MORSE-BOTT THEORY

The goal of this talk is to introduce elements of Morse-Bott theory and some of its applications to the geometry of moment maps.

Let $f : M \to \mathbb{R}$ be a smooth function on a manifold M.

Definition 1. A point $p \in M$ is called a critical point of f if the induced map $df_p : T_pM \to T_{f(p)}\mathbb{R}$ is zero. Suppose M is an n–dimensional manifold and $(U; x_1, \cdots, x_n)$ is any coordinate chart containing p. If p is a critical point, then $\frac{\partial f}{\partial x_i} (p) = 0$ for all $i \in \{1, \cdots, n\}$. For a critical point p of f, the value $f(p)$ is called a critical value, otherwise $f(p)$ is called a regular value.

Let p be a critical point of f. Define a bilinear form $H_p f$ on $T_p M$ as follows: For $v, w \in T_p M$, $H_p f (v, w) := V_p (W(f))$ where V and W are vector field extensions of v and w respectively. One can show that $H_p f$ is symmetric and well defined on $T_p M$ and is called the Hessian of f at p. With a local coordinate system $(U; x_1, \cdots, x_n)$ containing p, the tangent space $T_p M$ has the basis $\frac{\partial}{\partial x_1}|_p, \cdots, \frac{\partial}{\partial x_n}|_p$ with respect to which the Hessian is represented by the matrix

$$
(0.1) \quad \left(\frac{\partial^2 f}{\partial x_i \partial x_j} (p) \right).
$$

Definition 2. The index of f at p is defined to be the index of $H_p f$, namely, the maximal dimension of a subspace of $T_p M$ on which $H_p f$ is negative definite. The nullity of f at p is the nullity of $H_p f$, namely, the dimension of the subspace of $T_p M$ consisting of vectors $v \in T_p M$ such that $H_p f (v, w) = 0$ for all $w \in T_p M$.

Definition 3. A critical point p of f is said to be non-degenerate if the nullity of f at p is trivial, that is, there is a local chart containing p with respect to which the Hessian matrix given by (0.1) is non-singular. If all the critical points of f are non-degenerate, then f is called a Morse function.

Lemma 4. (Morse Lemma) Let p be a non-degenerate critical point of f. Then there is a local coordinate system $(U; x_1, \cdots, x_n)$ containing p with $x_i (p) = 0$ for all i and $f = f(p) - x_1^2 - \cdots - x_\lambda^2 + x_{\lambda+1}^2 + \cdots + x_n^2$ holds throughout U, where λ is the index of f at p.

Corollary 5. Non-degenerate critical points are isolated. In particular, if M is compact, then smooth real valued functions on M have finitely many non-degenerate critical points.

1. Changing Homotopy Type

Famous motivating example: Consider a torus M tangent to a plane V at a point. Let $f : M \to \mathbb{R}$ be the function giving the height of M above the plane V. Denote by M^a the set of all points $x \in M$ such that $f(x) \leq a$. Note that if a is a regular value of f, then M^a is a submanifold of M. The height function f has four critical points $p_1 < p_2 < p_3 < p_4$ which are all non-degenerate. As a varies among regular values of f, have the following submanifolds M^a:

1.
In particular, if M is homeomorphic to a 2–cell.

(2) If $f(p_1) < a < f(p_2)$, then M^a is homeomorphic to a 2–cell.

(3) If $f(p_2) < a < f(p_3)$, then M^a is homeomorphic to a cylinder.

(4) If $f(p_3) < a < f(p_4)$, then M^a is homeomorphic to a punctured torus.

(5) If $a > f(p_4)$, then M^a is homeomorphic to M.

