These questions are not designed to be easy or difficult, but to aid our understanding during class.

1. (Sampling rates) Nyquist’s sampling rate tells us that we must sample a sound wave at, at least, two points per wavelength if we wish to exactly recover it from those samples. In this question we will see why.
 (a) Take 5 equally-spaced points on $[0, 1]$, i.e., 0, $1/4$, $1/2$, $3/4$, and 1. Show that $\cos(\pi x)$ and $\cos(7\pi x)$ evaluate to the same values at these points.
 (b) For what other values of M does $\cos(M\pi x)$ evaluate to the same values as $\cos(\pi x)$ at 5 equally points.
 (c) Give an argument why part (a) and (b) shows that at least 2 points per wavelength is required.

2. (The principle of divide-and-conquer) The FFT is a divide-and-conquer algorithm. To get an idea of what this process entails, here is a problem for which divide-and-conquer is an efficient algorithm:
 Suppose you are given an array a of n sorted integers that has been circularly shifted k positions to the right (but you do not know k). For example, the vector could be $a = [34, 45, 2, 12, 13, 29]$. It is simple to find the large entry of a in $O(n)$ time. Describe an $O(\log n)$ algorithm. (Of course, you will only be able to read $O(\log n)$ entries of a.)

3. (FFT applications) The FFT is a fast algorithm to compute the matrix-vector product Fv in $O(N \log N)$ operations, where F is the discrete Fourier transform matrix. Show that the following operators can also be done fast, assuming you can use `fft()`:
 \[
 [F \circ (x^T y)] v, \quad FX^T,
 \]
 where ‘\circ’ is the Hadamard product, x and y are vectors, X is a matrix, and F^T is the transpose of F.
 If you have the `ifft()` command (inverse FFT), then how would you solve
 \[
 (F + x^T y) v = b
 \]
 (Look up the Woodbury matrix formula.)