MATH 3110: HOMEWORK 3

You will be graded on both the accuracy and the clarity of your solutions. One purpose of the homework is to give you an opportunity to practice your proof-writing skills.

You are welcome — encouraged, even! — to collaborate on homework, but you should not copy solutions from any source, nor should you submit anything that you don't understand.

Problem 1. Suppose that for each *n* we have a closed interval $I_n = [a_n, b_n]$ and that the intervals are decreasing: $I_0 \supseteq I_1 \supseteq I_2 \supseteq \cdots$. Prove that there is a real number that belongs to all of the intervals: $\bigcap_{n \in \mathbb{N}} I_n \neq \emptyset$.

Problem 2. Suppose that *X* is a nonempty set. Prove that the following three assertions are equivalent:

- (a) *X* is finite or countably infinite.
- (b) There is a one-to-one function $f: X \to \mathbf{N}$.
- (c) There is an onto function $g: \mathbf{N} \to X$.

(*Hint*: You might find it easiest to prove $(c) \Rightarrow (b) \Rightarrow (a) \Rightarrow (c)$.)

Problem 3. This problem shows that "equinumerosity is an equivalence relation." (This justifies the notation |A| = |B|.) Let *A*, *B*, and *C* be sets. For this problem only, we'll write $A \sim B$ to mean that *A* and *B* are equinumerous, meaning that there is a bijection $A \rightarrow B$.

- (a) Show that $A \sim A$.
- (b) Show that if $A \sim B$ then $B \sim A$.
- (c) Show that if $A \sim B$ and $B \sim C$, then $A \sim C$.

Problem 4. A set $I \subseteq \mathbf{R}$ is called an **interval** if for all triples of real numbers x, y, and z such that x < z < y, if $x \in I$ and $y \in I$ then $z \in I$.

(a) Prove that every interval takes exactly one of the following nine forms:

 $(-\infty, a), (-\infty, a], (a, b), (a, b], [a, b), [a, b], (a, \infty), [a, \infty), or (-\infty, \infty).$

- (b) Give an example of an infinite family of intervals of the form (*a*, *b*) of which any two are disjoint.
- (c) Show that part (b) *cannot* be solved with an uncountable family of intervals.

Problem 5. Suppose that $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ are sequences and that $\lim_{n \to \infty} a_n = L$ and $\lim_{n \to \infty} b_n = M \neq 0$. Prove that $\lim_{n \to \infty} c_n = L/M$, where

$$c_n = \begin{cases} \frac{a_n}{b_n} & \text{if } b_n \neq 0\\ -3.17 & \text{if } b_n = 0. \end{cases}$$

Date: Due Wednesday, 13 February 2019.

(*Hint:* Start by showing that the -3.17 case occurs infrequently.)

Problem 6. Suppose that $(a_n)_{n \in \mathbb{N}}$ is a sequence of nonnegative real numbers that converges to *L*. Show that the sequence $(\sqrt{a_n})_{n \in \mathbb{N}}$ converges to \sqrt{L} .

Problem 7 (The Sandwich Theorem for sequences). Suppose that $(l_n)_{n \in \mathbb{N}}$, $(u_n)_{n \in \mathbb{N}}$, and $(c_n)_{n \in \mathbb{N}}$ are all sequences such that $l_n \leq c_n \leq u_n$ for every $n \in \mathbb{N}$. Suppose also that $\lim_{n \to \infty} l_n = \lim_{n \to \infty} u_n = L$. Prove that $(c_n)_{n \in \mathbb{N}}$ also converges to L.¹

²

¹*l* is for *lower* and *u* is for *upper*.