The non-degenerate critical points of f seem to encode the information of the changing homotopy type of M^a. In particular, the change of homotopy type (1) \rightarrow (2) is precisely the attaching of a 0–cell which is homotopic to a 2–cell. The change (2) \rightarrow (3) is the attaching of a 1–cell and the resulting space is homotopic to a cylinder. The change (3) \rightarrow (4) is again the attaching of a 1–cell and the resulting space is homotopic to a punctured torus. Lastly, the change (4) \rightarrow (5) is the attaching of a 2–cell. Note that the dimension of the attached cell when “passing” a critical point corresponds to the index of of that critical point. These observations are generalized in the following results.

Let f be a real-valued function on an n–dimensional manifold M and let $M^a = f^{-1}(-\infty, a]$.

Theorem 6. If $a < b$ and $f^{-1}[a, b]$ is compact and contains no critical points of f, then M^a is diffeomorphic to M^b. Furthermore, M^a is a deformation retract of M^b, so that the inclusion map $M^a \hookrightarrow M^b$ is a homotopy equivalence.

Proof. Take a Riemannian metric on M and let (\cdot, \cdot) be the inner product induced by the metric. Consider the vector field ∇f, called the gradient vector field of f, that is characterized by $\langle X, \nabla f \rangle = X(f)$ for every vector field X. Define a smooth function $\rho : M \rightarrow \mathbb{R}$ which takes the value $1/\|\nabla f\|^2$ on $f^{-1}[a, b]$ and vanishes outside a compact neighbourhood of $f^{-1}[a, b]$. The vector field X defined by $X_p := \rho(p) (\nabla f)_p$ vanishes outside a compact set and therefore generates a global flow $\varphi_t : M \rightarrow M$.

Fix $q \in M$ and consider the map $t \mapsto f(\varphi_t(q))$. If $\varphi_t(q) \in f^{-1}[a, b]$, then

$$\frac{d}{dt} (\varphi_t(q)) = \langle \frac{d\varphi_t(q)}{dt}, (\nabla f)_q \rangle = \langle X_{\varphi_t(q)}, (\nabla f)_q \rangle = 1.$$

In particular, if $a \leq f(\varphi_t(q)) \leq b$, then $f(\varphi_t(q)) = t + C$ for some constant C. For $q \in M$ with $f(q) = a$, then $a = f(q) = f(\varphi_0(q)) = C$ and $f(\varphi_{b-a}(q)) = b$. Hence φ_{b-a} maps M^a diffeomorphically to M^b and similarly, φ_{a-b} maps M^b diffeomorphically to M^a. The family $r_t : M^b \rightarrow M^b$ given by

$$r_t(q) = \begin{cases} q & \text{if } f(q) \leq a \\ \varphi_{t(a-f(q))} & \text{if } a \leq f(q) \leq b \end{cases}$$

gives a deformation retract of M^b to M^a. \hfill \Box

Theorem 7. Let $f : M \rightarrow \mathbb{R}$ be a smooth function, and let p be a non-degenerate critical point with index λ. Setting $f(p) = c$ and suppose that $f[c-\varepsilon, c+\varepsilon]$ is compact and does not contain any critical point of f other than p, for some $\varepsilon > 0$. Then for all sufficiently small ε, $M^{c+\varepsilon}$ has the homotopy type of $M^{c-\varepsilon}$ with a λ–cell attached.

See [Mil] for a careful proof.
2. Morse-Bott theory

Let f be a smooth real-valued function on an n-dimensional manifold M. Denote by C_f the set of critical points of f and let C be a connected component of C_f. With respect to some Riemannian metric, the tangent space at every point $p \in C$ decomposes into $T_pM = T_pC \oplus N_pC$, where N_pC is the normal bundle at p with respect to the chosen Riemannian metric. Note that the T_pC vanishes under the Hessian. Indeed, if $v, w \in T_pC$, $H_p(f)(v, w) = V_p(W(f))$ and with respect to the chosen metric, $W(f) = (W, \nabla f)$, where ∇f is the gradient vector field corresponding to f. Since points in C are critical points, the gradient vector field vanishes on C. Therefore $H_p(f)$ induces a symmetric bilinear form on N_pC which we denote by h_pf.

