
old, he found an error in his father’s payroll calculations. At the age of seven, he
entered St. Katharine’s Volksschule, where he was taught by J.G. Büttner. The
most famous incident from Gauss’s youth took place when Büttner assigned to his
class the task of summing the numbers from 1 to 100. While the other pupils
busied themselves with the task, Gauss almost immediately wrote an answer on his
tablet and handed it in. Büttner, at first skeptical, found that Gauss’s solution was
completely correct. Gauss explained himself: he had noticed that 1 + 100 = 101,
2 + 99 = 101, and so on, so that 1 + · · ·+ 100 = 50 · 101 = 5050.

Gauss quickly outpaced what he could be taught at the Katharineum, and began
to be tutored privately in mathematics by a neighbor, Johann Bartels, who himself
would later become a professor of mathematics. At the age of 14, Gauss came to
the attention of the Duke of Brunswick: the Duchess saw Gauss reading in the
palace yard one day, and was much impressed that Gauss understood what he was
reading. When Gauss entered the Collegium Carolinum in 1792, the Duke paid his
tuition.

At the Collegium, Gauss studied the works of Newton, Euler, and Lagrange. His
investigations on the distribution of primes in 1792 or 1793 give an early indication
of his interest in number theory. He also developed his strong love of languages:
he “completed his knowledge of the ancient languages and learned the modern
languages” ([Dun04],p. 18).

In 1795, Gauss left Brunswick for Göttingen. He continued to be supplied tuition,
a stipend, and a free apartment by his patron, the Duke of Brunswick.

1. The 17-gon

1.1. Geometry and algebra. Gauss’s first publication appeared in Allgemeine
Literaturzeitung in April, 1796: ([Dun04], p.28)

It is known to every beginner in geometry that various regular
polygons, viz., the triangle, tetragon, pentagon, 15-gon, and those
which arise by the continued doubling of the number of sides of
one of them, are geometrically constructible.

One was already that far in the time of Euclid, and, it seems, it
has generally been said since then that the field of elementary ge-
ometry extends no farther: at least I know of no successful attempt
to extend its limits on this side.
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So much the more, methinks, does the discovery deserve atten-
tion... that besides those regular polygons a number of others, e.g.,
the 17-gon, allow of a geometrical construction. This discovery is
really only a special supplement to a theory of greater inclusive-
ness, not yet completed, and is to be presented to the public as
soon as it has received its completion.

Carl Friedrich Gauss
Student of Mathematics at Göttingen

To construct a regular 15-gon with straightedge and compass, first construct a
regular pentagon; draw the circle in which this pentagon is inscribed, and inscribe
five equilateral triangles inside that circle, each sharing one vertex with the penta-
gon. The fifteen vertices of these triangles will form the vertices of a regular 15-gon.
To construct a regular 2n-gon from a regular n-gon, simply bisect each of the n
central angles of the n-gon. Thus, starting from the triangle, square, and pentagon
it is possible to construct regular polygons with 6, 12, 24, etc. sides, with 4, 8, 16
etc. sides, with 5, 10, 20 etc. sides, and even with 15, 30, 60 etc. sides. To this
list, which had remained unchanged for nearly 2000 years, Gauss not only added
the 17-gon, but gave a nearly-complete solution to the question: for which values
of n can the regular n-gon be constructed?

Though the result was announced in 1796, the details appeared in print in 1801,
in Section VII (“Equations Defining Sections of a Circle”) in Gauss’s masterwork
Disquisitiones Arithmeticae [Gau66]. As we shall explain below, the problem may
be translated from geometry into algebra; Gauss’s crucial insight, noted on March
30, 1796, in the opening entry of his scientific diary, allowed him to resolve the
related algebraic problem:

The theory of the division of a circle or of a regular polygon treated
in Section VII of itself does not pertain to Arithmetic but the prin-
ciples involved depend uniquely on Higher Arithmetic. This will
perhaps prove unexpected to geometers, but I hope they will be
equally pleased with the new results that derive from this treat-
ment. ([Gau66], Author’s Preface)

According to H.S.M. Coxeter [Cox77], the idea that a complex number x +
iy may be viewed as the point (x, y) in the plane should be attributed to the
Danish mathematician Caspar Wessel (1745-1818). In this manner, one may study
geometry of the plane by studying the arithmetic of complex numbers. View the
point (x, y) in polar coordinates: suppose that the point (x, y) has distance r from
the origin, and that the line from the origin to (x, y) makes an angle θ from the
positive real axis. Then we know, essentially from the definition of the trigonometric
functions, that x = r cos θ and y = r sin θ.

From this geometric interpretation, we see that

x + iy = r cos θ + ir sin θ = r(cos θ + i sin θ) ,

or, writing cis θ = cos θ + i sin θ, that x + iy = r cis θ. This reformulation gives
particular insight into the multiplication of complex numbers. If x + iy = r1 cis θ1

and u + iv = r2 cis θ2, then we can compute the product using the angle-addition
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formulas for cos and sin:

(x + iy)(u + iv) = (xu− yv) + i(xv + yu)
= r1r2((cos θ1 cos θ2 − sin θ1 sin θ2) + i(cos θ1 sin θ2 + cos θ2 sin θ1))
= r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2))
= r1r2 cis(θ1 + θ2) .

That is, when we multiply two complex numbers, the distances from the origin
multiply, and the angles add.

Definition 1.1. An nth root of unity is any complex number z such that zn = 1.
A primitive nth root of unity is an nth root of unity that is not a kth root of unity
for any positive integer k < n.

For example, 1 and −1 are both square roots of unity, but only −1 is a primitive
square root of unity.

Exercise 1.2. Verify that −1±√−3
2 are primitive 3rd roots of unity, and that ±i

are the primitive 4th roots of unity. What are the primitive 6th and 8th roots of
unity?

Set ζn = cis 2π
n . Our formula for the multiplication of complex numbers shows

immediately that

ζk
n = cis

2πk

n
,

and in particular that ζn
n = cis 2π = cos 2π + i sin 2π = 1. Therefore ζn is an nth

root of unity.

Exercise 1.3. Prove the formulas

cos
2πk

n
=

1
2

(
ζk
n + ζ−k

n

)

and

sin
2πk

n
=

1
2i

(
ζk
n − ζ−k

n

)
.

Exercise 1.4. Show that ζn is a primitive nth root of unity.

Exercise 1.5. Show that every nth root of unity is of the form ζk
n for some k, and

moreover that ζk
n is a primitive nth root of unity if and only if k is relatively prime

to n.

Suppose we have a regular n-gon inscribed in a circle of radius 1 centered at
the origin, and with one vertex at the point (1, 0). Then the vertices of this n-gon
will be at exactly the points corresponding to the complex numbers cis 2πk

n , that is,
to the nth roots of unity. For example, if a square centered at the origin has one
vertex at (1, 0), then the other vertices will be at (0, 1), (−1, 0), and (0,−1), and
these four vertices correspond to 1, i,−1,−i respectively. Therefore, the problem
of constructing a regular n-gon is the same as the problem: given points (0, 0) and
(1, 0), construct the number ζn = cis 2π

n ; and any resolution of this problem should
make use of the algebraic fact that ζn is a root of the polynomial zn−1 = 0. It was
already known (from work of Cotes, of DeMoivre, and of Euler; [Dun04], p. 29)
that construction of the n-gon depends on solving the equation zn − 1 = 0; Gauss
was the first to succeed at the latter.
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Using a straightedge and compass, given a segment of length defined to be 1, it is
possible to add, subtract, multiply, and divide known lengths, and it is also possible
to extract square roots. We can therefore use a straightedge and compass to solve
linear and quadratic equations. (In fact, the reader should try to convince herself
or himself that these are essentially the only equations one can solve, when our only
operations are intersecting two known lines, two known circles, or a known line and
a known circle.) On the other hand, at first glance, it appears that constructing
ζ17 should involve the solution of an equation of degree 17, since we are trying to
find a root of the equation

z17 − 1 = 0 .

Not so fast! In fact, the polynomial z17 − 1 has an obvious root, namely 1; and
therefore the polynomial has the factor z − 1. It follows that ζ17 is a root of the
polynomial

Φ17(z) =
z17 − 1
z − 1

= z16 + z15 + · · ·+ z + 1 .

Exercise 1.6. If p is a prime number, set Φp(z) = zp−1
z−1 = zp−1 + · · ·+z+1. Verify

that the roots of Φp(z) = 0 are precisely the primitive pth roots of unity.

So we still have some hope: ζ17 is actually a root of a polynomial of degree 16, and
it is conceivable that a solution of an equation of degree 16 can be found by solving
four successive equations of degree 2, which can then be solved by straightedge and
compass.

1.2. Φp is irreducible. A priori, it is possible that ζ17 might yet be the root of
a polynomial of degree smaller than 16: perhaps there is another, less obvious
factor of Φ17(z) that we have not found. In actuality, no such factor exists. More
generally, we will now give Gauss’s proof that Φp(z) is an irreducible polynomial,
that is, that Φp(z) cannot be factored into two polynomials of lower degree with
rational coefficients. The proof may be found in article 341 of [Gau66]. We need
the following preliminaries.

Definition 1.7. A polynomial f(z) = anzn + · · · + a0 with integer coefficients is
said to be monic if an = 1.

Lemma 1.8 (Gauss’s Lemma). If f(z) is a monic polynomial with integer coef-
ficients and f(z) can be factored into two polynomials with rational coefficients,
then it may be factored into two monic polynomials of lower degree with integer
coefficients.

Gauss proves this important lemma in article 42 in [Gau66].

Exercise 1.9. Prove Gauss’s Lemma.

The following lemma is article 338 in [Gau66].

Lemma 1.10. If the polynomial f(z) = (z − r1) · · · (z − rd) with roots r1, . . . , rd

has rational coefficients, then the polynomial f (k)(z) = (z− rk
1 ) · · · (z− rk

d) also has
rational coefficients.

Exercise 1.11. Prove Lemma 1.10. Hint: If d = 2, then r2
1+r2

2 = (r1+r2)2−2(r1r2)
and r2

1r
2
2 = (r1r2)2 are certainly both rational. The proof for larger d is more

complicated, but not more difficult; use Newton’s results on symmetric functions.
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Lemma 1.12. If f(z1, . . . , zd) is a polynomial with integer coefficients and if
c1, . . . , cd are integers, then the sum

S =
p−1∑

k=0

f(ζkc1
p , . . . , ζkcd

p )

is an integer which is divisible by p.

Proof. Set g(z) = f(zc1 , . . . , zcd), so that

S =
p−1∑

k=0

g(ζk
p ) .

Using polynomial division, write

g(z) = (zp − 1)q(z) + h(z)

with the degree of h(z) strictly less than p; then g(ζk
p ) = h(ζk

p ), so if h(z) =
hp−1z

p−1 + · · ·+ h0 then

g(ζk
p ) = hp−1ζ

k(p−1)
p + · · ·+ h1ζ

k
p + h0 .

Since

(1.13)
p−1∑

k=0

ζki
p =

{
0 if 1 < i ≤ p− 1
p if i = 0

we find S = ph0, as desired. ¤

Exercise 1.14. Verify equation (1.13).

Finally, we are ready to give Gauss’s proof of:

Theorem 1.15 ([Gau66], art. 341). Φp(z) is irreducible.

Suppose, for the purposes of contradiction, that Φp(z) is divisible by a polynomial
f(z) with rational coefficients and degree d < p− 1, and suppose that the roots of
f(z) are ζc1

p , . . . , ζcd
p . Let f (k)(z) be the polynomial whose roots are ζkc1

p , . . . , ζkcd
p .

Exercise 1.16. Show that
∏p−1

k=1 f (k)(z) = Φp(z)d. (Hint: count the number of
times each primitive pth root of unity occurs as a root of the product on the left-
hand side.)

Exercise 1.17. By Lemma 1.10, each f (k)(z) has rational coefficients. Use Gauss’s
Lemma (Lemma 1.8) and the preceding exercise to conclude that each f (k)(z) has
integer coefficients. In particular, f (k)(1) is an integer for all k.

Exercise 1.18. Use Lemma 1.12 and the fact that f (0)(1) = 0 to show that
p | ∑p−1

k=1 f (k)(1) . Also verify that
∏p−1

k=1 f (g)(1) = pd.

Exercise 1.19. Finally, prove that f (k)(1) is positive for all k. (Hint: how many
real roots does f (k) have?) It follows that f (k)(1) is either 1 or a multiple of p;
use the results of Exercise 1.18 to deduce a contradiction to the hypothesis that
d < p− 1. Conclude that Φp(z) is irreducible.

