
Amalgamation properties and interpolation 

theorems for equational theories 

P. D. Bacsich 

45 

We classify a family of 216 interpolation principles for formulas in equational 
theories and show that those in a natural subfamily which are not theorems are 
equivalents of four standard diagrammatic properties, including the Amalgamation 
Property. 

O. Introduction 

Separation and interpolation principles have been studied by logicians for several 
years now, and so to place this work in a general context, let us make the following 
very abstract definitions, later bringing them down to earth. 

DEFINITION 0.1. Let Fx, F2, F be subsets of a boolean algebra B. Then the 
(F1, F2, F)-Separation Principle, written Sep(F~, F2, F) for short, is the following: 
whenever aEF1, bEF2 and a ^ b = O ,  there is c~F with a<.c and cAb=O.  The 
(F1, F2, F)-Interpolation Principle, written Int(Ft ,  F2, F) for short, is the following: 
whenever a~F1, b~F2 and a<.b there is ceF such that a<~c<~b. 

Clearly Int (F~, /'2, / ') is just Sep (F l, - F 2 ,  F) where - F 2  = { -  b:b ~F2}, so that 
the two notions are coextensive. Which one to use is a matter of taste, convenience 
and history. 

In practice B is often the Lindenbaum algebra of formulas reduced modulo some 
theory: then we replace each equivalence class [~p] by its representative formula q~, 
the ordering [~0]<,. [O] of the algebra becomes a valid implication ~0-,% and O 
denotes falsity. We also abuse notation mildly by using F~, etc., for classes of formulas. 

Several standard examples of separation principles occur in Recursion Theory, 
Descriptive Set Theory and Model Theory: however, they are usually symmetric in 
the sense that F1 = F2, and strict in the sense that F~ ca - F2 = F. In contrast, we shall 
often want to dispense with these assumptions, and this is why we phrase the definition 
with three parameters as opposed to the usual one. 

The best known interpolation theorem in Model Theory is probably Craig's 
Theorem: this can be summarised as In t (E 2, U 2, F)  where F is the set of all first 
order sentences in a language L and E z [respectively U 2] is the set of existential 
[universal] second-order sentences over L. We shall, however, be interested only in 
first order formulas, of low quantifier complexity, and so we begin by looking at an 
interpolation theorem for such formulas, Herbrand's Theorem. 
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1. Herbrand's theorem 

Throughout  this paper L will denote a fixed first order language (with certain 
relation, function and constant symbols). We shall be concerned with various syn- 
tactical classes of L-formulas, which we shall use so often that we shall give them 
special names. 

Let O be the class of open (i.e.quantifier-free) formulas of  L, and E [respectively 
U] be the class of existential [universal] formulas of L, i.e. those whose prenex normal 
form is 32cp [V2q~] with ~o open. Let O +, E +, U § denote the corresponding classes of 
positive formulas (i.e. their quantifier-free parts are positive open formulas). 

There are obvious inclusions between these classes which we can summarise in the 
following diagram. 

E U ['-. . f  
~ t 

E+ t U+ 

0 + 

We shall be concerned with classifying the various interpolation principles relating 
these classes, relative to a fixed L-theory T. Unless otherwise specified, we shall con- 
sider only those T whose axioms are universally quantified atomic formulas. We shall 
call such a theory T equational- this is the natural extension to languages with relation 
symbols of the usual notion. The class of models of T is closed under products, sub- 
structures, and homomorphic images, and admits the construction of free models and 
coproducts ( =  free products). We shall need these facts later. 

Our notation is mostly standard or taken from [1], except that we shall use Sk to 
mean S is inconsistent (you can regard the blank as being the void disjunction, which 
is falsity). We shall sometimes use the compactness theorem, often in the strong form 
which states: 

if S k V ~ t 0~ then there is a finite subset So of S and a finite subset J of  I such that 

Sok Vi+s 0v 

To begin with let us look at Herbrand's Theorem. In our notation this states 
Int(U, E, O), i.e. Sep(U, U, 0) .  Written out more fully it says: 

whenever O(2)r and q~(2)~E are such that T k 0 ( 2 ) ~  cp(2) there is ~k(2)eO 
such that TF 0 (2) --+ • (2) and Tk ~O (2) ~ q3 (2). 

