
12. Topological K-theory

Further reading: [Hat, Chapter 2], [Ati89]
One interesting side effect of this calculation is that now we can construct another cohomology

theory. Recall that we proved that we can get a cohomology theory from a sequence of spaces

X0, X1, . . . together with equivalences Xi
∼ ΩXi+1 for all i. One example that we knew came

from Eilenberg–MacLane spaces, but we did not have another good example. Now we can construct
one using Bott periodicity.

For traditions sake, we will work with the form of Bott periodicity that states that Z × BU �
ΩU � Ω2(Z×BU). We can thus conclude that

K: = Z×BU,U,Z×BU,U, . . .

is a spectrum. Here the first map is given by the Bott map, the second by the identity, the third
by the Bott map, and so on. We may therefore ask: which cohomology theory is represented by
this spectrum?

Theorem 12.1. For any compact connected space X,

�K0(X+) = {free ab. gp. generated by iso classes of vector bundles on X}/[E ⊕ E�] = [E] + [E�].

For general i, Ki(X+) = K0(ΣiX+).

Proof. We prove the second part first. Note that for all i ≥ 0 we can define the −i-th space of
the spectrum by defining K−i to be Z × BU if i is even an U if i is odd. Then we have weak
equivalences Ki ΩKi+1 for all i. Then we have

�Ki(X+) = [X+,Ki] ∼= [X+,K−i] ∼= [X+,Ω
i(Z×BU)] ∼= [ΣiX+,Z×BU ].

Thus if we can prove the first part of the theorem, the second part follows.
Let G be the group given by the right-hand side of the expression in the theorem. We define a

homomorphism ϕ: �K0(X+) G by the following. Consider a class α ∈ [X+,Z×BU ]. Since X is
connected, the image of the X-compenent lies in a single component {i}×BU . Since X is compact
and BU = colimnBU(n), we know that α is represented by an f :X {i} × BU which factors
through some finite stage BU(n). We then define

ϕ[f, i] = [f∗γn]− [�n−i].

We define [�−j ] = −[�j ].
We must check that ϕ is well-defined. Note that changing f :X BU(n) up to homotopy

changes f∗γn by an isomorphism, so that does not affect ϕ. However, there is a further wrinkle.
In the discussion above, we chose n such that f factors through BU(n). However, n is not well-
defined; if f factors through BU(n) it also factors through BU(m) for m ≥ n. However, the map
BU(n) BU(n+ 1) is given by the map U(n) U(n+ 1) adding a 1 in the lower-right corner
of the matrix. The pullback of a vector bundle along this map takes γn+1 to γn ⊕ �1, as we saw
in the proof of Lemma 5.4. Thus if we replace n by m ≥ n we replace f∗γn by f∗γn ⊕ �m−n. But
then, inside G we have

[f∗γn ⊕ �m−n]− [�m−i] = [f∗γn]⊕ [�m−n]− [�n−i]− [�m−n]

= [f∗γn]− [�n−i].

Thus ϕ[f, i] is well-defined.
The addition is given by the H-space structure on Z×BU . As discussed in the previous section,

this H-space structure is given by the sum on the Z-components and the Whitney sum of repre-
senting bundles on the BU -component. Thus we see that two elements of [X,Z×BU ] represented
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by [f, i] and [f �, j] have sum represented by [f ⊕ f �, i+ j]. Thus we have

ϕ[f ⊕ f �, i+ j] = [(f ⊕ f �)∗γn+m]− [�n+m−i−j ] = [f∗γn ⊕ f �∗γm]− [�n−i ⊕ �m−j ]

= ϕ[f, i] + ϕ[f �, j].

We now need to check that ϕ is an isomorphism. First, we check that ϕ is surjective. Let

α =

n�

i=1

ai[Ei]

be any element of G. By using the relation in G, we can rewrite this element as [E]− [E�], where
E is the sum of all Ei with positive coefficient (taken sufficiently many times) and E� is the sum
of all Ei with negative coefficient. Since X is compact, there exists an E�� such that E� ⊕E�� ∼= �m

for some m. Then

[E]− [E�] = [E ⊕ E��]− [E� ⊕ E��] = [E ⊕ E��]− [�m].

Let n = dimE⊕E��, let f :X BU(n) be the classifying map of E⊕E��, and let i = n−m. Then
the map

X
f {i} ×BU(n) {i} ×BU

is mapped to α, as desired.
Now we consider injectivity. Let f :X {i}×BU be a map such that ϕ[f, i] = 0; assume that f

factors through {i}×BU(n). Since ϕ[f, i] = 0, there exists a bundle E such that f∗γn⊕E ∼= �n−i⊕E.
Note that the dimension of the left-hand side is n+dimE and the dimension of the right-hand side
is n− i+ dimE, so we must have i = 0. In addition, since X is compact there exists a bundle E�

such that E ⊕ E� ∼= �m; thus we have

f∗γn ⊕ �m ∼= �n+m.

(When a bundle satisfies such an equation we say that it is stably trivial.) However, this means
that the map

X
f

BU(n) BU(n+m)

classifies a trivial bundle, and thus is null-homotopic. But this implies that X
f

BU(n) BU
is null-homotopic, and thus [f ] was trivial, as desired. Thus ϕ is injective. �

Remark 12.2. As usual, �K∗(X+) is written K∗(X).

We enumerate some properties of K(X) which follow directly from Theorem 12.1.