Finally, we note that this is not at all equivalent to the more standard proof that
Φp is irreducible using Eisenstein’s irreducibility criterion:
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Theorem 1.20 (Eisenstein’s Criterion). Let f(z) = zn + an−1z
n−1 + · · · + a0

be a monic polynomial with integer coefficients. Suppose that all the coefficients
a0, . . . , an−1 are divisible by p and the constant coefficient a0 is not divisible by p2.
Then f(z) is irreducible.

A polynomial satisfying the hypotheses of this theorem is said to be “Eisenstein
at p”.

Exercise 1.21. Fill in the details in the following sketch of a proof of Eisenstein’s
criterion: suppose f(z) factors as f(z) = g(z)h(z), with g(z), h(z) monic of degree
d, n − d respectively. Show that g(z) ≡ zd (mod p) and h(z) ≡ zn−d (mod p), so
that g(0) and h(0) are both divisible by p. Deduce a contradiction.

Exercise 1.22. Show that the polynomial Φp(z + 1) is Eisenstein at p, so that it
is irreducible. Conclude that Φp(z) is also irreducible.

Eisenstein’s criterion is essentially a p-adic irreducibility criterion. On the other
hand, Gauss’s proof makes definite use of properties of the integers.

1.3. The algebraic construction. At the heart of Gauss’s deduction of the con-
structibility of the 17-gon is the following observation, which we will study more
systematically in Section 4.1. If we begin with ζ17 and repeatedly square this num-
ber, we get a cycle of length 8:

ζ17 Ã ζ2
17 Ã ζ4

17 Ã ζ8
17 Ã ζ16

17 Ã ζ15
17 Ã ζ13

17 Ã ζ9
17 Ã ζ17 · · ·

where we use, for example, that ζ32
17 = ζ15

17 . Choosing any primitive 17th root of
unity not in the above cycle and repeatedly squaring yields another cycle containing
all of the remaining primitive 17th roots of unity:

ζ3
17 Ã ζ6

17 Ã ζ12
17 Ã ζ7

17 Ã ζ14
17 Ã ζ11

17 Ã ζ5
17 Ã ζ10

17 Ã ζ3
17 Ã · · · .

Define
(8, ζ17) = ζ17 + ζ2

17 + ζ4
17 + ζ8

17 + ζ16
17 + ζ15

17 + ζ13
17 + ζ9

17

and
(8, ζ3

17) = ζ3
17 + ζ6

17 + ζ12
17 + ζ7

17 + ζ14
17 + ζ11

17 + ζ5
17 + ζ10

17 ,

the sums of the roots contained in the two cycles; we will call these two numbers
the periods of length 8 for ζ17.

Then
(8, ζ17) + (8, ζ3

17) = ζ17 + ζ2
17 + · · ·+ ζ16

17 = −1
since ζ16

17 + · · · + ζ17 + 1 = 0. We can also evaluate the product (8, ζ17) · (8, ζ3
17).

Since the two periods each are defined as a sum of eight terms, the product contains
64 terms, and one can see by direct (if exhausting) calculation that the product is
simply

4ζ17 + 4ζ2
17 + · · ·+ 4ζ16

17 = −4 .

On the other hand, one can also see this by “pure thought”.

Exercise 1.23. Verify that each of the primitive 17th roots of unity appearing
in (8, ζ17) are of the form ζk

17 where k is a square (mod 17), and that each of the
primitive 17th roots of unity appearing in (8, ζ17) are of the form ζk

17 where k is a
non-square (mod 17). Use this, together with the fact that −1 is a square (mod 17),
to check that none of the 64 terms in the product (8, ζ17) · (8, ζ3

17) are equal to 1.
to Conclude that

(8, ζ17) · (8, ζ3
17) = a1ζ

1
17 + · · ·+ a16ζ

16
17
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with a1 + · · ·+ a16 = 64.

Let
f(x) = (x + x2 + x4 + · · ·+ x9)(x3 + x6 + · · ·+ x10) ,

where the exponents in the first factor are the eight squares (mod 17) and the
exponents in the second factor are the eight non-squares (mod 17). Divide

f(x) = (x17 − 1)q(x) + h(x)

so that the degree of h(x) is smaller than 17.

Exercise 1.24. Prove that h(x) = a1x
1 + · · ·+ a16x

16. Verify from the definition
of f(x) that both h(ζ17) and h(ζ3

17) are equal to (8, ζ17) · (8, ζ3
17). It follows that

a1ζ17 + a2ζ
2
17 + · · ·+ a16ζ

16
17 = a1ζ

3
17 + a2ζ

2·3
17 + · · ·+ a16ζ

16·3
17 .

Finally, use the irreducibility of Φ17(z) to conclude that a3·k = ak for all k (with
the subscripts considered modulo 17), and therefore that all of the ak are equal
(and hence all equal to 4).

In any case, we have shown that

(8, ζ17) + (8, ζ3
17) = −1

and
(8, ζ17) · (8, ζ3

17) = −4
If follows that (8, ζ17) and (8, ζ3

17) are the two roots of the quadratic equation

z2 + z − 4 .

This equation has roots −1±√17
2 , and it is natural to ask which of these is (8, ζ17) and

which is (8, ζ3
17). We shall see in Section 4.3 how to determine this theoretically; for

now, note that using a hand-held calculator to perform an approximate computation
of the sum

cos
2π

17
+ cos

2π · 2
17

+ cos
2π · 4
17

+ · · ·+ cos
2π · 9
17

≈ 1.5615528 · · ·

is enough to prove that (8, ζ17) = −1+
√

17
2 and (8, ζ3

17) = −1−√17
2 .

So we have seen how to write the two periods of length 8 as the roots of a
quadratic equation with integer coefficients. The next step is to see that there are
periods of length 4 for ζ17 which may be written as roots of a quadratic equation
whose coefficients are not necessarily integers, but may be computed from the
periods of length 8.

To this end, observe that each period of length 8 breaks naturally into two
cycles of length 4, obtained by successively squaring twice (i.e., by successively
taking fourth powers). That is, the cycles are

ζ17 Ã ζ4
17 Ã ζ16

17 Ã ζ13
17 Ã ζ17 Ã · · ·

ζ2
17 Ã ζ8

17 Ã ζ15
17 Ã ζ9

17 Ã ζ2
17 Ã · · ·

ζ3
17 Ã ζ12

17 Ã ζ14
17 Ã ζ5

17 Ã ζ3
17 Ã · · ·

ζ6
17 Ã ζ7

17 Ã ζ11
17 Ã ζ10

17 Ã ζ6
17 Ã · · ·

and the corresponding periods (i.e., the sums of the numbers in the cycle) will be
denoted (4, ζ17), (4, ζ2

17), (4, ζ3
17) and (4, ζ6

17) respectively. One verifies immediately
that

(4, ζ17) + (4, ζ2
17) = (8, ζ17)
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and
(4, ζ3

17) + (4, ζ6
17) = (8, ζ3

17) .

We can also directly compute the products

(4, ζ17) · (4, ζ2
17) = ζ17 + · · ·+ ζ16

17 = −1

and
(4, ζ3

17) · (4, ζ6
17) = ζ17 + · · ·+ ζ16

17 = −1 ,

so that these periods may be found as the four roots of the two quadratic equations

z2 − (8, ζ17)z − 1

and
z2 − (8, ζ3

17)z − 1 .

Exercise 1.25. Show by “pure thought” (as in Exercise 1.24, but using an identity
of the form h(ζ17) = h(ζ4

17) instead) that the product of any two of the periods of
length 4 will be an integer plus a sum of periods of length 4. Similarly, show by
pure thought that (4, ζ17) · (4, ζ2

17) is a sum of periods of length 8.

Finally, the four cycles of length 4 break into eight cycles of length 2:

ζ17 ↔ ζ16
17 , ζ4

17 ↔ ζ13
17 , . . .

yielding eight periods (2, ζ17), (2, ζ4
17), . . . of length 2. Check that (2, ζ17)+(2, ζ4

17) =
(4, ζ17) and (2, ζ17) · (2, ζ4

17) = (4, ζ3
17), so that (2, ζ17) and (2, ζ4

17) are roots of

z2 − (4, ζ17)z + (4, ζ3
17) = 0 .

Finally, ζ17 and ζ16
17 are the roots of

z2 − (2, ζ17)z + 1 = 0 .

In this manner, ζ17 may be computed by solving a succession of four quadratic
equations, the coefficients of the next equation involving only the roots of the
former. We conclude that the 17-gon is constructible.

Gauss was so fond of this result that he requested that a 17-gon be engraved
on his tombstone; in fact this request was not honored, as the engraver felt that
visitors would mistake the 17-gon for a circle, but there is a 17-pointed star on the
base of the monument.

We close this section with two notes. First, one can solve the above quadratic
equations to obtain an explicit expression for ζ17. For example, cos 2π

17 is equal to

1
16

(
−1 +

√
17 +

√
34− 2

√
17 + 2

√
17 + 3

√
17−

√
34− 2

√
17− 2

√
34 + 2

√
17

)
.

Second, we shall see in Section 4.1 that the same method as the above can be
used to show that the (22m

+ 1)-gon is constructible whenever 22m

+ 1 is prime.
(Note that 2k + 1 may be prime only if k is a power of 2.) Moreover, the p-gon is
not constructible if p− 1 is not a power of 2: if p− 1 has a prime factor q > 2, one
cannot avoid having to solve an equation of degree q in an attempted construction
of ζp. Similarly, the p2-gon is never constructible for p > 2. Hence the n-gon
is constructible if and only if n is a product of primes of the form 22m

+ 1 (at
most once each) times a power of 2. This is not quite a complete description of
the constructible n-gons, since it is still an open problem to determine whether
3, 5, 17, 257, 65537 is a complete list of the primes of the form 22m

+ 1.
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2. An Extraordinary Arithmetic Truth

2.1. Disquisitiones Arithmeticae. In 1795, Gauss happened upon the following
theorem:

Theorem 2.1 ([Gau66], article 108). There exists x such that x2 ≡ −1 (mod p) if
and only if p = 2 or p ≡ 1 (mod 4).

In fact, this result was long-known when Gauss discovered it; Euler and Lagrange
certainly both knew how to prove it. In the Author’s Preface to Disquisitiones
Arithmeticae [Gau66], published in 1801, Gauss explains the significance of the
result to him:

The purpose of this volume whose publication I promised five years
ago is to present my investigations into the field of Higher Arith-
metic. Lest anyone be surprised that the contents here go back
over many first principles and that many results had been given
energetic attention by other authors, I must explain to the reader
that when I first turned to this type of inquiry in the beginning of
1795 I was unaware of the more recent discoveries in the field and
was without the means of discovering them. What happened was
this. Engaged in other work I chanced upon an extraordinary arith-
metic truth (if I am not mistaken, it was the theorem of art. 108).
Since I considered it so beautiful in itself and since I suspected its
connection with even more profound results, I concentrated all my
efforts in order to understand the principles on which it depended
and to obtain a rigorous proof. When I succeeded in this I was so
attracted by these questions that I could not let them be.

Thus Gauss, in the first four sections of Disquisitiones, gives a systematic intro-
duction to modular arithmetic, building to his first proof of quadratic reciprocity; as
Gauss explains above, many (perhaps most) of the results therein are not original to
him, though to some extent he discovered them independently. In fact, Legendre’s
Essai sur la théorie des nombres [Leg98] was published during the writing of Disqui-
sitiones, and contained many of the same introductory results. However, although
Euler and Lagrange knew the statement of quadratic reciprocity and Lagrange (as
we shall see in Sections 3.1) had been able to prove a few special cases, the first
complete proof of quadratic reciprocity was due to Gauss.

The final three sections contain wholly novel contributions to the field: Gauss’s
theory of quadratic forms and applications, and his study of roots of unity (moti-
vated, as we have seen, by the constructibility of the 17-gon). An eighth section,
omitted due to the length of the rest of the volume, was published posthumously
and contains “a general treatment of algebraic congruences of indeterminate rank”
([Gau66], Author’s Preface)—in modern terminology, a theory of function fields
over finite fields.