As usual the notation ~0 (2) means that the list 2 includes the free variables of q~. 
Note that we allow free variables to occur in interpolation principles, but require the 
free variables of the interpolant to be restricted in the obvious way, as above. (Basically, 
one can regard each list 2 as being added as new constants to the language L and the 
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interpolation as taking place for sentences in this enlarged language.) In fact we have 
to require that ~ is a nonvoid list of variables, unless L has at least one constant 
symbol - this occurs because we do not admit the empty set as a model. 

Since we wish to refine the method later we shall give a proof  of  Herbrand's 
Theorem. 

L E M M A  I.I (Herbrand). Int(U, E, 0), i.e. Sep(U, U, O). 
Proof. Let T~-0 ( ~ ) ~  (p (~) with 0~ U, q~E.  Write cp ($ )=  3 37a (~, 37) with ce open. 

If  A ~ T and A ~ 0 (d) then A ~ a (d, b) for some b in the substructure of A generated 
by d. Hence T +  0 (~) 1- V ~ cx) ce (~, { (~)) where ~ ranges over all lists of terms, of  length 
that of 37. The result follows by compactness. Note that the interpolant ~b (~) is a 
finite disjunct of certain instances a (~, ~ (~)) of 3 37a (~, 9)- 

It is usually the case that if Sep (F 1, F1, F) holds then Sep ( - F 1 ,  --F1, F)  will not 
hold. Thus we might expect Sep (E, E, O) not to hold, and it is in fact easy to con- 
struct T and L for which it fails. However, it is natural then to ask for what T it can 
hold, and we shall answer this in the next section. 

But to conclude this section we shall prove two asymmetric interpolation theorems 
closely related to Herbrand's Theorem. 

LEMMA 1.2. (1) Int(U, E +, O+); 
(2) In t (U +, E, 0+). 
Proof. (I) By the construction of the interpolant 0 in the proof  of  Lemma 1.1, it 

is clearly positive if e is positive. 
(2) Similarly 0 is negative if c~ is. Thus we obtain Int(U, E - ,  O - )  in an obvious 

notation, and the result follows by manipulating negations. 

2. Amalgamation properties 

Three diagrammatic properties of the category of models of  a theory have been 
intensively studied in recent years. They are the Amalgamation Property (AP), Con- 
gruence Extension Property (CEP), and Injections Transferable (IT). Precise defini- 
tions can be found in Taylor [9]. 

Recently these properties have been given syntactic characterisations for general 
theories T -  see [2] and [3]. The characterisations, though fairly simple and reminis- 
cent of  separation principles, are not really appealing. We shall show that for equa- 
tional (or in fact universal) T they reduce to interpolation principles. 

T H E O R E M  2.1. Let T be a universal L-theory. Then 
(1) T has AP iff Sep(E, E, 0), i.e. Int(E, U, 0), holds for T; 
(2) T has CEP iff Sep(E +, O, 0+), i.e. Int(E +, O, O+), holds for T; 
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(3) Thas I T / f f S e p ( E  +, E, O +) i.e. Int(E +, U, 0+), holds for T. 
Proof. The general idea is (a) to write down in a sensible way what it means for T 

to have the diagrammatic property, using Robinson's method of diagrams, and apply 
repeatedly the compactness theorem to obtain some syntactic characterisation, and 
then (b) knock this into shape using the fact that T is universal. We shall give the 
details for IT. 

The procedure (a) was carried out in [2] and gave the following characterisation 
(for completeness we shall give a simpler, alternative proof in w 5). 

T has IT iff 

(*) forall~l(~)~E+,~2(Yc)eEwithT+oq +~21-,therearefll(.~)~Eandf12(~)~E + 
with T1-fll v f12 and T+fli+cq1-, i=  1, 2. 