(1) When X is already pointed, �K(X) is subgroup of �K(X+) consisting of those maps which

always hit the {0}×BU component. Then using the theorem we can write elements of �K(X)
as formal differences [E]−[�dimE ]. This is exactly the kernel of the map K0(X+) K0(∗+)
induced by the inclusion ∗ X, where ∗ is the basepoint of X.

(2) Two vector bundles E and E� are equal in �K0(X) exactly when there exist trivial bundles

�k and �k
�
such that E⊕ �k ∼= E�⊕ �k

�
. In particular, all trivial bundles are 0 inside �K0(X).

(3) Moreover, let [E] ∈ �K0(X). Let E� be a bundle such that E ⊕ E� ∼= �n. Then

[E] + [E�] = [E ⊕ E�] = [�n] = 0,

so [E] = −[E�].
(4) Since �K is a cohomology theory, we know that for any cofiber sequence A X X/A

we have a long exact sequence

· · · �Ki(X/A) �Ki(X) �Ki(A) �Ki+1(X/A) · · · .
41



(5) Suppose that X is pointed. For all i,

�Ki(X)
def
= [X,Ki] ∼= [X,Ω2Ki] ∼= [Σ2X,Ki] = �Ki−2(X).

Thus �K∗(X) is 2-periodic for all X. This statement can be proven directly, and is often
referred to as “Bott periodicity.”

Consider K0(X). The addition comes from the addition of vector bundles, but there is also a
natural multiplication of vector bundles: the tensor product. This structure extends to K0(X):

([E]−[�dimE−k])([E�]−[�dimE−k� ]) = [E⊗E]−[�dimE−k⊗E�]−[E⊗�dimE�−k� ]+[�(dimE−k)(dimE�−k�)].

Note that when k = k� = 0 then the total dimension of this is

dimE dimE� − dimE dimE� − dimE dimE� + dimE dimE� = 0,

so this multiplication is well-defined on �K0, as well.

Example 12.3. Let’s compute the ring structure on K0(S2) ∼= �K0(S2
+). First, observe that

K0(S2) ∼= [S2
+,Z×BU ] ∼= Z⊕ [S2, BU ] ∼= Z× Z.

Thus the additive structure is Z× Z. The first Z is generated by the trivial bundles; the second Z
is generated by the canonical line bundle of CP 1, which we call H.∗∗ We can check that these are
different using characteristic classes, since all of the characteristic classes of trivial bundles are 0,
while H has a nontrivial first Chern class.

We claim that H satisfies the relation

(H ⊗H)⊕ 1 ∼= H ⊕H.

Consider a map S2 BU(2); since S2 ∼= ΣS1, this is uniquely determined by a map S1 ΩBU(2) �
U(2). Thus a vector bundle on S2 is uniquely determined by the homotopy class of a map
S1 U(2); this is called the clutching function.†† To get this function explicitly, we think of
S2 as D2 ∪S1 D2. Since D2 is contractible, any vector bundle is isomorphic to a trivial bundle on
D2. Thus we can take the two D2’s as being our atlas of trivializations. We then have a transition
function, which for every point in S1 gives a linear map (which can be taken to be in U(2)). This
map is the clutching function.

Note that the clutching function for a bundle which is the Whitney sum of two bundles is the
block diagonal of the clutching functions for the two bundles. Similarly, the clutching function
for the tensor product of two bundles is the tensor product of the two clutching functions. Thus
to compute the clutching functions of the bundles we are interested in, it suffices to compute the
clutching function of H.

Consider a point in CP 1 as a pair [z0: z1]. The line above this point is the line consisting of the
points (λz0,λz1). Thus inside the unit disk we can assume that z1 = 1 and write the trivialization
of the bundle as [z0/z1: 1] × C (λz0/z1,λ). Outside the unit disk we can assume that z0 = 1
and write the trivialization of the bundle as [1: z1/z0] × C (λ,λz1/z0). When |z1/z0| = 1, the
transition function takes ([z0/z1: 1],λ) to ([1: z1/z0],λ), so this function takes z ∈ S1 to the function
(z) ∈ U(1).

Using this, we see that the clutching functions for (H ⊗H)⊕ 1 and H ⊕H are
�

z2

1

�
and

�
z

z

�
.

∗∗We could also call it γ11, but this could cause confusion with the 11-dimensional canonical bundle. We also
prefer H as it is consistent with both [Ati89] and [Hat].

††Note that nothing stated here depends on the fact that we’re working with S2; this approach actually works for
all Sk.
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To show that these are isomorphic we just need to show that these clutching functions are homo-
topic. However, the first one is the pointwise multiplication in ΩU of (z) with itself. The second
one is loop addition. As discussed before, these are homotopic.

From this discussion we have that H2 + 1 = 2H, or in other words that (H − 1)2 = 0. We thus
have a natural homomorphism Z[H]/(H − 1)2 K(S2). Since this homomorphism is onto and
since the rank of the source is equal to the rank of the target, it must be an isomorphism.

Note that if we think of K(S2) ∼= Z×Z as generated by [H]−[�1] and [�1] then �K(S2) is generated
by H − 1, with the relation (H − 1)2 = 0.

Remark 12.4. By tracing through this and the definition of the Bott map we can show explicitly
that the map

�K0(X) �K0(Σ2X)

can be defined to be multiplication by H − 1. Thus we can extend the ring structure on �K0(X) to
�K∗(X).
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