Lagrange wrote to Gauss with effusive praise: “Your Disquisitiones have with
one stroke elevated you to the rank of the foremost mathematicians, and contest of
the last section [on roots of unity and the 17-gon] I look on as the most beautiful
analytical discovery which has been made for a long time.” ([Dun04], p. 44)

The Disquisitiones were dedicated to Gauss’s patron the Duke of Brunswick,
who financed its publication and had already financed Gauss’s education, and to
whom Gauss felt deeply endebted. Gauss writes:
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I consider it my greatest good fortune that you allow me to adorn
this work of mine with your most honorable name. I offer it to you
as a sacred token of my filial devotion. Were it not for your favor,
most serene Prince, I would not have had my first introduction to
the sciences. Were it not for your unceasing benefits in support of
my studies, I would not have been able to devote myself totally to
my passionate love, the study of mathematics. It has been your
generosity alone which freed me from other cares, allowed me to
give myself to so many years of fruitful contemplation and study,
and finally provided me the opportunity to set down in this volume
some partial results of my investigations. And when at length I
was ready to present my work to the world, it was your munificence
alone which removed all the obstacles which threatened to delay
its publication. ([Gau66])

2.2. Quadratic residues. We will shortly give three proofs of Theorem 2.1, all of
which can be found in Disquisitiones. The first and third proofs are due to Euler;
the second is Gauss’s modification of the first proof. We will see two more proofs of
this theorem in Section 3.4 (Exercises 3.28 and 3.31) and a sixth proof in Section
4.2. We take as a starting point the following fact, which follows from the Euclidean
division algorithm:

Proposition 2.2. If a and b are integers, then there exist integers x and y such
that

(a, b) = ax + by ,

where (a, b) denotes the greatest common divisor of a and b.

This has the following important consequence:

Proposition 2.3 ([Gau66], art. 14). Let p be a prime number (i.e., a number with
exactly two positive divisors, namely 1 and p). If p | ab, then p | a or p | b.

Recall that the notation x | y indicates that x divides y, that is, that y/x is an
integer; if x does not divide y, we write x - y.

Proof. Assume that p - a. Since the only positive divisors of p are 1 and p, and
since p does not divide a, it follows that (a, p) = 1. By Proposition 2.2, there exist
x and y such that

1 = ax + py .

Multiplying this equation by b, we obtain

b = (ab)x + p(by) .

Since ab and p are both divisible by p, so is b. ¤

Of this result, Gauss notes: “Euclid had already proved this theorem in this
Elements (Book VII, No. 32). However, we did not wish to omit it because many
modern authors have employed vague computations in place of proof or have ne-
glected the theorem completely” ([Gau66], art. 14). The above proof is now stan-
dard, but it is not the proof given by Gauss. Gauss notes that (if we are to find a
contradiction) we may suppose that a and b are positive and less than p. But given
a < p, suppose b > 1 is the smallest positive integer such that p | ab. Now p, being
prime, is not a multiple of b, so suppose mb < p < (m + 1)b. Then 0 < p−mb < b,
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but a(p−mb) = p(a− ab
p ) is a multiple of p, contradicting the minimality of b. This

result is at the heart of Gauss’s proof of the fundamental theorem of algebra.

Proposition 2.4 (The fundamental theorem of algebra; [Gau66], art. 16). Every
integer can be factored as a product of primes in exactly one way.

Here Gauss notes “It is clear from elementary considerations that any composite
number can be resolved into prime factors, but it is tacitly supposed and generally
without proof that this cannot be done in various ways.” Thus Gauss departs
from his contemporaries by providing a rigorous proof of unique factorization of
the integers.

Exercise 2.5. Prove the fundamental theorem of algebra.

We now continue towards our goal of proving Theorem 2.1.

Proposition 2.6. Suppose that p - k. Then there exists x such that kx ≡ 1
(mod p).

Proof. As before, we may write 1 = kx + py. Reducing this equation modulo p
yields 1 ≡ kx (mod p). ¤

In fact, such x is unique, at least considered modulo p. This follows directly
from:

Proposition 2.7. Suppose that p - k and kx ≡ ky (mod p). Then x ≡ y (mod p).

Proof. The hypotheses tell us that p | k(x − y) and that p - k; by Proposition 2.3
we must have p | x− y, so that x ≡ y (mod p). ¤

If p - k, we shall let k−1 denote the unique residue x (mod p) such that kx ≡ 1
(mod p); we call k−1 the inverse of k (mod p). Evidently (k−1)−1 is equal to k. In
this manner, we see that the p − 1 non-zero residues modulo p may be paired off
by pairing k with k−1, with the exception of any cases where k is actually equal to
k−1 (mod p). But in fact, we have:

Proposition 2.8. If k2 ≡ 1 (mod p), then k ≡ ±1 (mod p). In fact, if x2 ≡ y2

(mod p), then x ≡ ±y (mod p).

Proof. The first statement is a special case of the second. If x2 ≡ y2 (mod p), then

p | (x2 − y2) = (x− y)(x + y) .

By Proposition 2.3 we have either p | x − y or p | x + y; in the former case x ≡ y
(mod p), and in the latter case x ≡ −y (mod p). ¤
Exercise 2.9 (Wilson’s Theorem). Prove that (p− 1)! ≡ −1 (mod p). (Hint: use
the fact that k, k−1 form a pair unless k ≡ ±1 (mod p).)

Definition 2.10. We say that an integer k which is not divisible by p is a quadratic
residue modulo p if there exists x such that x2 ≡ k (mod p); we say that k is a
quadratic non-residue if no such x exists. This definition is encapsulated in the
Legendre symbol : we write

(
k

p

)
=





1 if k is a quadratic residue modulo p

−1 if k is a quadratic non-residue modulo p

0 if k ≡ 0 (mod p)
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Remark 2.11. This notation is the modern notation, and was not used by Gauss.
He wrote k R p to denote that k is a quadratic residue (mod p) and k N p to denote
that k is a quadratic non-residue.

Corollary 2.12 ([Gau66], art. 96). Let p be an odd prime. There are exactly
(p−1)/2 quadratic residues modulo p, and exactly (p−1)/2 quadratic non-residues.

Proof. By Proposition 2.8, the numbers 12, 22, . . . ,
(

p−1
2

)2
are distinct modulo p;

moreover the numbers in this list are the same modulo p as the numbers in the list(
p+1
2

)2 ≡ (−p−1
2

)2
, . . . , (p− 1)2 ≡ (−1)2. ¤

Proposition 2.13 ([Gau66], art. 99). We have the formula
(

k
p

)(
l
p

)
=

(
kl
p

)
.

That is, (a) the product of two quadratic residues is a quadratic residue; (b) the
product of a quadratic residue and a non-residue is a non-residue; and (c) the
product of two non-residues is a non-residue.

Proof. The proof is in three parts. To see (a), suppose that x2 ≡ k and y2 ≡ l
(mod p). Then (xy)2 ≡ kl (mod p), so kl is a quadratic residue.

For (b), suppose that x2 ≡ k (mod p), and assume that kl is a quadratic residue;
let y2 ≡ kl (mod p). Then (yx−1)2 ≡ l (mod p), and l is a quadratic residue. This
establishes the contrapositive of (b).

To establish (c), suppose that k and l are quadratic non-residues modulo p. Ob-
serve from part (b) that x2l is a quadratic non-residue for any x. By Proposition 2.7
and the proof of Corollary 2.12, the numbers 12l, . . . ,

(
p−1
2

)2
l are distinct modulo

p and so form a complete list of the quadratic non-residues modulo p. Since kl is
not in this list, again by Proposition 2.7, it follows that kl must be a quadratic
residue. ¤

2.3. Two proofs of Theorem 2.1. We are now ready to give our first two proofs
of Theorem 2.1. We suppose throughout that p is an odd prime.

Proof 1 of Theorem 2.1. (Euler; also [Gau66], art. 109). Since k·k−1 ≡ 1 (mod p)
is always a quadratic residue, it follows from Proposition 2.13 that k and k−1 are
either both quadratic residues or both quadratic non-residues modulo p. As we
observed before the proof of Proposition 2.8, the residues modulo p may be paired
off by pairing k with k−1, with the exception of 1 and −1, which would pair with
themselves. In this manner, the quadratic residues themselves can be paired off,
with the exception of 1 and possibly −1. But 1 is always a quadratic residue, and
so the total number of quadratic residues modulo p is even if −1 is a quadratic
residue, and odd otherwise.

However, the number of quadratic residues modulo p is (p− 1)/2, which is even
if p ≡ 1 (mod 4) and odd if p ≡ 3 (mod 4). We conclude that

(
−1
p

)
= 1 if p ≡ 1

(mod 4) and
(
−1
p

)
= −1 if p ≡ 3 (mod 4). ¤

Our second proof is Gauss’s variant of the above:

Proof 2 of Theorem 2.1. ([Gau66], art. 110). Observe that (p− 1)! is a product of
(p− 1)/2 quadratic residues and (p− 1)/2 quadratic non-residues. By Proposition
2.13, whether or not this is a quadratic residue depends only on the number of
quadratic non-residues in the product: namely, a non-zero product is a quadratic
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residue if the number of quadratic non-residues in the product is even, and a non-
residue if the number of quadratic non-residues in the product is odd.

The number of quadratic residues in the product is (p − 1)/2, which is even if
p ≡ 1 (mod 4) and odd if p ≡ 3 (mod 4); so (p− 1)! is a quadratic residue if p ≡ 1
(mod 4) and a non-residue of p ≡ 3 (mod 4). But by Wilson’s Theorem (Exercise
2.9), (p− 1)! ≡ −1 (mod p). The result follows. ¤

Exercise 2.14. If p ≡ 1 (mod 4), verify that
(

p−1
2

)
!2 ≡ −1 (mod p).

2.4. Primitive roots. Our third proof of Theorem 2.1 depends on a more careful
analysis of the multiplicative structure of the integers modulo p. Since the extra
generality does not add much difficulty, we will begin by working modulo an arbi-
trary integer n, and later specialize back to the case where the modulus is a prime.
Gauss’s treatment of the subject may be found at the beginning of Section III of
[Gau66], in articles 45 through 55. The arguments are somewhat dry, but we will
use the main result (Theorem 2.29) repeatedly.

Definition 2.15. If (a, n) = 1, then the order of a (mod n), denoted ordn(a), is
defined to be the smallest positive integer k such that ak ≡ 1 (mod n).

This definition makes sense, because we certainly know that aφ(n) ≡ 1 (mod n),
where φ denotes the Euler φ-function.

Example 2.16. For any n, ordn(1) = 1. Modulo 7, we have the following table of
powers:

ak 1 2 3 4 5 6
1 1 1 1 1 1 1
2 2 4 1 2 4 1
3 3 2 6 4 5 1
4 4 2 1 4 2 1
5 5 4 6 2 3 1
6 6 1 6 1 6 1

From the table, we observe that ord7(6) = 2, ord7(2) = ord7(4) = 2, and ord7(3) =
ord7(5) = 6.

We begin with:

Proposition 2.17. If ak ≡ 1 (mod n), then ordn(a) divides k.

Proof. Using the Euclidean algorithm, write k = q · ordn(a) + r, where r is a
nonnegative integer smaller than ordn(a). Then

ak = aq·ordn(a)+r = ar(aordn(a))q ≡ ar · 1q ≡ ar (mod n).

Since ak ≡ 1 (mod n), we have ar ≡ 1 (mod n). Since ordn(a) is the smallest
positive integer power of a which is 1 (mod n), and since r < ordn(a), it is therefore
impossible for r to be positive. Consequently, r = 0 and ordn(a) divides k. ¤

The converse is evident, i.e. if ordn(a) divides k then certainly ak ≡ 1 (mod n),
so we can in fact say that ak ≡ 1 (mod n) if and only if ordn(a) divides k. As a
corollary, we obtain:

Corollary 2.18. If (a, n) = 1, then ordn(a) divides φ(n).
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Proof. By Euler’s generalization of Fermat’s Little Theorem, we know that aφ(n) ≡
1 (mod n). The result then follows directly from the preceding theorem. ¤

There is a useful result which allows us to calculate the order of ak once we know
the order of a.

Proposition 2.19. If (a, n) = 1, then ordn(ak) = ordn(a)/(k, ordn(a)).

Proof. We are trying to answer the question: for what l does (ak)l ≡ 1 (mod n)?
By Proposition 2.17, this congruence holds if and only if ordn(a) | kl. This is the
case if and only if ordn(a)/(k, ordn(a)) divides l: see the Lemma following this
proof. Thus, the smallest positive value of l which makes (ak)l ≡ 1 (mod n) is
ordn(a)/(k, ordn(a)), and so ordn(ak) = ordn(a)/(k, ordn(a)). ¤

Lemma 2.20. We have a | bc if and only if a
(a,b) | c.

Exercise 2.21. Use Proposition 2.2 to prove Lemma 2.20.

Example 2.22. Using ord7(3) = 6, we obtain ord7(35) = 6/(6, 5) = 6/1 = 6. Since
35 ≡ 5 (mod 7), we conclude that ord7(5) = 6 as well.

Finally, we use the above result to prove a lemma which will be useful to us in
the next section. The lemma states that if the orders of two elements are relatively
prime, then the order of their product is the product of their orders, which allows
us to construct elements of larger order from elements of smaller order.

