These questions are not designed to be easy or difficult, but to aid our understanding during class.

1. At your leisure, read Chapters 3, 4, and 5 of “Numerical Computing with IEEE Floating Point Arithmetic” by Michael Overton.

2. (Triangular orthogonalization) Find out about modified Gram–Schmidt. Show that modified Gram–Schmidt applied to an $n \times n$ real invertible matrix A is equivalent to applying a sequence of upper-triangular matrices on the right of A to obtain an orthogonal matrix, i.e., there are upper-triangular matrices R_1, \ldots, R_n such that

$$AR_1 \cdots R_n = Q,$$

where Q is an orthogonal matrix. $A = Q(R_n^{-1} \cdots R_1^{-1})$ is a QR factorization of A. (Please do not use this algorithm to compute $A = QR$, we have a more stable algorithm. See class.)

3. (Orthogonal triangularization) Read about Given’s rotations. Show that you can make an $n \times n$ real matrix A upper-triangular by applying a sequence of orthogonal matrices on the left of A to obtain a triangular matrix, i.e., there are orthogonal matrices Q_1, \ldots, Q_n such that

$$(Q_1 \cdots Q_n)A = R,$$

where R is an upper-triangular matrix. $A = (Q_n^T \cdots Q_1^T)R$ is a QR factorization of A. (Please do not use this algorithm to compute $A = QR$, we have a faster algorithm. See class.)

4. If A is an invertible matrix, then how many ways are there to decompose A into the factorization $A = QR$, where Q is an orthogonal matrix and R is upper-triangular?