But since T is universal, the method of Herbrand's Theorem applied to T1- fll (~?) 
v flz ()2) yields 7t ()?)cO and 72 (2) ~O+ such that 1- 7~ ~ fl~ (i= 1, 2) and yet T)- 71 v 72- 
Thus T+-]721-71 and so T + - " 1 7 2 1 - f l l  , while T+721-f12. Hence T+72-P~21- , and 
T + ' 1 7 2  +ct 1 1-, i.e. T+cq t-72. Thus (*) implies 

(**) for all ~( :~)~E + and ct2(2)~E with T+cq+c~21- there is 72(2)~0 + with 

T+~I1-72  and Tq-~2 +72 1-. 

It is easy to see that all steps are reversible, so that (*) is equivalent to (**). But (**) 
is what we want. 

Similarly we can prove (1) and (2) using the characterisations of AP and CEP given 
in [2]. 

Note that we cannot simplify our characterisation of AP for general T. For since 
Sep (E, E, O) depends only on the universal consequences of T, if it held for the theory 
T of real closed fields, it would hold for the theory Tc~ U of formally real fields, and so 
T o  U would have AP, which is false - yet T has AP (being model-complete). 

It may seem surprising that the Amalgamation Property should have a characterisa- 
tion as a simple interpolation principle 'dual' to Herbrand's Theorem. However, there 
are at least two sources of motivation for this result. 

1. The known relation between interpolation theorems and AP for cylindric 
algebras - see for example Pigozzi [7]. However, this relates to Craig's Theorem, and 
so is useful mainly for the idea of a connection. 

2. More crucially, the 'equational interpolation property' discussed by J6nsson, 
which we shall discuss now. 

DEFINITION 2.2. T is said to have the equational interpolation property (EIP) 
if whenever T1-ct(~,~)--,fl(p, i) there is 707) such that T1-~(~,jT)~7()7 ) and 
T1- 7 (fi) -'* fl (Y, :~), where ct, fl, 7 are conjunctions of atomic formulas. 
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In ['5] J6nsson showed that if T has AP then T has EIP. In fact he deduced EIP 
from a weaker version of AP. We shall show that the weaker version is in fact equiv- 
alent to EIP, but before proving that, we shall discuss the weaker version in the next 
lemma (as the proof is routine, we shall omit it). For background on free algebras 
and coproducts, see Gr/itzer [4]. 

LEMMA 2.3. The following are equivalent: 
(I) given any diagram B ~ A ~ A * ( X )  of embeddings in T with ( X )  the free T- 

algebra on the set X and A ~ A* ( X )  the canonical embedding into the coproduct 
A * ( X ) ,  there are embeddings B ~ C and A * ( X ) ~  C such that 

A--* B ~ C =  A--* A*(X)- -*C ; 
(2) whenever A ~ B is an embedding in T and X is a set, then the natural morphism 

A , ( X ) ~  B , ( X )  is an embedding; 
(3) if A <~ B in T and X is a set, then A (X), the subalgebra of B ,  ( X )  generated by A 

and X, is equal to A * ( X ) .  
We call any one of these conditions theflat amalgamation property (FAP) for T. 

LEMMA 2.4. I f  T has EIP then T has FAP. 
Proof. Let A<,B<~B,(X).  We must show that A ( X ) = A , ( X ) ,  which means 

that for all deA, ~ X ,  and atomic/3(2, ~), if A(X)~/3(d, ti) then T+A (A)~-/3(tL ~7) 
(by the definition of coproduct and free algebra). Let A (X)~/3 (d, fi). Since A (X) 
< ~ B , ( X ) , B , ( X ) ~ / 3 ( d ,  fO, and so r+A(B)b/3(d, tT): hence there is e(~,)7) and 
b~B such that B~e(d,  b) and T+e(d ,  b)t-/3(& a). 

By EIP there is y such that T+ e (d, b)~-V (d) and T+  y (d)b 13 (d, 72). It follows easily 
that A ~V(d) and so T+A (A)k/3(& ~). 

The converse of this lemma, which is J6nsson's result, can be proved in a very 
similar way. Thus we know that EIP is equivalent to FAP. What makes this of interest 
to us is that an easy manipulation of disjunctions using propositional calculus and the 
fact that T is closed under product establishes that EIP is equivalent to the property 
Int(E § U +, O+). Hence we can add a fourth clause to Theorem 2.1. 