Lemma 2.23. If ordn(a) and ordn(b) are relatively prime, then ordn(ab) = ordn(a)·
ordn(b).

Proof. If (ab)k ≡ 1 (mod n), then ak ≡ b−k (mod n), so ordn(ak) = ordn(b−k).
By Proposition 2.19, we therefore have

ordn(a)/(k, ordn(a)) = ordn(b)/(−k, ordn(b)).

Rewriting this as

ordn(a) · (−k, ordn(b)) = ordn(b) · (k, ordn(a)),

it follows that
ordn(a) | ordn(b) · (k, ordn(a)) .

By another application of Lemma 2.20 using the fact that (ordn(a), ordn(b)) = 1
we conclude that ordn(a) divides (k, ordn(a)), and so ordn(a) is a divisor of k.
Similarly, ordn(b) divides k, and so in fact ordn(a) ·ordn(b) divides k. But certainly
(ab)ordn(a)·ordn(b) ≡ 1 (mod n), so as desired we obtain ordn(ab) = ordn(a)·ordn(b).

¤

Definition 2.24. An integer a, relatively prime to n, is called a primitive root
(mod n) if the powers a1, a2, . . . , aφ(n) are all different (mod n). Since adding a
multiple of n to a doesn’t change whether or not it’s a primitive root (mod n), we
consider any two primitive roots (mod n) which differ by a multiple of n to be the
same primitive root.

Since there are exactly φ(n) different residues (mod n) which are relatively prime
to n, and since if (a, n) = 1 then the powers ak are all also relatively prime to n, it
follows that if a is a primitive root (mod n), then the residues of a1, a2, . . . , aφ(n)

must be all of the different residues (mod n) which are relatively prime to n. So,
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the row corresponding to a in the table of powers (mod n) is a row containing every
possible residue.

Exercise 2.25. Show that 3 and 5 are the two primitive roots (mod 7). Show that
there are no primitive roots (mod 8).

Proposition 2.26. An integer a is a primitive root (mod n) if and only if ordn(a) =
φ(n).

Proof. If ordn(a) < φ(n), then 1 appears at least twice in the list of powers
a1, a2, . . . , aφ(n): in particular, aordn(a) ≡ aφ(n) ≡ 1 (mod n). So, these residue
classes are not all different, and a cannot be a primitive root. On the other hand,
if ordn(a) = φ(n), could we have ai ≡ aj (mod n) with 1 ≤ i < j ≤ φ(n)? No,
because then we would find that aj−i ≡ 1 (mod n), contradicting the assumption
that aφ(n) is the smallest power of a to be congruent to 1 (mod n). Thus, a is
indeed a primitive root (mod n). ¤

Exercise 2.27. Verify that 2 and 5 are the only primitive roots (mod 9).

Suppose a and b are primitive roots (mod n). Then b ≡ ak (mod n) for some k,
by the definition of a primitive root and the fact that b must be relatively prime to
n. What, then, is ordn(b)? By Theorem 2.19,

ordn(b) = ordn(ak) = ordn(a)/(k, ordn(a)).

But since we’ve assumed that b and a are both primitive roots, we need ordn(b) =
ordn(a) = φ(n), and (k, ordn(a)) = (k, φ(n)) = 1. Thus, k must be relatively prime
to φ(n). On the other hand, if we start with a primitive root a and an integer k
that is relatively prime to n, then reversing the preceeding argument shows that
ordn(ak) = φ(n), and so ak is a primitive root as well. Therefore, we get a primitive
root (mod n) exactly for each integer between 1 and φ(n) which is relatively prime
to φ(n), and we have proved:

Proposition 2.28. If there are any primitive roots (mod n), then there are exactly
φ(φ(n)) of them. Given one primitive root, a, the others can be obtained by taking
powers ak with (k, φ(n)) = 1.

Notice that this argument assumed the existence of at least one primitive root
(mod n), and proceeded to count exactly the number of different primitive roots
(mod n). However, this argument does not say anything about whether or not any
primitive roots exist (mod n).

Finally, we come to:

Theorem 2.29 ([Gau66], art. 55). If p is a prime, then there exist primitive roots
(mod p).

In the proof of this Theorem, we will need to use the fact that for any divisor k
of p − 1, there exists a such that a(p−1)/k 6≡ 1 (mod p). To establish this fact, we
will use:

Proposition 2.30. Let f(x) be a polynomial of degree d. Then f(x) has at most d
roots (mod p).

Proof. We prove the following stronger result: there exist r1, . . . , re and a polyno-
mial g(x) of degree d − e such that f(x) ≡ (x − r1) · · · (x − re)g(x) (mod p) and
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g(x) has no roots (mod p). (We say that two polynomials are congruent modulo
p if they are congruent coefficient by coefficient: that is, their constant terms are
congruent modulo p, the coefficients of their linear terms are congruent modulo p,
and so on.)

The proof proceeds by induction on d; the case d = 1 is clear. Suppose the
result is established for degree d − 1, and let f(x) have degree d. If f(x) has
no roots modulo p, then we are done; assume, then, that f(x) has a root r1.
Divide the polynomial f(x) by (x−r1) using the usual polynomial division, so that
f(x) = (x−r1)g(x)+f(r1) and g(x) has degree d−1. Since f(r1) ≡ 0 (mod p), we
have f(x) ≡ (x − r1)g(x) (mod p). Applying the induction hypothesis, the result
follows.

Finally, note (e.g. by Proposition 2.3) that r1, . . . , re are all of the roots of f(x)
modulo p, and e ≤ d. ¤

Proof of Theorem 2.29. Write the prime factorization

p− 1 = qα1
1 · · · qαs

s

with q1, . . . , qs distinct primes. By Proposition 2.30, the polynomial x(p−1)/qi − 1
has at most (p − 1)/qi roots modulo p. In particular, there exists bi that is not a
root of this polynomial.

Set ai = b
(p−1)/q

αi
i

i . Then

a
q

αi
i

i ≡ bp−1
i ≡ 1 (mod p) ,

so that ordp(ai) | qαi
i . On the other hand,

a
q

αi−1
i

i ≡ b
(p−1)/qi

i 6≡ 1 (mod p), ,

and therefore ordp(ai) is exactly qαi
i .

Then, by repeated application of Lemma 2.23, we see that ordp(a1 · · · as) =
qα1
1 · · · qαs

s = p− 1, and a1 · · · as is a primitive root modulo p. ¤

We can now give:

Proof 3 of Theorem 2.1. (Euler; also [Gau66], art. 64). Since the case p = 2 is
clear, let p be an odd prime. Suppose that x2 ≡ −1 (mod p). Then x4 ≡ 1
(mod p), so ordp(x) = 4. It follows that 4 | p−1, and we must have p ≡ 1 (mod 4).

On the other hand, if p ≡ 1 (mod 4), choose a primitive root a modulo p,
and let x = a(p−1)/4. Then x2 6≡ 1 (mod p) but (x2)2 ≡ 1 (mod p), and so by
Proposition 2.8 we have x2 ≡ −1 (mod p). ¤

3. Two Elementary Proofs of Quadratic Reciprocity

3.1. When are 2, 3, 5, . . . squares modulo p? Now that we have determined
the primes p such that −1 is a square modulo p, it is natural to turn to similar
questions: when is 2 a square modulo p? 3? An arbitrary number k? In articles
112 to 124 of [Gau66], Gauss discusses the work of Fermat, Euler, and Lagrange on
these problems when k ≤ 7. We begin with:

Proposition 3.1. If p ≡ 3 or 5 (mod 8) then
(

2
p

)
= −1.
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Proof. Suppose not. Then there exists a smallest prime p which is congruent to
3 or 5 (mod 8) and such that

(
2
p

)
= 1; say a2 ≡ 2 (mod p). Replacing a by its

smallest residue (mod p), and then replacing a by p−a if necessary, we may suppose
without loss of generality that a is odd and less than p. Write

a2 − 2 = pt .

Now any prime q dividing t has a2 ≡ 2 (mod q) as well, and moreover

t =
a2 − 2

p
<

p2

p
= p ,

so q ≤ t < p. Therefore, to obtain a contradiction to the minimality of p, it suffices
to prove that t is divisible by a prime which is congruent to 3 or 5 (mod 8).

But the square of any odd number is congruent to 1 (mod 8). Hence pt =
a2 − 2 ≡ −1 (mod 8), and since p ≡ 3 or 5 (mod 8), we find t ≡ 3 or 5 (mod 8)
as well. But a product of primes which are congruent to ±1 (mod 8) must again
be ±1 (mod 8); it follows that t cannot be a product of only such primes, and so
must be divisible by a prime which is congruent to 3 or 5 (mod 8). ¤
Exercise 3.2. Use an essentially identical argument to prove that if p ≡ 5 or 7
(mod 8), then

(
−2
p

)
= −1.

Proposition 3.3.
(

2
p

)
= 1 if and only if p ≡ 1 or 7 (mod 8).

Proof. In Proposition 3.1, we have proved the negative portion of this statement:
that if p ≡ 3 or 5 (mod 8), then 2 is not a square (mod p). We will have to show
that if p ≡ 1 or 7 (mod 8), then 2 is a square (mod p). We use a different trick for
each of the two cases.

If p ≡ 7 (mod 8), then −2 and −1 are both non-squares mod p: the former by
Exercise 3.3, the latter by Theorem 2.1. The product of two non-squares is a square
(Proposition 2.13), and so 2 is a square mod p.

On the other hand, if p ≡ 1 (mod 8), let g be a primitive root modulo p, so that
g has order p− 1 = 8k for some k. Then g4k ≡ −1 (mod p), so

(gk + g−k)2 ≡ g2k + 2 + g−2k (mod p)

≡ g−2k(g4k + 1) + 2 (mod p)
≡ 2 (mod p) ,

as desired. ¤
Amusingly, although it appears the above proof is constructive in the case p ≡ 1

(mod 8) and non-constructive when p ≡ 7 (mod 8), from an algorithmic point of
view this is not the case! The above construction of a square root of 2 (mod p) when
p ≡ 1 (mod 8) depends on finding a primitive root mod p, for which fast algorithms
are only known conditionally on the Extended Riemann Hypothesis. On the other
hand, now that we know

(
2
p

)
= 1 if p ≡ 7 (mod 8), we can show:

Exercise 3.4. If p = 8k + 7, then 22k+2 is a square root of 2 modulo p.

The above propositions are due to Lagrange [Lag75]. Fermat had correctly de-
termined the primes p for which 2 is a square modulo p (as well as those for which
3 is a square modulo p), but never wrote down a proof. The arguments for

(
±3
p

)
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below are due to Euler [Eul63]; Gauss notes that it is “astonishing that proof of
the propositions relative to the residues +2 and −2 kept eluding Euler, since they
depend on similar devices.” We will see another proof of these results in Exercises
3.32 and refthree-again. The arguments for

(
±5
p

)
and

(
±7
p

)
are due to Lagrange

[Lag75].

Exercise 3.5. Use methods similar to those of Proposition 3.1 to show that
(

3
p

)
=

−1 if p ≡ 5, 7 (mod 12); and that
(
−3
p

)
= −1 if p ≡ 5, 11 (mod 12).

Exercise 3.6. Conclude that
(

3
p

)
= 1 if p ≡ 11 (mod 12) and

(
−3
p

)
= −1 if p ≡ 7

(mod 12).

Exercise 3.7. Suppose p = 3k + 1, and let g be a primitive root mod p. Prove
that 2gk + 1 is a square root of −3 (mod p). Conclude in particular that

(
3
p

)
=(

−3
p

)
= 1 if p ≡ 1 (mod 12).

Exercise 3.8. Prove that
(

5
p

)
= −1 if p ≡ 2, 3 (mod 5), by proving more generally

that there is no odd integer t such that 5 is square mod t but
(

t
5

)
= −1.

Exercise 3.9. Suppose p = 5k + 1, and let g be a primitive root mod p. Prove
that 2gk + 1 + 2g−k is a square root of 5 mod p.

We will see later (Propositions 4.26 and 4.29) how to generalize this argument
to determine

(
q
p

)
for primes p ≡ 1 (mod q).

Exercise 3.10. Let p be a prime, and b a quadratic non-residue modulo p. Prove
that

(x +
√

b)p+1 − (x−
√

b)p+1

√
b

is divisible by p for all integers x.

Exercise 3.11. Use the preceding exercise to prove that if e divides p + 1, then
the polynomial

(x +
√

b)e − (x−
√

b)e

√
b

has at least e− 1 roots modulo p.

Exercise 3.12. Suppose p = 5k + 4, let b be a quadratic non-residue modulo p,
and choose a such that

(a +
√

b)5 − (a−
√

b)5√
b

is divisible by p. Show that

(b + 5a2)2 ≡ 20a2 (mod p)

and conclude that 5 is a square modulo p.

