MATH 3110: PRACTICE FOR PRELIM 1

Basic topology of R. Since we haven't had a homework that covers open & closed sets, etc., I include some problems about that for you to practice.

Problem 1. For two sets *A* & *B*, we write $A + B = \{a + b : a \in A, b \in B\}$.

- (a) Prove that if A and B are open, then A + B is open.
- (b) Prove that if A and B are compact, then A + B is compact.
- (c) *Caution*: It is not true that the sum of closed sets must be closed. Provide an example to demonstrate this.

Problem 2. Let $X \subseteq \mathbf{R}$. Let X' be the set of cluster points of X. Prove that if x is a cluster point of X', then x is a cluster point of X.

Problem 3. Let C be the Cantor set. Show that C is exactly the set of numbers in [0,1] whose ternary (i.e., base-3) expansion uses only 0s and 2s. That is, show that $x \in C$ iff there is a sequence $(a_n)_{n \in \mathbb{N}}$ with $a_n \in \{0,2\}$ for all n, such that $x = \sum_{n>0} \frac{a_n}{3^n}$.

Problem 4. For each of the following tasks, give an example as requested or prove that one does not exist.

- (a) An infinite set with two cluster points.
- (b) A nonempty open set that is a subset of **Q**.
- (c) A nonempty closed set that is a subset of **Q**.
- (d) Two nonempty disjoint open sets whose union is **R**.
- (e) A set with uncountably many isolated points.
- (f) An infinite set with no limit points.
- (g) A bounded infinite set with no limit points.
- (h) An infinite union of compact sets that is not compact.
- (i) An infinite intersection of compact sets that is not compact.

Problem 5. For each of the following sets, determine whether it is open, closed, compact, or none of these. Give a short explanation.

- (a) $\{1, 2, 3\};$
- (b) **Q**;
- (c) $C \setminus \{0\}$, where C is the Cantor set;
- (d) $\{1, \frac{1}{2}, \frac{1}{3}, \dots\} \cup \{0\};$
- (e) $\{1, 1+\frac{1}{2}, 1+\frac{1}{2}+\frac{1}{3}, \dots\}$.

Problem 6. Prove that any compact nonempty set contains its sup and inf. Give an example of a set that contains its sup and inf but is not compact.

Date: March 2019.

MATH 3110: PRACTICE FOR PRELIM 1

Definition.

- The *interior* of a set *A*, denoted Int *A*, is the set of points *x* such that there is a neighborhood of *x* that is a subset of *A*.
- The *exterior* of a set *A*, denoted Ext *A*, is the set of points *x* such that there is a neighborhood of *x* that is a subset of *A*^{*c*}.
- The *boundary* of a set *A*, denoted ∂A , is the set of points *x* such that every neighborhood of *x* contains points from both *A* and A^c .

Problem 7.

- (a) For any set *A*, $\mathbf{R} = \text{Int } A \cup \partial A \cup \text{Ext } A$, and this is a disjoint union. Prove this.
- (b) Find a formula for the interior of a set in terms of the set's closure and its complement's closure. Do the same for the exterior. Prove that your answers are correct.
- (c) Find the interior, exterior, and boundary of each of the following sets: (0,1), [0,1], **R**, *C* (the Cantor set).
- (d) Prove that $\partial A \cup \text{Int } A = \overline{A}$.
- (e) Prove that any open set coincides with its interior and is disjoint from its boundary. Prove that any closed set includes its boundary.
- **Problem 8.** (a) Prove that the only sets with empty boundary are **R** and \emptyset . (*Hint*: For a point $a \in A$, consider the set $\{x \in \mathbf{R} : (a, x) \subseteq A\}$. Prove that if this set has a supremum, then it belongs to the boundary of *A*.)
 - (b) Prove that the only sets that are both open and closed are **R** and \emptyset .

Other problems.

Problem 9. Say (for this problem only) that a sequence $(a_n)_{n \in \mathbb{N}}$ *u-converges* to *L* if there is an $N \in \mathbb{N}$ such that for every $\varepsilon > 0$, if $n \ge N$ then $|a_n - L| < \varepsilon$. Show that a sequence u-converges iff it is *eventually constant*, meaning that there is a number $K \in \mathbb{N}$ such that if $m \ge K$ then $a_m = a_K$.

Problem 10. Suppose that $(x_n)_{n \in \mathbb{N}}$ is a bounded sequence. Prove that it has a subsequence converging to $\limsup x_n$.

Problem 11. For each of the following series, determine with proof whether it converges absolutely, conditionally, or not at all.

(a)
$$\sum \frac{n \sin n}{3^n}$$

(b) $\sum \frac{(-1)^n}{\sqrt{n}}$
(c) $\sum \frac{(-1)^n + n}{n^2}$

Problem 12. Prove that if $\sum a_n$ converges and p > 1, then $\sum a_n^p$ also converges.

2