THEOREM 2.5. Let Tbe an equational theory. Then Thas FAP/ f l in t  (E +, U +, O +) 
holds for T. 

3. Twelve strict interpolation principles 

We have found four natural semantic properties of an equational theory T which 
are equivalent to interpolation principles for T of simple form. We now want to show 
that no other (different) semantic property has such a characterisation. To do thiswe 
classify all such simple interpolation principles. 
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To do this we need more insight into their structure. Let us again consider the 
diagram of classes of formulas. This is a partially ordered set under ~ .  Now let us 

E U l "  / 
~ 1 

E + U + -..T/- 
O + 

define F 1 ca F2 to be the set of formulas logically equivalent to a formula of  F 1 and 
also one of F 2. We can now show that the diagram is a semilattice under ca. To do this 
it suffices to prove that 

E n U = O ,  U c a E + = O  + and U+ c a E = O  +. 

Now if Int(F1, F2, F)  is a theorem then F~ ca F 2 _ F  (just interpolate for ~1-~ when 
cc~F1 ca F2). Thus these three intersections follow from the forms of  Herbrand's  
Theorem established in w 1. 

We can now begin the classification of interpolation principles, restricting atten- 
tion, not surprisingly, to principles Int (F~, F 2, F 3) where F~e {E, E +, U, U +, O, O +}, 
i =  1, 2, 3. We call such a principle normal if F t ca F 2 ~ - F 3 ,  i.e. F 1 n _F 2 (computed by 
the rules above) lies at or below F3. Thus Int(E, U, O) is normal, as E n  U=O~_O,  

while Int (E, O, U +) is not, as Eca O = O ~  U +. In fact all the interpolation principles 
considered so far have been normal. This is one reason for first considering this class. 
The other is that the normal principles are the natural ones - any non-normal inter- 
polation principle leads to an identification of vertices in our semilattice, as we shall 
show in the next section. 

Among the normal interpolation principles we distinguish the subclass of strict 
ones, where we call In t (F  1, F2, F) strict if Fa n F 2 = F ,  and substrict if  F a c a F 2 ~ F  

(note that by normality always F~ ca F2 ~ F). We shall be concerned in this section just 
with the strict interpolation principles. Given that F~ and F2 are arbitrary there are 
clearly 36 such: however i f / ' l  c F2 or F2 _.c F1 then Int (F1, F2, F) is trivially true, and 
we shall omit these ones from the following table. 

The 12 non-trivial strict interpolation principles 

E E § U U + O 
E EUO EU+O + 

E + E+UO + E + U + O  + E + O 0  + 

U UEO UE + 0 + 

U + U+EO + U+E+O+ U + O 0  + 

0 OE+O § OU+O + 
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Note that from this point on we may often write F f 2 F  for Int(F1,-F2, _F), by 
analogy with notation for forms of the syllogism. We can immediately identify UEO, 

UE+O + and U+EO + as true (see w and clearly U+E+O +, OE+O + and U + O 0  + 

are corollaries of these, hence also true. Among the six cases left, we have 

and 

EUO,  which is AP ; 
E § UO+, which is IT ; 

E § U + O4, which is FAP ; 

E + O 0  § which is CEP. 

This leaves two mysteries, EU +0 + and O U +O +. To solve these, we require a peculiar 
interpolation theorem. 

LEMMA 3.1. Let T be any equational theory. Then Int(O, U +, O § holds for  T. 
Proof. It will help to use the convenient (and almost self-explanatory) notation of 

Keisler [6]. Suppose that TF q~ (2) ~ ~ (2) where qb ~ O, ~O E U 4. Clearly ~b ~ v ^ (L) 
(where L is the language of T). However, we can in fact take the ^ (L), as the general 
case follows by interpolating for each disjunct. We can further decompose ~b as 
q~=q~+ ^ -]q~- where ~b+E ̂  (L) + and ~b-~ v (L) +. Thus 

T + (2) l- v r (2) .  