Exercise 3.13. Conclude that
(

5
p

)
=

(
p
5

)
for all odd primes p 6= 5.

Gauss notes that the arguments for
(
±7
p

)
are largely similar, but that the cases

p = 7k + 2 and p = 7k + 4 must be handled differently.
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3.2. Quadratic Reciprocity. In an appendix to Disquisitiones, Gauss includes
a table of

(
p
q

)
for primes p, q < 100. We have already seen that

(
5
p

)
=

(
p
5

)
for

all odd primes p 6= 5; investigating the table, one observes that the same pattern
appears to hold when 5 is replaced by any prime q ≡ 1 (mod 4).

On the other hand, it is certainly not the case that
(

q
p

)
=

(
p
q

)
for all odd primes

p, q: for example,
(

3
7

)
= −1 whereas

(
7
3

)
=

(
1
3

)
= 1.

Exercise 3.14. Use the results of Exercises 3.5,3.6,3.7 to show that
(

3
p

)
=

(
p
3

)
if

p ≡ 1 (mod 4), whereas
(

3
p

)
= − (

p
3

)
if p ≡ 3 (mod 4).

An identical pattern emerges upon replacing 3 by any prime q ≡ 3 mod 4. One
is led to the following conjecture:

Theorem 3.15 (Quadratic Reciprocity). Let p, q be odd primes. If p ≡ 1 (mod 4)
or q ≡ 1 (mod 4), then

(
p
q

)
=

(
q
p

)
. If p, q ≡ 3 (mod 4), then

(
p
q

)
= −

(
q
p

)
.

Exercise 3.16. Show that quadratic reciprocity may be reformulated as follows:
if p, q are odd primes, then(

p

q

)(
q

p

)
= (−1)

(p−1)(q−1)
4 .

Gauss found six proofs of quadratic reciprocity; as of 2004, there are more than
200 known proofs of quadratic reciprocity . In the introduction to his third proof
of quadratic reciprocity, Gauss describes the history of the result:

We must consider Legendre as the discoverer of this very elegant
theorem, although special cases of it had previously been discov-
ered by the celebrated geometers Euler and Lagrange. [...] I dis-
covered this theorem independently in 1795 at a time when I was
totally ignorant of what had been achieved in higher arithmetic,
and consequently had not the slightest aid from the literature on
the subject. For a whole year this theorem tormented me and ab-
sorbed my greatest efforts until at last I obtained a proof given
in the fourth section of [Disquisitiones]. Later I ran across three
other proofs which were built on entirely different principles. One
of these I have already given in the fifth section [of Disquisitiones],
the others, which do not compare with it in elegance, I have re-
served for future publication. Although these proofs leave nothing
to be desired as regards rigor, they are derived from sources much
too remote, except perhaps the first, which however proceeds with
laborious arguments and is overloaded with extended operations.
I do not hesitate to say that till now a natural proof has not been
produced. I leave it to the authorities to judge whether the follow-
ing proof which I have recently been fortunate enough to discover
deserves this description. [Gau08]; translated in [Smi59] by D.H.
Lehmer

Gauss’s first proof, completed in April 1796, and his third proof, completed in
May 1807, use essentially only elementary principles; it is these two proofs that
we will give in the next two sections. As Gauss notes, his other proofs rely on
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machinery (“sources much too remote”): for example, Gauss’s second proof uses
his genus theory of quadratic forms, while his fourth proof (completed in May 1801,
but not published until 1811) follows from his evaluation of the Gauss sum. From
a 21st century vantage point, these proofs (which we will see later) may seem more
natural than the elementary proofs! Gauss understood this: indeed, he continued
to seek more proofs of quadratic reciprocity, in the hope of finding techniques
that would generalize to the cubic and biquadratic situations. (When do x3 ≡ q
(mod p) or x4 ≡ q (mod p) have solutions?) Though it was Eisenstein and Jacobi,
not Gauss, who eventually proved the laws of cubic and biquadratic reciprocity, the
ideas in Gauss’s later proofs of quadratic reciprocity would play important roles.

3.3. The First Proof of Quadratic Reciprocity. Gauss’s first proof of qua-
dratic reciprocity proceeds by induction. (One should be aware that when Gauss
says he is obtaining a result “by induction”, he means that he is producing the
statement of a result by generalizing from examples, not that he is proving the
result. When we write “induction”, we will always mean mathematical induction.)
Our proof is essentially the one given by Gauss in articles of [Gau66], but we an
elucidation of a simplification due to L. Carlitz [Car60].

Before giving the proof, we sketch an outline of it. Suppose p and q are positive,
odd primes with p < q; we wish to relate

(
p
q

)
and

(
q
p

)
. The first step is to produce

a number r < q such that
e2 = pr + qf

for some even e and odd f < q. Reducing this equation modulo p, we see that
(

q
p

)

depends only on
(

f
p

)
; since f < q we may use an inductive hypothesis to determine(

f
p

)
in terms of whether p is a square (mod f). But pr is known to be a square

(mod f), so it suffices to determine whether r is a square (mod f); by another use
of the inductive hypothesis, this is determined by whether f is a square (mod r).
But the latter is known, by our assumption that

(
r
q

)
is understood, and our proof

will go through.
There are, of course, many details to be added. To begin with, note that f may

be composite, and yet in our induction step we wish to consider whether p and r
are squares modulo f . To that end, we require the following generalization of the
Legendre symbol:

Definition 3.17. If m and n are odd numbers, with n = pa1
1 · · · pak

k and positive,
the Jacobi symbol is defined to be

(m

n

)
=

(
m

p1

)a1

· · ·
(

m

pk

)ak

where the terms in the product on the right-hand side are the Legendre symbol.
In particular, if m and n are primes, the Jacobi symbol is equal to the Legendre
symbol.

Exercise 3.18. If m is congruent to a square modulo n, prove that
(

m
n

)
= 1.

Prove that
(

m
n

) (
m′
n

)
=

(
mm′

n

)
.

Exercise 3.19. If x, y are odd integers, set µ(x, y) = (−1)(x−1)(y−1)/4. If m is
another odd integer, show that µ(x,m)µ(y, m) = µ(xy, m).
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Exercise 3.20. Show that quadratic reciprocity implies the following reciprocity
law for the Jacobi symbol:(m

n

)( n

m

)
= (−1)(m−1)(n−1)/4 .

Note that to prove the above reciprocity law, one needs quadratic reciprocity
only for primes up to m and n.

Exercise 3.21. Extend the definition of the Jacobi symbol to negative odd integers
by defining

(
m
n

)
=

(
m
−n

)
. Show that the reciprocity law of Exercise 3.20 still holds

if one (but not both) of m,n are negative.

To produce our auxiliary r, we use the following lemma:

Lemma 3.22. If q ≡ 1 (mod 4), there exists a prime p′ < 2b√qc + 1 such that(
q
p′

)
= −1.

Proof. We argue as in articles 124 through 129 of [Gau66]; for the case q ≡ 1
(mod 8), we follow the exposition of [Lem00]. If q ≡ 5 (mod 8), take any a <

√
q/2.

Then q− 2a2 is positive and congruent either to 3 or 5 (mod 8), so must have some
prime divisor p′ ≡ 3, 5 (mod 8). Certainly q ≡ 2a2 (mod p′). But by Proposition
3.3 we know that 2 is not a square modulo p′, and so q is also not a square modulo
p′.

Suppose that q ≡ 1 (mod 8), and set m = b√qc. Assume that
(

q
p′

)
= 1 for all

p′ ≤ 2m+1. By the exercise following this proof, the congruence x2 ≡ q (mod (p′)s)
has solutions for all p′ ≤ 2m+1 and all s > 0. By the Chinese Remainder Theorem,
there is an integer x such that x2 ≡ q (mod (2m + 1)!).

But
(

x+m
2m+1

)
is an integer, which implies

0 ≡ x(x− 1)(x + 1) · · · (x−m)(x + m) (mod (2m + 1)!)
≡ x(x2 − 12) · · · (x2 −m2) (mod (2m + 1)!)
≡ x(q − 12) · · · (q −m2) (mod (2m + 1)!)

Since x and (2m + 1)! are relatively prime, it follows that (2m + 1)! divides (q −
12) · · · (q −m2). But in fact

(2m + 1)! = (m + 1 + m) · · · (m + 1) · · · (m + 1−m)
= ((m + 1)2 − 1) · · · ((m + 1)2 −m2)(m + 1)
> (q − 12) · · · (q −m2)

a contradiction. ¤

Exercise 3.23. If p′ is odd and x2 ≡ q (mod p′) has a solution, prove by induction
that x2 ≡ q (mod (p′)s) has a solution for all s ≥ 1. Similarly, if x2 ≡ q (mod 8)
has a solution, prove that x2 ≡ q (mod 2s) has a solution for all s ≥ 3.

Finally, we are ready to prove quadratic reciprocity by induction. Our induction
is on the maximum max(p, q), where p and q are distinct odd primes. Assume
without loss of generality that p < q, so that in the induction step we fix q and
we wish to prove

(
p
q

)(
q
p

)
= µ(p, q) for all p < q. In fact, we need to proceed by

proving this statement first for all p such that
(

p
q

)
= 1, and then for all p such
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that
(

p
q

)
= −1; that is, if

(
p
q

)
= −1 then quadratic reciprocity for all pairs (p′, q)

with
(

p′

q

)
= 1 will already be available to us as part of the induction hypothesis.

Define

r =





1 if
(

p
q

)
= 1

−1 if
(

p
q

)
= −1 and q ≡ 3 (mod 4)

p′ if
(

p
q

)
= −1 and q ≡ 1 (mod 4)

where in the last case we use Lemma 3.22 to obtain p′ < q such that
(

q
p′

)
= −1.

In this last case, if we had
(

p′

q

)
= 1 then the induction hypothesis would imply(

q
p′

)
= 1, a contradiction; so

(
r
q

)
=

(
p′

q

)
= −1 as well. Observe then that in all

cases
(

pr
q

)
= 1, so we may write

(3.24) e2 = pr + qf

for some even e < q, and it is easy to see (since p, r < q and r ≥ −1) that |f | < q.
The proof now breaks into several cases depending on the greatest common divisor
of f and pr. Carlitz [Car60] notes that these cases can be unified with judicious
notation, but since this obfuscates the proof somewhat, we precede the general case
with the case (f, pr) = 1. We may compute

(
q

p

)
=

(
f

p

)
reducing equation (3.24) mod p

= µ(p, f)
(

p

f

)
by the induction hypothesis

= µ(p, f)
(

r

f

)
reducing equation (3.24) mod f

= µ(p, f)µ(r, f)
(

f

r

)
by the induction hypothesis

= µ(p, f)µ(r, f)
(q

r

)
reducing equation (3.24) mod r

= µ(p, f)µ(r, f)µ(r, q)
(

r

q

)

where the last step uses either the induction hypothesis (if r = p′) or is obvious if
r = ±1. Note that in the fourth step, we are using the extended version of quadratic
reciprocity of Exercise 3.21 (whose proof for

(
f
r

)
only entails quadratic reciprocity

for primes dividing f and r, so is obtainable from the induction hypothesis). Now,
we know

(
r
q

)
=

(
p
q

)
; moreover, by Exercise 3.19 we have µ(p, f)µ(r, f)µ(r, q) =

µ(pr, qf)µ(p, q), so that
(

q

p

)
= µ(pr, qf)µ(p, q)

(
p

q

)
.

But pr and qf are odd and pr + qf = e2 is divisible by 4, so exactly one of pr and
qf is congruent to 1 (mod 4). Therefore µ(pr, qf) = 1, and the result follows.
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We now prove the general case, which uses the same ideas but is somewhat more
complicated. Note that if r = p then we are already done, so we may assume r 6= p.
Write (f, pr) = d, set s = pr/d, and write

(3.25) d(e′)2 = s + qf ′

with e′ = e/d, f ′ = f/d, and s relatively prime to d. Now
(

q

p

)
=

(q

s

)( q

d

)(q

r

)
since sd = pr

=
(

df ′

s

) ( q

d

)(q

r

)
since d(e′)2 ≡ qf ′ (mod s)

= µ(s, df ′)
( s

d

) (
s

f ′

) ( q

d

)(q

r

)
by the induction hypothesis

= µ(s, df ′)
(−qf ′

d

)(
d

f ′

) ( q

d

)(q

r

)
reducing (3.25) modulo d

= µ(s, df ′)µ(d, f ′)
(−1

d

) (q

r

)

= µ(s, df ′)µ(d, f ′)µ(−1, d)µ(r, q)
(

r

q

)

= µ(s, df ′)µ(d, f ′)µ(−1, d)µ(r, q)
(

p

q

)

and so it remains to prove that

µ(p, q) = µ(s, df ′)µ(d,−f ′)µ(r, q) .