Definition 8. A smooth submanifold $C \hookrightarrow M$ is said to be a non-degenerate critical submanifold if $C \subset C_f$, C is connected, and for all $p \in C$, the induced symmetric form h_pf is non-degenerate. Note that h_pf is non-degenerate if and only if $T_pC = \text{Ker}(H_pf)$, that is H_pf be non-degenerate in the direction normal to C at p. We say that f is a Morse-Bott function if the connected components of C_f are non-degenerate critical submanifolds.

Lemma 9. (Morse-Bott) Let $f : M \to \mathbb{R}$ be a Morse-Bott function and C a connected component of C_f of dimension k as a manifold. Then for $p \in C$, there exists a local coordinate system $(U; \varphi = (x_1, \cdots , x_k, y_1, \cdots , y_{n-k}) : U \to V \subset \mathbb{R}^k \times \mathbb{R}^{n-k})$ containing p such that $\varphi(p) = 0$, $\varphi(U \cap C) = \{(x, y) \in V : y = 0\}$ and the identity $f = f(C) - y_1^2 - y_2^2 - \cdots - y_k^2 + y_{k+1}^2 + \cdots + y_{n-k}^2$ holds throughout U, where λ is the index of h_pf.

An immediate consequence the Morse-Bott lemma is the fact that the index of h_pf is locally constant and is therefore an invariant of C called the index of C. See [BH] for many proofs of the Morse-Bott lemma.

Examples:

1. Let $M = \mathbb{R}^n$ and I, J, K disjoint subsets of $\{1, \cdots , n\}$ such that $I \cup J \cup K = \{1, \cdots , n\}$. Define $f : M \to \mathbb{R}$ by $f(x) = \frac{1}{2} \sum_{i \in I} x_i^2 - \frac{1}{2} \sum_{i \in J} x_i^2$. Then f is Morse-Bott but not Morse.

2. The height function of a torus tangent to a plane at a point is Morse and hence Morse-Bott.

3. The height function of a torus tangent to a plane along a circle is Morse-Bott but not Morse since its critical submanifolds are circles.

3. Stable and unstable cell bundles

Now, we assume that M is a compact connected manifold equipped with a Riemannian metric and $f : M \to \mathbb{R}$ is Morse-Bott. Let ∇f be the gradient vector field of f on M and consider its associated flow $\psi_t : M \to M$, $t \in \mathbb{R}$. Define for each critical submanifold C_i the sets

\[
W_i^+ = \left\{ p \in M : \lim_{t \to +\infty} \psi_t(p) \in C_i \right\} \quad \text{and} \quad W_i^- = \left\{ p \in M : \lim_{t \to -\infty} \psi_t(p) \in C_i \right\}
\]

called the stable and unstable sets of C_i respectively.

Theorem 10. If f is Morse-Bott, then each W_i^+ and W_i^- is a fiber bundle over C_i. Let λ_i be the index of C_i and k its dimension. Then the fibers of the stable
and unstable sets are cells of dimension equal to \(\lambda_i \) and \(n - k - \lambda_i \) respectively. Moreover,

\[
M = \bigsqcup W^+_i \quad \text{and} \quad M = \bigsqcup W^-_i.
\]

Proof. Note that for any point \(p \in M \), if \(\lim_{t \to \pm \infty} \psi_t(p) \) exists, then it is a critical point. That such a limit always exists is a consequence of the compactness of \(M \) and the existence of “nice” neighborhoods around critical manifolds given by Morse-Bott lemma. Hence, \(M \) can be realized as a disjoint union of the stable (and unstable) sets. The maps

\[
\pi^+_i : W^+_i \to C_i \quad \text{and} \quad \pi^-_i : W^-_i \to C_i
\]

given by \(\pi^+_i(p) = \lim_{t \to +\infty} \psi_t(p) \) and \(\pi^-_i(p) = \lim_{t \to -\infty} \psi_t(p) \) respectively give the fiber bundle structure. The local description of \(f \) given by Morse-Bott lemma shows that at each \(p \in C_i \), the fibers corresponding to \(\pi^+_i \) are \(\lambda_i \)-cells and the fibers corresponding to \(\pi^-_i \) are \((n - k - \lambda_i) \)-cells. \(\square \)