Note that T+  r + (2) is closed under product, and that r  (2) and @ (2) are posi- 
tive. Thus, by a well known argument, either (a) T + r  + (2)l- r  (2) or (b) T + r  + (2) 
b ~b (2) (just argue by contradiction and take products). If  (a) holds then T + r  (2) F ; 
thus, as usual in these Lyndon-type situations, the falsity symbol f is the interpolant, 
and sincefis  just the void disjunction, we r ega rd feO +. Otherwise, (b) holds and the 
interpolant is r ~O +. 

A simple general argument shows that if Int(F~, F 2, F) holds for T then so does 
Int(3F~, F2, 3F): thus Lemma 3.1 implies that Int(E, U +, E +) holds. Now we can 
show that Int (E, U +, 0 +) is equivalent to Int(E +, U +, O+). For, arguing schematic- 
ally, if El- U + then El -E  + l- U + and so El-E  + F O + l- U + : thus El- O + F U +. Hence 
the mysteries are solved: OU+O + is true and EU+O + is another form for FAP. 

This completes the classification of the strict interpolation principles. 

4. The remaining interpolation principles 

Recall that an interpolation principle Int (FI, F2, F) is called substrict if F1 r~ _F 2 ~ F 
but F1 c~ Fz ~ F .  In this case Int(F1, F2, F) is implied by Int (F~,/V'2, F 1 ~ _F2), which 
is strict, and so we can classify substrict interpolation principles by the strict ones they 
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are weakenings of. Discounting weakenings to trivialities (i.e. where some Fi~_F) 

and weakenings of theorems, we arrive at the following table. 

Substrict interpolation principles 

(IT) E+ UO + implies E+ UO and E+ UU + 

(FAP) EU+O + implies EU+O and EU+E + 

(FAP) E+U+O + implies E+U+O 

(CEP) E + O 0  + implies E §  + 

Since OU+O + is true, EU§ is equivalent to E U §  + (FAP), and E+U+O is 
equivalent to E+U+O § (again FAP). Since U §  § is true, E §  + is equivalent 
to E § O O § (CEP). Also EU § § is true (by Lemma 3.1 and the subsequent remark). 

It is an easy general result that Int (F 1, Jr'2, F) implies Int(F1, VF2, VF), and so 
Int(E +, O, O +) implies Int(E +, U, U+). Conversely, E+UU + implies E + O U  +, 

which is CEP (by the preceding paragraph). Thus E+UU + is equivalent to CEP. 
However, to characterise the one remaining principle, E + UO, we have to go back 

to the beginning again. 

THEOREM 4.1. Int(E +, U, O) holds for T i f f  T has AP. 
Proof. Since T is closed under products, T has AP precisely if 

( ,)  whenever B ~ A --* C is a pair of embeddings in T there is an embedding B ~ D 
and a morphism C ~ D with A ~ B--* D = A ~ C ~ D. 
(We can amalgamate B o A  ~ C by taking the product of the maps given by ( , )  first 
for B and C and second for C and B.) By inserting a few + superscripts in any proof 
of the characterisation of AP, such as in [2], one arrives at: 

Thas ( , )  ifffor all 0 t (2)~E + and 02 (:~)~E such that T+Ot +02 I- there is fit (2), 
f12 (2)eE with T~- fit v f12 and T + fli + Oi b, i = 1, 2. 
This yields the result by the method of Theorem 2.1. 
To sum up, each substrict interpolation principle which is not a theorem is equiv- 

alent to one of the four semantic properties. 
To conclude, we have to classify the non-normal interpolation principles. As we 

said before, these lead to identifications of vertices in the following sense: we say that 
F _  F '  in T if for each ~b (2)~ F there is ~k (2)~F' such that T t-t k ~ ~k; and naturally we 
define F = F' in T to be F_q F' and F ' _  F in T. 

It is then routine to show that i f F  and F' are vertices such that F $ F '  (i.e. F is not 
below F'  in the diagram) then F_~ F'  in T is equivalent to one of the following identifi- 
cations: 

the four simple ones 0 = O  +, E + = 0  +, E = O ,  U § = 0  +, and the compound 
one E =  O = O + (where all vertices are identified). 
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Three of the simple ones correspond to natural semantic properties. In fact, given any 
universal theory T, it can be easily shown, using standard diagram and compactness 
arguments as in [1] or [8] and then some interpolation theorems, that  

O = O + in T iff every model of  T is ultrasimple, 
E + = O + in T i f f  every model of  T is algebraically closed, 
E = O in T iff every model of  Tis existentially closed, i.e. Tis model-com- 

plete. 