But

(3.26) µ(s, df ′)µ(s, q) = µ(s, df ′q) = µ(s,−sd) = µ(s, d) = µ(d,−qf ′)

where the first equality uses Exercise 3.19, the second uses the congruence sd +
df ′q = (de′)2 ≡ 0 (mod 4), the third uses µ(s,−s) = 1, and the fourth uses the
congruence s + qf ′ ≡ 0 (mod 4). Multiplying the leftmost and rightmost sides of
(3.26) by µ(d,−f ′)µ(rs, q) yields

µ(s, df ′)µ(d,−f ′)µ(r, q) = µ(d,−qf ′)µ(d,−f ′)µ(rs, q)

and, as desired, the right-hand side simplifies to

µ(d, q)µ(rs, q) = µ(p, q)

since pr = sd. This completes the proof.

3.4. Gauss’s third proof of quadratic reciprocity. Let p be an odd prime.
We recall the following result due to Euler:

Proposition 3.27 (Euler’s criterion).
(

k
p

)
≡ k

p−1
2 (mod p).

Proof. If
(

k
p

)
= 1, write k ≡ x2 (mod p). Then

k
p−1
2 ≡ (x2)

p−1
2 ≡ xp−1 ≡ 1 (mod p)

as well.
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Conversely, suppose that k
p−1
2 ≡ 1 (mod p). Let g be a primitive root modulo

p (Theorem 2.29) and suppose k ≡ gr (mod p). Then

k
p−1
2 ≡ gr( p−1

2 ) ≡ 1 (mod p) ,

which implies that p− 1 | r (
p−1
2

)
and r is even. Therefore k ≡ (gr/2)2 is a square

modulo p.
Thus

(
k
p

)
= 1 if and only if k

p−1
2 ≡ 1 (mod p). Certainly

(
k
p

)
= 0 if and only

if k
p−1
2 ≡ 0 (mod p). The only other possibility for each quantity is −1 (mod p),

and the result follows. ¤

Exercise 3.28. Prove Theorem 2.1 using Euler’s criterion.

Gauss’s third proof of quadratic reciprocity relies on a clever application of Eu-
ler’s criterion:

Proposition 3.29 (Gauss’s Lemma). Let p be an odd prime, and set

A =
{

1, 2, . . . ,
p− 1

2

}
, B =

{
p + 1

2
, . . . , p− 1

}
.

Let k be an integer not divisible by p, and let b(k, p) be the number of integers in
the list

k · 1, k · 2, . . . , k · p− 1
2

whose least residue (mod p) lies in B. Then
(

k
p

)
= (−1)b(k,p).

Proof. The least residues (mod p) of the integers in the list k ·1, k ·2, . . . , k · p−1
2 are

evidently distinct (by Proposition 2.7). Note that if the least residue of i lies in B,
then the least residue of −i lies in A. Moreover, if the least residue of ki lies in B,
then the least residue of −ki is not equal to the least residue of ±kj for any other
j in 1, 2, . . . , p−1

2 . Indeed, if this were not so, we would have −ki ≡ ±kj (mod p),
so that i ± j ≡ 0 (mod p); this is an impossibility if i and j are distinct integers
between 1 and p−1

2 .
Consider the list

±k · 1,±k · 2, . . . ,±k · p− 1
2

,

where the term ki is given the sign + if the least residue of ki lies in A, and the
sign − if the least residue of ki lies in B. Note that there are exactly b(k, p) minus
signs. It follows from the previous paragraph that the least residues of the numbers
in this list are distinct and lie in A; since there are p−1

2 of them, they are simply a
permutation of the numbers in A.

We conclude that if we multiply the numbers in the list k · 1, k · 2, . . . , k · p−1
2 ,

then the product is congruent to (−1)b(k,p)
(

p−1
2

)
! (mod p). On the other hand,

the product is exactly k
p−1
2

(
p−1
2

)
! and obtain

k
p−1
2

(
p− 1

2

)
! ≡ (−1)b(k,p)

(
p− 1

2

)
! (mod p) .

By Euler’s criterion, it follows (cancelling the
(

p−1
2

)
! terms) that

(
k
p

)
= (−1)b(k,p).

¤
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This argument is best illustrated by an example. Let p = 11 and k = 7. Then
11−1

2 = 5, and the least residues of 7 · 1, . . . , 7 · 5 modulo 11 are, in order,

7, 3, 10, 6, 2 .

Modulo 11, these are the same as

−4, 3,−1,−5, 2 .

Therefore b(7, 11) = 3,

(7 · 1) · · · (7 · 5) ≡ (−4) · 3 · (−1) · (−5) · 2 (mod 11) ,

and
755! ≡ (−1)35! (mod 11) .

We conclude
(

7
11

) ≡ 75 = −1 (mod 11).
We can now give Gauss’s third proof of quadratic reciprocity, following the treat-

ment of [Gau08]. Let p and q be distinct odd primes. By Gauss’s Lemma (Proposi-
tion 3.29) and the reformulation of quadratic reciprocity in Exercise 3.16, we want
to prove

(−1)b(p,q)+b(q,p) = (−1)(
p−1
2 )( q−1

2 ) ,

or equivalently that

(3.30) b(p, q) + b(q, p) ≡
(

p− 1
2

) (
q − 1

2

)
(mod 2) .

Exercise 3.31. Prove Theorem 2.1 using Gauss’s Lemma.

Exercise 3.32. Use Gauss’s lemma to give another proof that
(

2
p

)
= 1 if and only

if p ≡ ±1 (mod 8).

Exercise 3.33. Use Gauss’s lemma to give another proof that
(

3
p

)
= 1 if and only

if p ≡ ±1 (mod 12).

Recall that bxc is defined to be the greatest integer less than or equal to x. The
fractional part of x is defined to be x − bxc. We use this to give this an algebraic
formula for b(k, p). Indeed, note that if i is not divisible by p, then the least residue
of ki (mod p) lies in A if and only if the fractional part of ki/p is less than 1/2,
and lies in B if and only if the fractional part of ki/p is greater than 1/2.

Exercise 3.34. Verify that b2xc−2bxc =

{
0 if the fractional part of x is < 1/2
1 if the fractional part of x is > 1/2

.

Exercise 3.35. Use the result of the previous Exercise to show that

b(k, p) =

p−1
2∑

i=1

(⌊
2ik

p

⌋
− 2

⌊
ik

p

⌋)
.

We now depart slightly from Gauss’s original presentation of his proof. According
to (3.30), we are concerned only with whether b(q, p) and b(p, q) are even or odd.
Gauss continues to work with exactly formulae for b(k, p) as long as possible and
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later reduces mod 2. For simplicity, we will reduce mod 2 immediately; in particular
we have

b(k, p) ≡
p−1
2∑

i=1

⌊
2ik

p

⌋
(mod 2)

=
⌊

2k

p

⌋
+

⌊
4k

p

⌋
+ · · ·+

⌊
(p− 1)k

p

⌋
(mod 2) .

(3.36)

Exercise 3.37. If a is an integer and x is not, show that bxc+ ba− xc = a− 1.

We apply the previous exercise to obtain
⌊

ik

p

⌋
+

⌊
(p− i)k

p

⌋
= k − 1 .

For k odd, this implies

(3.38)
⌊

ik

p

⌋
≡

⌊
(p− i)k

p

⌋
(mod 2) .

Note that i is even and greater than p/2 if and only if p − i is odd and less than
p/2; substituting (3.38) for all terms

⌊
2ik
p

⌋
of (3.36) with 2i > p/2, we get

b(k, p) ≡
⌊

k

p

⌋
+

⌊
2k

p

⌋
+ · · ·+

⌊(
p−1
2

)
k

p

⌋
(mod 2)

when k is odd. We therefore obtain

b(p, q) + b(q, p) ≡
⌊

q

p

⌋
+

⌊
2q

p

⌋
+ · · ·+

⌊(
p−1
2

)
q

p

⌋

+
⌊

p

q

⌋
+

⌊
2p

q

⌋
+ · · ·+

⌊(
q−1
2

)
p

q

⌋
(mod 2) .

(3.39)

Now the proof of quadratic reciprocity is completed by the following exercise:

Exercise 3.40. Prove that

(3.41)

(⌊
q

p

⌋
+

⌊
2q

p

⌋
+ · · ·+

⌊(
p−1
2

)
q

p

⌋)
+

(⌊
p

q

⌋
+

⌊
2p

q

⌋
+ · · ·+

⌊(
q−1
2

)
p

q

⌋)

is exactly equal to
(

p−1
2

) (
q−1
2

)
, as follows. Consider the rectangle of lattice points

(x, y) in the plane, with 1 ≤ x ≤ p−1
2 and 1 ≤ y ≤ q−1

2 . Show that
⌊

iq
p

⌋
counts the

number of lattice points of the form (i, y) lying below the line py = qx. Show that⌊
ip
q

⌋
counts the number of lattice points of the form (x, i) lying to the left of the

line py = qx. Conclude that the sum (3.41) counts the number of lattice points in
the full rectangle. How many lattice points are in the rectangle?

We remark that Gauss evaluated (3.41) in a somewhat laborious manner, rather
than as above; but the above counting proof is too pretty to omit!
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4. Roots of Unity and Gauss sums

We return now to the ideas of Section 1, in which we saw that Gauss used
algebraic properties of the 17th roots of unity to prove that the regular 17-gon is
constructible. In Section VII of Disquisitiones, Gauss gives a systematic treatment
of these arguments.

4.1. Periods. In Section 1.3, we saw how the set of primitive 17th roots of unity
could be partitioned into cycles, whose sums (periods) satisfied polynomials whose
coefficients were periods of longer cycles. We will now generalize these ideas to the
case an arbitrary prime p.

Fix a primitive root g modulo p. Starting from ζp and repeatedly raising to the
gth power, we obtain a cycle

ζp Ã ζg
p Ã ζg2

p Ã · · · Ã ζgp−2

p Ã ζgp−1

p = ζp Ã · · ·
of length p− 1 containing all of the primitive pth roots of unity. If f is any divisor
of p−1, the cycle of length p−1 breaks up into e = p−1

f cycles of length f (obtained
by repeatedly raising to the geth power):

ζgi

p Ã ζgi+e

p Ã ζgi+2e

p Ã · · · Ã ζgi+fe

p = ζgi

p Ã · · ·
for each 0 ≤ i < e.

Definition 4.1. If f | p− 1, then the period (f, ζk
p ) is defined to be the sum of the

roots of unity in the cycle of length f containing ζk
p ; that is,

(f, ζk
p ) = ζk

p + ζkge

p + · · ·+ ζkg(f−1)e

p .

By analogy, we define (f, 1) = f . We will say that (f, ζk
p ) is a period of length f ,

and that ζk
p , ζkge

p , . . . , ζkg(f−1)e

p are the roots contained in (f, ζk
p ).

Exercise 4.2. Prove that the period (f, ζk
p ) does not depend on the choice of

primitive root g.

Exercise 4.3. Show that (p− 1, ζp) = −1.

Proposition 4.4 ([Gau66], art. 345). If λ, µ are pth roots of unity, then the product
(f, λ)(f, µ) is a sum of periods of length f .

Proof. Suppose λ = ζj
p and µ = ζk

p . One checks explicitly that terms in the product

(f, λ)(f, µ) = (ζj
p + ζjge

p + · · ·+ ζjg(f−1)e

p )(ζk
p + ζkge

p + · · ·+ ζkg(f−1)e

p )

may be rearranged into the sum

(ζj+k
p + ζ(j+k)ge

p + · · ·+ ζ(j+k)g(f−1)e

p )+(ζj+gek
p + ζ(j+gek)ge

p + · · ·+ ζ(j+gek)g(f−1)e

p )

+ · · ·+ (ζj+g(f−1)ek
p + ζ(j+g(f−1)ek)ge

p + · · ·+ ζ(j+g(f−1)ek)g(f−1)e

p ) ,

which is equal to the sum of periods

(f, λµ) + (f, λµge

) + · · ·+ (f, λµg(f−1)e

) .

Note that by symmetry, this must also be equal to the sum

(f, λµ) + (f, λge

µ) + · · ·+ (f, λg(f−1)e

µ) .

