
1. Introducing vector bundles

Further reading: [Hat, Chapter 1], [MS74, Chapter 2].
Vector bundles (or at least, tangent bundles) appear quite naturally when one tries to work with

differential manifolds, since in order to define derivatives we must define what a “tangent vector”
to a manifold is. Given an n-manifold M embedded in RN , we can define the tangent space TM
of M to be the set of points (x, v) with x ∈ M and v ∈ RN such that v is tangent to M at x.
The set of points with first coordinate x is an n-dimensional vector space. Since we generally think
of manifolds as existing independently of the embeddings we want an independent definition of “a
family of vector spaces over a space”; this is exactly the notion of a vector bundle.

Definition 1.1 ([MS74, Chapter 2]). A vector bundle on a space B (generally called the base space)
is a space E (generally called the total space) together with a map p:E B and the structure of
a vector space on each fiber p−1(x) for x ∈ B, satisfying the extra condition:

(VB) There exists an integer k (the rank of E) such that for every point x ∈ B there exists a
neighborhood x ∈ U ⊆ B and a homeomorphism ϕx:U ×Rk p−1(U). This homeomor-
phism must satisfy the condition that p ◦ ϕx = πB (the projection onto B) and that for
every y ∈ U , the restriction ϕx|y×Rk :Rk p−1(y) is a linear homeomorphism.

We often drop p from our notation. When n = 1 we will call such a vector bundle a line bundle.
For any point x ∈ B we call p−1(x) the fiber over x.

This definition thus says that a vector bundle is a continuous family of vector spaces over B.
(In some formulations, the integer k only has to exist locally, so that if B is not connected it can
have different ranks over different connected components. We do not care about this in the current
discussion, so we will stick to vector bundles of constant rank.)

Some important examples of vector bundles:

Example 1.2. The trivial bundle is the bundle B×Rk B where the map is just projection onto
the first coordinate.

Example 1.3. As mentioned before, we can define the tangent bundle TM to a manifold embedded
in Rn by taking the set of points (x, v) with x ∈ M and v tangent to M at x. However, there is
also an intrinsic definition.

For any smooth n-manifold M , TM is defined to be the set
�

x∈M TxM . (Recall that TxM ,
the tangent space at x, is defined as the vector space of derivations.) This comes with a natural
map p:TM M which projects onto the first coordinte. To define the topology on TM , let
{(Uα,ϕα:Uα Rn)} be a smooth atlas on M . The local coordinates (x1, . . . , xn) on Uα give local
coordinates (∂/∂x1, . . . , ∂/∂xn) on TxM . Thus we can define a map �ϕα: p

−1(Uα) R2n by

(a1x1 + · · ·+ anxn, b1∂/∂x1 + · · ·+ bn∂/∂xn) (a1, . . . , bn).

We define the topology on TM via these maps: a subset A ⊆ M is open exactly when �ϕα(A ∩Uα)
is open in R2n for all α.

Note that this is a linear map fiberwise by definition. Also note that this construction proves
not only that TM is a vector bundle over M but also that it is a 2n-manifold.

Example 1.4. Suppose that we have a manifold M embedded in RN . The normal bundle of M
is the set of points (x, v) with x ∈ M and v orthogonal to M at x. As above, this is naturally a
bundle by projecting onto the M -coordinate. This does not exist independently of the embedding.

Example 1.5. Suppose that we have a vector bundle p:E B. For every α we have a homeomor-
phism ϕα: p

−1(Uα) Uα ×Rn. Thus for every α,β we have a composite homeomorphism

(Uα ∩ Uβ)×Rn
(ϕα|Uα∩Uβ×Rn )−1

p−1(Uα ∩ Uβ)
ϕβ |Uα∩Uβ×Rn

(Uα ∩ Uβ)×Rn
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which is the identity after projection to the first coordinate and a linear homeomorphism on each
fiber. Thus this map gives a smooth map

gαβ :Uα ∩ Uβ GLn(R).

This satisfies:

(1) gαα is uniformly the identity.
(2) gαβ(x) = gβα(x)

−1 for all x ∈ Uα ∩ Uβ .
(3) gαβ(x)gβγ(x)gγα(x) = 1 for all x ∈ Uα ∩ Uβ ∩ Uγ .

Now suppose that we have a collection of such g’s which satisfy these conditions. Then we can
assemble a bundle E on B by taking

E =
�

α

Uα ×Rn/ ∼,

where for any x ∈ Uα ∩ Uβ we say that (x, v) ∼ (x, gαβ(x) · v). The conditions above exactly state
that ∼ is an equivalence relation, and the smoothness conditions on the ϕα are enforced because
each gαβ is smooth.

For example, we can use this to construct the Mobius bundle. This is a bundle over S1. We define
it using the atlas U1 = S1\{north} and U2 = S1\{south}. We define the function g12:S

1\{poles}
by letting it be −1 on the part of S1 with negative x-coordinate and 1 on the part of S1 with
positive x-coordinate.

This last example is an example of a procedure that is often done in mathematics. We take an
object that we understand (Rn, Cn, trivial bundle, ring) glue a whole bunch of them together in
a nice way, and produce a new object ((real/complex) manifold, vector bundle, scheme) which is
more general and interesting, while still retaining many of the properties of the simpler object.

