MATH 3110: HOMEWORK 8

You will be graded on both the accuracy and the clarity of your solutions. One purpose of the homework is to give you an opportunity to practice your proof-writing skills.

You are welcome — encouraged, even! — to collaborate on homework, but you should not copy solutions from any source, nor should you submit anything that you don't understand.

Problem o (For extra practice – don't submit this one with your homework).

- (a) Prove that functional limits are unique. That is, if $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} f(x) = M$, then L = M.
- (b) Prove that we can combine functional limits by e.g. addition and multiplication in the familiar way. (Corollary 4.2.4 of the textbook.)
- (c) Prove the sequential characterization of functional limits. That is, prove that $\lim_{x\to c} f(x) = L$ iff for all sequences (x_n) with $x_n \in A \setminus \{c\}$ and $x_n \to c$, we have $f(x_n) \to L$.
- (d) Prove that if $f: B \to \mathbf{R}$ is uniformly continuous on *B* and $A \subseteq B$, then *f* is uniformly continuous on *A* too. (By this we mean that the restriction $f \upharpoonright A$ is uniformly continuous.)
- (e) Prove that the function $x \mapsto x^2$ is *not* uniformly continuous on $[0, \infty)$.

Problem 1. Prove that if $c \in A$ is a cluster point of a set A, then $f: A \to \mathbf{R}$ is continuous at c iff $\lim_{x\to c} f(x) = f(c)$. (The familiar definition from introductory calculus.) What happens if c is not a cluster point of A?

Problem 2. Prove that a composite of continuous functions is continuous. That is, if $f: A \to \mathbf{R}$ and $g: B \to \mathbf{R}$ satisfy $f[A] \subseteq B$, then the composite function $g \circ f: A \to \mathbf{R}$ is continuous.

Problem 3 (Building familiar functions I).

- (a) For all $n \in \mathbf{N}$ prove that the function $p_n: [0, \infty) \to \mathbf{R}$ defined by $p_n(x) = x^n$ is strictly increasing and continuous.
- (b) For all $n \in \mathbb{N}$ and $x \ge 0$ prove that there exists a unique $y \ge 0$ such that $y^n = x$. We denote this real number y by $x^{1/n}$ (or $\sqrt[n]{x}$).
- (c) Prove that for all $n \in \mathbf{N}$ the function $x \mapsto x^{1/n}: [0, \infty) \to \mathbf{R}$ is increasing and continuous.

(Now we can *define* (!) $x^{p/q}$ to be $(x^p)^{1/q}$. So rational powers of real numbers are defined and behave as expected. Stay tuned for all real powers...)

Problem 4. Show that the function given by the formula $f(x) = 1/x^2$ is uniformly continuous on the set $[1, \infty)$ but not on the set (0, 1].

Date: Due Friday (!), 29 March 2019.

Problem 5. Suppose that we have three real numbers a < b < c and a function $g:(a, b) \rightarrow \mathbf{R}$ that is known to be uniformly continuous on the interval (a, b] and on the interval [b, c). Prove that *g* is uniformly continuous on (a, c).

Problem 6. Decide whether each of the following statements is true or false and prove that your answer is correct.

- (a) If $f:[a,b] \to \mathbf{R}$ is a function with f(x) > 0 for all $x \in [a,b]$, then its reciprocal 1/f is a bounded function on [a,b].
- (b) If $f:[a,b] \to \mathbf{R}$ is a continuous function with f(x) > 0 for all $x \in [a,b]$, then its reciprocal 1/f is a bounded function on [a,b].
- (c) If $f: \mathbf{R} \to \mathbf{R}$ is a function with the property that for every compact set *X*, f[X] is compact, then *f* must be continuous. (*Hint*: sequences)

Problem 7.

- (*) (Don't submit this one) Review your solution to Homework 7, Problem 7, and make sure that you can prove: if $f:[a, b] \rightarrow \mathbf{R}$ is a continuous one-to-one function, then f is either strictly increasing or strictly decreasing.
- (a) Prove that an increasing function $f:[a,b] \rightarrow \mathbf{R}$ with the *intermediate value property* (meaning, satisfying the conclusion of the Intermediate Value Theorem) must be continuous.
- (b) Suppose that $f:[a,b] \to \mathbf{R}$ is a strictly increasing function with range *R*. Prove that *f* is one-to-one, so its inverse $f^{-1}: R \to [a,b]$ is defined. Prove also that f^{-1} is continuous.

(Notice that we have made no assumption about the continuity of f.)

Problem 8.

- (a) Prove that there is no continuous onto function $g: [0,1] \rightarrow (0,1)$.
- (b) Exhibit a continuous onto function $h: (0,1) \rightarrow [0,1]$.
- (c) Prove that there is no continuous bijection $f: (0,1) \rightarrow [0,1]$.

(*Hint*: Use your theorems.)

Bonus problem¹. Suppose that $f: \mathbf{R} \to \mathbf{R}$ is a function that is continuous at every rational number. Prove that there is an irrational number at which *f* is continuous.

¹Don't work on this until you've solved the other problems. If you do solve it, submit your solution directly to me (Zach), not to Gradescope.