Also note that some of these periods may be (f, 1) = f . ¤
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Recall that the roots of the pth cyclotomic polynomial

Φp(z) =
zp − 1
z − 1

= zp−1 + · · ·+ z + 1

are the primitive pth roots of unity ζp, ζ
2
p , . . . , ζp−1. We saw in Theorem 1.15 that

Φp(z) is irreducible; this has the following consequences:

Corollary 4.5. If a1, . . . , ap−1 and b1, . . . , bp−1 are rational numbers and

(4.6) a1ζp + a2ζ
2
p + · · ·+ ap−1ζ

p−1
p = b1ζp + b2ζ

2
p + · · ·+ bp−1ζ

p−1
p

then ai = bi for i = 1, 2, . . . , p− 1.

Proof. The identity (4.6) implies that ζp is a root of the polynomial

h(z) = (bp−1 − ap−1)zp−2 + · · ·+ (b2 − a2)z + (b1 − a1) .

By the exercise following this proof, h(z) must be divisible by Φp(z); since the
degree of h(z) is smaller than that of Φp(z), we must have h(z) = 0. ¤
Exercise 4.7. If g(z), h(z) are polynomial with rational coefficients such that
g(r) = h(r) = 0, and if g(z) is irreducible, then g(z) divides h(z). (Consider
the GCD of g(z) and h(z).)

Corollary 4.8. If g(z) and h(z) are two polynomials with rational coefficients such
that g(ζp) = h(ζp), then g(ζl

p) = h(ζl
p) for any 1 ≤ l ≤ p− 1.

Proof. The difference g(z)−h(z) has ζp as a root. Applying Exercise 4.7 again, we
see that g(z)− h(z) must be divisible by Φp(z). Therefore g(z)− h(z) has each ζl

p

as a root as well. ¤
Proposition 4.9 ([Gau66], art. 347). Suppose that g(x1, . . . , xf ) is a symmetric
polynomial in the variables x1, . . . , xf , with integer coefficients. If we substitute
for x1, . . . , xf the f roots contained in the period (f, ζk

p ), then the resulting value
g(ζk

p , ζkge

p , . . . , ζkg(f−1)e

p ) may be written as a sum of periods

A + A0(f, ζp) + A1(f, ζg
p ) + · · ·+ Ae−1(f, ζge−1

)

for integers A,A0, . . . , Ae−1.

Proof. Write

g(ζk
p , ζkge

p , . . . , ζkg(f−1)e

p ) = a + a1ζp + · · ·+ ap−1ζ
p−1
p .

We need to prove that ai = agei for all i, where the subscripts are considered
modulo p. By Corollary 4.8 applied with l = ge, we have

g(ζkge

p , ζkg2e

p , . . . , ζkgfe

p ) = a + a1ζ
ge

p + · · ·+ ap−1ζ
(p−1)ge

p .

Since g is symmetric, the order of the arguments does not affect the value of the
polynomial, and so

a + a1ζp + · · ·+ ap−1ζ
p−1
p = a + a1ζ

ge

p + · · ·+ ap−1ζ
(p−1)ge

p .

By Corollary 4.5, the result follows. ¤
Corollary 4.10. Retaining the hypotheses of Proposition 4.9, if we substitute for
x1, . . . , xf the f roots contained in the period (f, ζkl

p ) then the resulting value of g
is equal to

A + A0(f, ζl
p) + A1(f, ζgl

p ) + · · ·+ Ae−1(f, ζge−1l)
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Proof. Immediate from Corollary 4.8. ¤

Corollary 4.11 ([Gau66], art. 348). Let g(z) be the polynomial whose roots are
the roots contained in the period (f, ζk

p ). Then the coefficients of g(z) are sums of
periods of length f (plus an integer).

Proof. Immediate from Proposition 4.9, since the coefficients of g(z) are symmetric
polynomials in the roots. ¤

Example 4.12. Let g(z) be the polynomial whose roots are the roots contained
in ((p− 1)/2, ζp). By Corollary 4.11, we can write

g(z) = R(z) + ((p− 1)/2, ζp)S(z) + ((p− 1)/2, ζg
p )T (z)

for polynomials R,S, T with integer coefficients. By Corollary 4.10, the polynomial
g′(z) whose roots are the roots contained in ((p− 1)/2, ζg

p ) must be

g′(z) = R(z) + ((p− 1)/2, ζg
p )S(z) + ((p− 1)/2, ζp)T (z) .

Using the same proof as that of Proposition 4.9, we can prove a generalization:

Proposition 4.13 ([Gau66], art. 350). Suppose f ′ | f , and that the period (f, ζk
p )

of length f breaks up into the periods

(f ′, ζk
p ), (f ′, ζkge

p ), . . . , (f ′, ζkg(d−1)e

p )

where df ′ = f . If g(x1, . . . , xd) is a symmetric polynomial and we substitute for
x1, . . . , xd the periods (f ′, ζk

p ), . . . , (f ′, ζkg(d−1)e

p ), then the resulting value may be
written as a sum of periods

A + A0(f, ζp) + A1(f, ζg
p ) + · · ·+ Ae−1(f, ζge−1

) .

We remark that Proposition 4.9 is precisely the case f ′ = 1 of Proposition 4.13.

Proof. The proof is precisely the same as that of Proposition 4.9, noting that if we
replace ζp by ζge

p in the period (f ′, ζkgie

p ), it becomes (f ′, ζkg(i+1)e

p ). ¤

Corollary 4.14 ([Gau66], art. 351). Suppose f ′ | f , and that the period (f, ζk
p ) of

length f breaks up into the periods

(f ′, ζk
p ), (f ′, ζkge

p ), . . . , (f ′, ζkg(d−1)e

p )

where df ′ = f . Then the polynomial whose roots are (f ′, ζk
p ), . . . , (f ′, ζkg(d−1)e

p ) has
coefficients which are sums of periods of length f (plus an integer).

Proof. As with Corollary 4.11, the proof is immediate from Proposition 4.13, since
the coefficients of the polynomial are symmetric polynomials in the roots. ¤

Corollary 4.14 is the general analogue of the computations in Section 1.3. This
enables us to prove:

Theorem 4.15 ([Gau66], art. 365). If p is a Fermat prime (a prime of the form
22m

+ 1), then the regular p-gon is constructible with straightedge and compass.
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Proof. Corollary 4.14 shows that each period (2n, ζk
p ) is the root of a quadratic

polynomial whose coefficients are sums of periods of length 2n+1. Since quadratics
can be solved by straightedge and compass, and since the period (22m

, ζp) = −1 is
constructible, it follows recursively that all shorter periods (2n, ζk

p ) are constructible
by straightedge and compass. In particular, the period (1, ζp) = ζp is constructible,
and therefore so is the regular p-gon. ¤

Gauss remarks that when p is not a Fermat prime, so that p − 1 is divisible by
a prime other than 2, then

we can show with all rigor that these higher-degree equations can-
not be avoided in any way, nor can they be reduced to lower-degree
equations. The limits of the present work exclude this demonstra-
tion here, but we issue this warning lest anyone attempt to achieve
geometric constructions for sections other than the ones suggested
by our theory (e.g. sections into 7,11,13,19 etc parts) and so spend
time uselessly. [Gau66], art. 365

However, Gauss never published a proof of this claim; the first proof is now attrib-
uted to Pierre Wantzel, and may be found in almost any algebra textbook.

4.2. Gauss Sums. We saw in the previous section that the periods ((p− 1)/2, ζp)
and ((p − 1)/2, ζg

p ) will be the roots of a quadratic polynomial with integer coeffi-
cients. In this section, we will give Gauss’s determination of this polynomial, and
some of its implications. These arguments can be found in articles 356 and 357 of
Disquisitiones.

We know that

((p− 1)/2, ζp) + ((p− 1)/2, ζg
p ) = ζp + ζ2

p + · · ·+ ζp−1
p = −1 ,

and so it remains to determine the product

((p− 1)/2, ζp) · ((p− 1)/2, ζg
p ) .

We follow the strategy sketched in Exercise 1.2 in the case p = 17. By Proposition
4.4, we have

((p−1)/2, ζp) · ((p−1)/2, ζg
p ) = a((p−1)/2, 1)+a0((p−1)/2, ζp)+a1((p−1)/2, ζg

p )

for integers a, a0, a1 satisfying a + a0 + a1 = (p − 1)/2. By Corollary 4.8 applied
with l = g, we have

((p−1)/2, ζg
p )·((p−1)/2, ζg2

p ) = a((p−1)/2, 1)+a0((p−1)/2, ζg
p )+a1((p−1)/2, ζg2

p )

and since ((p− 1)/2, ζg2

p ) = ((p− 1)/2, ζp) we get a0 = a1.
As noted in Exercise 1.2, the roots contained in ((p − 1)/2, ζg

p ) are those of the
form ζgi

p for i odd, that is, they are of the form ζk
p for quadratic non-residues k

(mod 17). Therefore

((p− 1)/2, ζp) · ((p− 1)/2, ζg
p ) =

∑

(k/p)=−1

((p− 1)/2, ζk+1
p )

where the sum on the right-hand side is taken over quadratic non-residues k mod-
ulo p. It follows that at most one of the periods on the right-hand side can be
((p − 1/2), 1); indeed, a ≤ 1, and a = 1 and only if −1 is a quadratic non-residue
(mod p).
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Since a0 = a1 and a+a0 +a1 = (p− 1)/2, it follows that a ≡ (p− 1)/2 (mod 2);
we conclude that −1 is a quadratic non-reside (mod p) if and only if a = 1 if and
only if (p − 1)/2 is odd if and only if p ≡ 3 (mod 4). This yields a sixth proof of
Theorem 2.1. Moreover, we have

(a, a0, a1) =

{
(0, (p− 1)/4, (p− 1)/4) if p ≡ 1 (mod 4)
(1, (p− 3)/4, (p− 3)/4) if p ≡ 3 (mod 4)

.

Since ((p−1)/2, 1) = (p−1)/2 and ((p−1)/2, ζp)+((p−1)/2, ζg
p ) = −1, we obtain

((p− 1)/2, ζp) · ((p− 1)/2, ζg
p ) =

{
−(p− 1)/4 if p ≡ 1 (mod 4)
(p + 1)/4 if p ≡ 3 (mod 4)

.

We conclude that the two periods ((p − 1)/2, ζp), ((p − 1)/2, ζg
p ) are roots of the

quadratic equation

(4.16)

{
x2 + x− (p− 1)/4 if p ≡ 1 (mod 4)
x2 + x + (p + 1)/4 if p ≡ 3 (mod 4) .

The roots of these equations are −1±√p

2 if p ≡ 1 (mod 4) and −1±i
√

p

2 if p ≡ 3
(mod 4), and so the difference

(4.17) ((p− 1)/2, ζp)− ((p− 1)/2, ζg
p ) =

{
±√p if p ≡ 1 (mod 4)
±i
√

p if p ≡ 3 (mod 4) .

Exercise 4.18. Reformulate (4.17) as follows:
p−1∑

k=1

(
k

p

)
ζk
p =

{
±√p if p ≡ 1 (mod 4)
±i
√

p if p ≡ 3 (mod 4) .
.

The sum on the left-hand side is called a quadratic Gauss sum.

Exercise 4.19. Prove that the quadratic Gauss sum
∑p−1

k=1

(
k
p

)
ζk
p is equal to the

exponential sum
p−1∑

k=0

ζk2

p .

(Hint: show that both sums are equal to 1 + 2((p− 1)/2, ζp).)

Exercise 4.20. Define the exponential sum

(4.21) τp(a) =
p−1∑

k=0

ζak2

p .

If a is a quadratic residue mod p, show that τp(a) = τp(1). If a is a quadratic
non-residue mod p, show that

p−1∑

k=0

ζak2

p

is equal to 1 + 2((p− 1)/2, ζg
p ) = −(1 + 2((p− 1)/2, ζg

p )). Conclude that

(4.22) τp(a) =
(

a

p

)
τp(1) .



32 DAVID SAVITT

It is natural to ask which sign holds in (4.17); for example, we saw in Section 1.3
that when p = 17, (8, ζ17)− (8, ζ3

17) = +
√

17. Gauss perceptively writes that “these
matters are on a higher level of investigation”; indeed, as we will see in Section
4.4, the knowing the sign of the Gauss sum is essentially equivalent to quadratic
reciprocity. We will give Gauss’s determination of the sign of the Gauss sum in the
next section.

For now, we give an interesting application of (4.17).

Definition 4.23. Let p∗ denote +p if p ≡ 1 (mod 4) and −p if p ≡ 3 (mod 4), so
that ((p − 1)/2, ζp) − ((p − 1)/2, ζg

p ) =
√

p∗ for all p. This notation is common, if
not standard.

Exercise 4.24. In the notation of Example 4.12, show that

2g(z) = (2R(z)− S(z)− T (z))±√p∗(S(z)− T (z))

and
2g′(z) = (2R(z)− S(z)− T (z))∓√p∗(S(z)− T (z)) .