The fourth simple one, U § = O +, corresponds to a similar but less natural property. 
For definitions of  the above concepts and some results relating them see [1]. 

It  is clear that O = O § cannot hold for any nontrivial equational theory (as no non- 
trivial product is ultrasimple). However, E + =  O § holds for several equational theo- 
ries, for example the theory of boolean algebras. The status of E = O  and U § = O  + 
for equational theories T is less clear: for example if E =  O in T then T is model- 
complete, has no nontrivial finite models, and no 1-element submodels of  any (other) 
models. 

Nevertheless, we can still classify the non-normal interpolation principles. The vast 
majori ty  of  them succumb to the following trivial lemma. 

L E M M A  4.2. Let T be any theory. 
(1) Supposethat F1 c~F2~F. Thenlnt(F~, F2, F)holdsfor Tif f lnt(Ft,  F2, F1 c~F2) 

holds for T (this is strict) and F 1 c~ F2 ~- F in T (an identification). 
(2) Suppose that F~ ~_ Fz or Fz ~ F~. Then Int (F~, Fz, F) holds for T iff Fx c~ F z ~_ F 

in T (an identification). 
In fact only four non-normal interpolation principles fail to succumb to this lemma: 

EUE +, EUU +, UEE + and UEU +, and they can all be shown to be equivalent to 
O = O +. Hence every non-normal interpolation principle is equivalent to an identifica- 
tion, possibly together with a strict interpolation principle, and so they are all classi- 
fied. 

The natural next step is to look at classes of formulas other than those we have 
considered. It  does not seem very fruitful to study a finer classification of  the kind of 
formulas we have dealt with - in fact several of the semantic properties have charac- 
terisations in terms of  more delicate interpolation principles - but rather one should 
look at classes of  larger quantifier complexity. It  would be interesting to discover 
where interpolation principles corresponding to 'non-algebraic'  semantic properties 
lie. 

5. The characterisation of injections transferable 

For  completeness we give a brief proof  of  the characterisation of IT  (which is 
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simpler than that in ['2]). The basic tool is the Compactness Theorem, used repeatedly 
in the manner of Lemma 1.1 of [,1]. 

We say that to (d) is satisfiable over A if T + A  (A)+to (d) is consistent, and persis- 
tently satisfiable over A if it is satisfiable over B for each B>>,A in T. It is easy to prove 
that T has IT iff for each to (:~)~E, A ~ T and d~A,  if to (d) is satisfiable over A then 
to (d) is persistently satisfiable over A. 

Now to (d) is satisfiable over B iff not B ~ V o~+ ms ~) 0 (d), where 

S(to)={0(:~): T+0+ tok} ,  i.e. B~ Ao~E+ms~,~--qO(a). 

Thus tO (d) is persistently satisfiable over A iff 

T + A o ( A ) k  Aa.~+ ms ~)'q 0 (ti), 

i.e. for all O(~)~E + with T + 0 + t o k ,  

T + A o ( A ) k n 0 ( d ) ,  i.e. A~Vlj,~mStO) fl(d). 

Hence T has IT iff for all to (~ )eE  and O(~)~E + with T+O +to k, 
( , )  given A ~ T and aeA, 
if not 

A ~ V~E+ ms c~) ~ (d) then A ~ V ~ems c0) fl (d), 
i.e. 

Thus (*) is equivalent to 

(**) TF V=.E+ms(,~(~)v V~ms(0~/~(~), 

which by compactness is equivalent to 

(***) there is ~ (2 )~E + with T+0~+tok and f l (2 )eE  with T + f l + 0 k  

such that Tb ~ (2) v fl (:~). 
This completes the proof of the characterisation of IT given in ['2] and used in 

Theorem 2.1 of this paper. 
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