As always, now that we have a bunch of examples of vector bundles we want to know when two
vector bundles are isomorphic.

Definition 1.6. Two vectors bundles p1:E1 B and p2:E2 B are isomorphic if there exists
a smooth homeomorphism f :E1 E2 such that

E1 E2

B

f

p1 p2

commutes and such that its restriction to the preimage of any point x ∈ B is a linear isomorphism.

Note that if two vector bundles over B are isomorphic they must have the same dimension.

Remark 1.7. Note that we have not used any property of R when defining vector bundles. Thus
we could define complex vector bundles in exactly the same way as we defined real vector bundles,
but using the structure of complex vector spaces instead of real ones.

We could go further. Let F be any space. A fiber bundle with fiber F p:E B is a map of
topological spaces such that for every point x ∈ B there exists a neighborhood x ∈ U ⊆ B and a
map ι:U × F E such that pι = 1U and ι is a homeomorphism onto its image.

Now suppose that we want to remember some extra structure on F , such that it is a real/complex
vector space, that it has an action by a group, or something else. We can write down exactly
the same information, but impose the extra condition that for every y ∈ U , the map ι|y×F : y ×
F p−1(y) is an isomorphism respecting this structure.

Let’s look at some examples of when vector bundles are isomorphic.
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Example 1.8. Let B = S1 and consider TS1. A point in TS1 is a point in S1 together with a vector
tangent to S1 at that point. In other words, we can write a point of TS1 as a point (cos θ, sin θ)
and a vector (−λ sin θ,λ cos θ). This gives us a condinuous map TS1 R3 given by

((cos θ, sin θ), (−λ sin θ,λ cos θ)) (cos θ, sin θ,λ).

The image of this map is exactly S1 ×R, so we see that TS1 is isomorphic to the trivial bundle on
S1.

What we did here is, in effect, define a nice basis for each fiber in a way which is continuous
over S1. This let us “straighten out” the structure of TS1 and show that it is trivial. It is actually
possible to do this in general.

Definition 1.9. A section of a vector bundle p:E B is a map s:B E such that p ◦ s = 1B.

Every vector bundle has at least one section: the section which sends everything to 0. (This is
called the zero section.)

We can use sections to prove in very simple cases that vector bundles are not isomorphic. Note
that every isomorphism of vector bundles must preserve the zero section s0, so whenever E1 and E2

are isomorphic vector bundles, the topological spaces E1\s0(B) and E1\s0(B) are homeomorphic.

Lemma 1.10. TS1 is not isomorphic to the Mobius bundle.

Proof. Consider TS1\s0(S1) and Mobius\s0(S1). Since TS1 is trivial, this is isomorphic to S1 ×
(R1\{0}), which is not connected. However, Mobius\s0(S1) is connected (as we all know from
cutting a Mobius band down the middle). Thus these are not homeomorphic. �

We can also use sections to try and “straighten out” a bundle to show that it is trivial.

Proposition 1.11. Let p:E B be an n-dimensional vector bundle. There exist n sections
s1, . . . , sn:B E such that for all x ∈ B, s1(x), . . . , sn(x) are linearly independent if and only if
E is isomorphic to a trivial bundle.

Proof. If E is isomorphic to B × Rn then we can define si:B E by si(b) = (b, ei) for a fixed
basis e1, . . . , en of Rn. Then s1, . . . , sn are linearly independent at each point.

Conversely, suppose that the sections s1, . . . , sn exist. Then we define a bundle map f :E B×
Rn in the following manner. For a point (b, v) ∈ E, write v =

�n
i=1 aisi(b); this is always possible

since s1(b), . . . , sn(b) are linearly independent. Then map (b, v) to (b, (a1, . . . , an)). This map is
continuous since the si are, and a fiberwise isomorphism by definition. Thus it is an isomorphism
of vector bundles. �

Here we implicitly used the following lemma:

Lemma 1.12 ([Hat, Lemma 1.1]). A continuous map f :E1 E2 between vector bundles is an
isomorphism if it is a linear isomorphism on each fiber.

Proof sketch. It suffices to check that h−1 is continuous. Since this is a local question it suffices to
do it for trivial bundles, which we can do directly. �

We get an interesting result as a corollary. This result will end up being very important later
when we consider Euler classes.

Corollary 1.13. TS1 has no everywhere-nonzero section.

Proof. Suppose that TS1 had an everywhere-nonzero section. Then by Proposition 1.11 it would
be trivial. However, we just proved that it is not. �
Remark 1.14. The question of the existence of nonzero sections has a natural higher-dimensional
analog: given a vector bundle E B, how many everywhere-linearly-independent sections do
there exist?
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We finish up this section with an important result about homotopy groups which we will often
use later:

Theorem 1.15. Let E B be a fiber bundle with fiber F . Then there is a long exact sequence
of homotopy groups

· · · πnF πnE πnB πn−1F · · · π1F π1E πnB.

Note that for a vector bundle, since the fibers are contractible this says that πnE ∼= πnB. This
makes sense since we can write down a general contraction sending each point (b, v) to (b, tv) which
will be the identity at t = 1 and the zero section at t = 0.
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