Exercise 4.25. Conclude that

4Φp(z) = (2R(z)− S(z)− T (z))2 − p∗(S(z)− T (z))2 .

In particular, this proves:

Proposition 4.26. If p ≡ 1 (mod 4), there exist polynomials G(z) and H(z) with
integer coefficients such that

4Φp(z) = G(z)2 − pH(z)2 ,

while if p ≡ 3 (mod 4), there exist polynomials G(z) and H(z) with integer coeffi-
cients such that

4Φp(z) = G(z)2 + pH(z)2 ,

Exercise 4.27. What are the polynomials G(z),H(z) for p = 3, 5, 7, 11?

Exercise 4.28. Prove that the two highest terms of G(z) are 2z(p−1)/2 + z(p−3)/2,
and that the highest term of H(z) is z(p−3)/2.

As promised in Section 3.1, we can use these ideas to prove quadratic reciprocity
in the special case where p ≡ 1 (mod q):

Proposition 4.29. If p and q are primes and p ≡ 1 (mod q), then
(

q∗

p

)
= 1. It

follows that
(

q
p

)
= (−1)(

p−1
2 )( q−1

2 ) .

Proof. Write 4Φq(z) = G(z)2 − q∗H(z)2. Since q | p− 1, there exist q− 1 elements
of order q (mod p). Since H(z) has degree (q − 3)/2, by Proposition 2.30 we can
find an element a of order q (mod p) such that H(a) 6≡ 0 (mod p). But Φq(a) =
(aq − 1)(a− 1)−1 ≡ 0 (mod p), and so

G(a)2 − q∗H(a)2 ≡ 0 (mod p) ,

or equivalently
(G(a)H(a)−1)2 ≡ q∗ (mod p) .

Hence
(

q∗

p

)
= 1 for all primes q | p−1. Since q∗ = (−1)

q−1
2 q and

(
−1
p

)
= (−1)

p−1
2 ,

the second statement of the Proposition follows from the first. ¤
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4.3. The sign of the Gauss sum. In this section, we will prove:

Theorem 4.30.
p−1∑

k=0

ζk2

p =

{
+
√

p if p ≡ 1 (mod 4)
+i
√

p if p ≡ 3 (mod 4) .
.

By Exercise 4.19, this immediately implies:

Corollary 4.31.
p−1∑

k=1

(
k

p

)
ζk
p =

{
+
√

p if p ≡ 1 (mod 4)
+i
√

p if p ≡ 3 (mod 4) .
.

Gauss conjectured this result in May 1801; he finally found a proof in August
1805, as noted in his mathematical diary:

At length, we achieved a demonstration of the very elegant theorem
mentioned before in May, 1801, which we had sought for more than
four years with all efforts.

Gauss’s proof was published in 1811 ([Gau11]). We provide a series of exercises
which follow Berndt and Evans’s treatment of the proof in [BE81]. The proof
uses the so-called q-binomial coefficients (or Gaussian polynomials) to establish a
product formula for the Gauss sum.

Definition 4.32. Set (q)n = (1 − q)(1 − q2) · · · (1 − qn), and define the Gaussian
polynomial [ n

m

]
=

(q)n

(q)m(q)n−m
.

Exercise 4.33. Prove that
[

n
m

]
is a polynomial in the variable q.

Exercise 4.34. Prove the formula
[ n

m

]
=

[
n− 1
m− 1

]
+ qm

[
n− 1

m

]

for 1 ≤ m < n.

For a nonnegative integer n, define fn(q) =
∑n

k=0(−1)k
[

n
k

]
.

Exercise 4.35. Use Exercise 4.34 to prove the recursion formula fn(q) = (1 −
qn−1)fn−2(q) for n ≥ 2. Deduce that

(4.36) f2n(q) =
n∏

j=1

(1− q2j−1) .

Our product formula for the Gauss sum rests on evaluating fp−1(ζp) in two
different ways. First:

Exercise 4.37. Use the identity 2j − 1 = p− 1− 2(p− j) in (4.36) to prove

fp−1(ζp) =
(p−1)/2∏

r=1

ζ−r
p (ζr

p − ζ−r
p ) .

Conclude, using Exercise 1.3, that

(4.38) fp−1(ζp) = ζ−(p2−1)/8
p (2i)(p−1)/2

(p−1)/2∏
r=1

sin(2πr/p) .
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On the other hand, we have

Exercise 4.39. Prove directly from the definition that[
p− 1

m

]
(ζp) = (−1)mζ−m(m+1)/2

p .

Exercise 4.40. Use Exercise 4.39 to show

(4.41) fp−1(ζp) =
p−1∑

k=0

ζ−k(k+1)/2
p .

Exercise 4.42. Manipulate (4.41) by noting that

−k(k + 1)/2 ≡ (p− 1)
2

k(k + 1) (mod p) ,

completing the square in the exponent, and using (4.22) to prove that

(4.43)
p−1∑

k=0

ζk2

p = ζ(p2−1)/8
p

(
(p− 1)/2

p

)
fp−1(ζp) .

Exercise 4.44. Combine (4.38), (4.43), and a calculation of
(

(p−1)/2
p

)
=

(
−2
p

)
to

prove that

(4.45)
p−1∑

k=0

ζk2

p = (−1)(p−1)(p−3)/8(2i)(p−1)/2

(p−1)/2∏
r=1

sin(2πr/p) .

Exercise 4.46. Finally, note that the product of sines in (4.45) is positive; use
(4.45) to prove that

∑p−1
k=0 ζk2

p is positive if p ≡ 1 (mod 4), and is i times a positive
real if p ≡ 3 (mod 4). Use Exercises 4.18 and 4.19 to conclude that

p−1∑

k=0

ζk2

p =

{√
p if p ≡ 1 (mod 4)

i
√

p if p ≡ 3 (mod 4)
.

This completes the proof of Theorem 4.30.

Exercise 4.47. Note that we have also shown
(p−1)/2∏

r=1

sin(2πr/p) =
√

p

for all primes p.

4.4. Gauss sums for Composite Moduli and Quadratic Reciprocity. In his
article [Gau11], Gauss considered the exponential sum

τn(a) =
n−1∑

k=0

ζak2

n

for composite n as well as prime n; this is necessary for Gauss’s fourth proof of
quadratic reciprocity via Gauss sums. We will prove:

Theorem 4.48. If n is an odd positive integer, then

τn(1) =
n−1∑

k=0

ζk2

n =

{√
n if n ≡ 1 (mod 4)

i
√

n if n ≡ 3 (mod 4) .
.
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Gauss’s proof, which we follow from [BEW98], follows the same outline for com-
posite n as it does in the prime case: prove a product formula for a value of fn−1;
relate this value of fn−1 to the desired exponential sum, to determine its sign; and
separately compute the magnitude of the exponential sum, thereby pinning down
its exact value. It turns out that we want to use fn−1(ζ−2

n ) rather than fn−1(ζn):
this erases the −1/2 in the exponent −k(k + 1)/2 of Exercise 4.40, which would be
difficult to deal with because we do not have an analogue of (4.22) in the composite
case. It is in this step, and in determining the magnitude of the exponential sum,
that we used the primality of p.

We first note that the product formula is essentially unchanged in the composite
case:

Exercise 4.49. Observe that the argument in Exercise 4.37 did not make use of
the primality of p; show that

(4.50) fn−1(ζ−2
n ) = ζ(n2−1)/4

n (−2i)(n−1)/2

(n−1)/2∏
r=1

sin(4πr/n) .

Now we relate the product formula to the exponential sum:

Exercise 4.51. Verify, as in Exercise 4.40, that

fn−1(ζ−2
n ) =

n−1∑

k=0

ζk(k+1)
n .

Note that k(k + 1) ≡ (k + (n + 1)/2)2 − (n + 1)2/4 (mod n), and show that

(4.52) fn−1(ζ−2
n ) = ζ−(n+1)2/4

n

n−1∑

k=0

ζk2

n .

Exercise 4.53. Combine (4.50) and (4.52) to obtain

(4.54)
n−1∑

k=0

ζk2

n = (−2i)(n−1)/2

(n−1)/2∏
r=1

sin(4πr/n) .

Exercise 4.55. Verify that sin(4πr/p) > 0 if r < n/4 and sin(4πr/p) < 0 if
n/4 < r ≤ (n − 1)/2. Deduce that the product of sines in (4.54) is positive if
n ≡ 1, 7 (mod 8) and negative if n ≡ 3, 5 (mod 8). Conclude that the right-hand
side of (4.54) is a positive real number if n ≡ 1 (mod 4) and i times a positive real
number if n ≡ 3 (mod 4).

Finally, we must show that in the composite case we still have
∣∣∣∑n−1

k=0 ζk2

n

∣∣∣ =
√

n.
Observe that

∣∣∣∣∣
n−1∑

k=0

ζk2

n

∣∣∣∣∣ =

∣∣∣∣∣∣

(n−1)/2∏

j=1

(
1− ζ−2(2j−1)

n

)
∣∣∣∣∣∣

=

∣∣∣∣∣∣

(n−1)/2∏

j=1

(
1− ζ−(2j−1)

n

)
∣∣∣∣∣∣
·
∣∣∣∣∣∣

(n−1)/2∏

j=1

(
−1− ζ−(2j−1)

n

)
∣∣∣∣∣∣

(4.56)

by (4.52) and (4.36).
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Exercise 4.57. Note that for each 1 ≤ l ≤ n− 1, the first product in the last line
of (4.56) contains a term which is equal to 1 − ζj

n for exactly one of j = l, n − l.
Similarly, for each 1 ≤ l ≤ n − 1, the second product in the last line of (4.56)
contains a term which is equal to −1 − ζj

n for exactly one of j = l, n − l. Prove
the identities |1− ζl

n| = |1− ζn−l
n | and | − 1− ζl

n| = | − 1− ζn−l
n |, and use them to

deduce that

(4.58)

∣∣∣∣∣
n−1∑

k=0

ζk2

n

∣∣∣∣∣

2

=

∣∣∣∣∣∣

n−1∏

j=1

(
1− ζj

n

)
∣∣∣∣∣∣

∣∣∣∣∣∣

n−1∏

j=1

(−1− ζj
n

)
∣∣∣∣∣∣

.

Since
∏n−1

j=1

(
z − ζj

n

)
= zn−1 + zn−2 + · · ·+ z + 1, conclude that

(4.59)

∣∣∣∣∣
n−1∑

k=0

ζk2

n

∣∣∣∣∣

2

= n

Finally, (4.59) and Exercise 4.55 together complete the proof of Theorem 4.48.
Gauss’s fourth proof of quadratic reciprocity is now almost immediate. Following

[Lem00], we show:

Lemma 4.60. If m and n are relatively prime, we have

τmn(a) = τm(an)τn(am) .

Proof. Since m and n are relatively prime, we can write each 0 ≤ k ≤ mn − 1 as
k = αm + βn; moreover, as k runs from 0 to mn − 1, the pairs (α, β) run over all
mn distinct pairs of α (mod n) and β (mod m). Therefore

τmn(a) =
mn−1∑

k=0

ζak2

mn

=
n−1∑
α=0

m−1∑

β=0

ζa(αm+βn)2

mn

=
n−1∑
α=0

m−1∑

β=0

ζaα2m2+aβ2n2

mn

=

(
n−1∑
α=0

ζaα2m2

mn

)(
m−1∑
α=0

ζaα2n2

mn

)

= τn(am)τm(an)

since ζm
mn = ζn and ζn

mn = ζm. ¤

Now if p and q are distinct odd primes, we have

(4.61) τpq(1) = τq(p)τp(q) =
(

p

q

)(
q

p

)
τq(1)τp(1)

using Lemma 4.60 and (4.22). If p, q ≡ 1 (mod 4), then Theorem 4.48 implies
τpq(1) =

√
pq, τp(1) =

√
p, and τq(1) =

√
q; therefore

(
p
q

)(
q
p

)
= 1. If p ≡ 1

(mod 4) and q ≡ 3 (mod 4), then Theorem 4.48 implies τpq(1) = i
√

pq, τp(1) =
√

p,

and τq(1) = i
√

q; once again
(

p
q

)(
q
p

)
= 1. Finally, if p ≡ 1 (mod 4) and q ≡ 3
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(mod 4), then Theorem 4.48 implies τpq(1) =
√

pq, τp(1) = i
√

p, and τq(1) = i
√

q;

so (4.61) tells us that
(

p
q

)(
q
p

)
= −1. This proves quadratic reciprocity.

4.5. Cubic periods.

5. Gauss’s First Proof of the Fundamental Theorem of Algebra
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