Examples:

1: Consider \(f \) as in example (1) above. Define

\[
C_K = \{ p = (p_1, \ldots, p_n) \in \mathbb{R}^n : p_k = 0 \ \text{for} \ k \in K \}
\]

\(C_1, C_2 \) similarly. Then the critical submanifold has one connected component \(C_1 = C_K \) and \(W^+_1 = C_K \sqcup C_J \) which is not \(M \). This is an example where \(M \) is not compact and the function on \(M \) is Morse-Bott but not every point converges via the gradient flow to a critical point.

2: Let \(M = \mathbb{S}^2 \) and \(f : M \to \mathbb{R} \) is the height function. Then \(f \) is a Morse function with critical submanifolds \(C_1 = \{ S \} \) and \(C_2 = \{ N \} \) consisting of the south and north pole with \(C_1 \) having index 0 and \(C_2 \) having index 2. The bundle \(W^+_1 \) over \(C_1 \) is the 0-cell \(\{ S \} \) and the bundle \(W^+_2 \) over \(C_2 \) is the 2-cell \(\mathbb{S} \setminus \{ S \} \).

Theorem 11. If \(f \) is Morse-Bott and all critical submanifolds are of even dimension and even index, then \(f \) has a unique local maxima and unique local minima.

Proof. Consider the decomposition of \(M \) into cell bundles given in Theorem 10. Then there exists some \(W^+_i \) and \(W^-_i \) of codimension zero in \(M \) hence \(W^+_i \) has \((n - k) \)-cells as fibers over \(C_i \) and \(\lambda_i = n - k \). Similarly, \(W^-_i \) has \((n - k) \)-cells as fibers over \(C_i \), so \(\lambda_j = 0 \).

Take the cell decomposition of \(M \) into unstable cell bundles

\[
M = W^-_1 \bigsqcup \cdots \bigsqcup W^-_s \bigsqcup W^-_{s+1} \bigsqcup \cdots \bigsqcup W^-_N
\]

where \(W^-_i \) for \(i \leq s \) correspond to index-zero critical submanifolds and for \(i > s \) correspond to critical submanifolds of index \(\geq 2 \). Let \(a_i = f(C_i) \). Then \(a_1, \ldots, a_s \) are all local minimas of \(f \). Since the codimension of \(W^-_i \) is \(\geq 2 \) for \(i > s \), \(M \bigsqcup_{i > s} W^-_i \) is connected and hence \(s = 1 \) and \(a_1 \) is the unique local minima. Conversely, one can consider the cell decomposition of \(M \) into stable cell bundles. Since there exists at least one critical submanifold of index \(n - k \), a similar argument shows that there is only one such critical submanifold. The image of \(f \) on this critical submanifold will be the unique local maxima. \(\square \)

Corollary 12. If \(f \) is Morse and the indices and dimensions of its critical submanifolds are even, then \(\pi_1(M) = 0 \).
Proof. Since f is Morse, all critical submanifolds are 0–dimensional and M has a cell-decomposition with λ_i–cells for each critical point c_i, where λ_i is the index of c_i. Theorem 6 and 7 imply that M has the homotopy type of a finite CW complex (a careful proof of this is in chapter 1 of [Mil]). In particular, the zero skeleton M^0 has exactly one point corresponding to the unique critical point giving the relative minima. All other skeletons M^i are formed by attaching cells of even dimension ≥ 2 and hence $\pi_1(M) \cong \pi_1(M^0) = \pi_1(M^0) = 0$.

Remark. Theorem 11 is an important ingredient in understanding the geometry of images of moment maps.

References