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1. Introduction

�ere is a rich tradition in set theory of investigating the extent to which
forcing can change the truth value of assertions about ordinals and reals,
especially in the presence of large cardinals. It is a now-classical theorem of
Woodin that, in the presence of suitable large cardinals, the theory of L(R)

cannot be changed by set forcing (see Larson [12]), and, conversely, if the
theory of L(R) cannot be changed by set forcing, then AD holds in L(R)

(see Steel [23]). Adding parameters to the theory changes the situation quite
drastically, though: for example, any forcing collapsing ω1 changes the theory
of L(R) with ordinal parameters. Neeman and Zapletal [19] showed that,

�is material is based upon work supported by the National Science Foundation under
Grant No. DMS-1363364.
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assuming roughly a proper class of Woodin cardinals, the theory of L(R)

with real and ordinal parameters cannot be changed by any proper forcing.
We call the conclusion of their theorem L(R)-absoluteness for proper posets.
Likewise, if C is a class of posets, then L(R)-absoluteness for all posets in C is
the assertion that the theory of L(R)with ordinal and real parameters cannot
be changed by any forcing in C.
Schindler [22] identi�ed the consistency strength of L(R)-absoluteness for

proper posets to be exactly what he called a remarkable cardinal (see De�ni-
tion 3.2).�e de�nition is a natural weakening of Magidor’s characterization
of supercompactness [14], in which the embedding is required to exist only
in some generic extension of V .�is large-cardinal assumption sits far below
the level of Woodin cardinals and ADL(R): while a remarkable cardinal must
be weakly compact, if 0♯ exists then every Silver indiscernible is remarkable
in L.

�eorem 1.1 (Schindler).
(a) Assume V = L. If κ is a remarkable cardinal, then L(R)-absoluteness
for proper posets holds in the extension by the Levy collapse to make
κ = ℵ1.

(b) Conversely, if L(R)-absoluteness for proper posets holds, then ℵ1 is
remarkable in L.

Schindler’s lower-bound argument uses the reshaping and almost-disjoint
coding methods of Jensen (see Jensen & Solovay [10]).�e reshaping poset to
which he applies L(R)-absoluteness is not σ-closed ∗ ccc or indeed proper in
any strong sense. (For more on the properness, distributivity, and stationary-
preservation of the reshaping poset, see [21].) Lower bounds for the Proper
Forcing Axiom are typically obtained using anti-square posets, which take
the form σ-closed ∗ ccc. (For a particularly relevant example, see [3].) One
might expect by analogy with the forcing-axiom case that proper in�eo-
rem 1.1(b) can be replaced by σ-closed ∗ ccc. Our main theorem con�rms that
expectation.

�eorem 1.2. If L(R)-absoluteness holds for σ-closed ∗ ccc posets, then ℵ1
is remarkable in L.

Whereas Schindler’s proof uses almost-disjoint coding, our proof expands
on the coding methods introduced by Harrington–Shelah, who showed that
L(R)-absoluteness for ccc posets is equiconsistent with the existence of a
weakly compact cardinal. (A version of this theorem appears in Harrington–
Shelah [8,�eorem C]. See [7] for the upper-bound portion of the argument,
due to Kunen.) Assuming that ℵV

1 is not weakly compact in L, they code an
uncountable sequence of reals into a single real by specializing an Aronszajn
tree. Since ℵ1 can be weakly compact in L without being remarkable in L,
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we must expand these coding techniques to trees that may have large levels.
�e ccc part of our poset will be a modi�ed specializing poset, following
Harrington–Shelah, but �rst we must add the tree to be specialized.�e trees
we use bear some resemblance to those of [16], and in Section 5 we adapt
the methods of that article to obtain a �ner lower bound on the consistency
strength of L(R)-absoluteness for σ-closed ∗ ccc posets.
In Sections 6 and 7 we generalize a re�ection principle that arises in our

analysis of trees on ω1 and make some initial observations, leaving many
questions open for future work.

2. The coding argument

In this section we show how to use our generic-absoluteness assumption
to establish a principle about trees on ω1. In the next section, we will use that
principle in a σ-closed extension to deduce that ℵV

1 is remarkable in L.
�e �rst di�culty in adapting the coding methods of [8] is that our trees

will not belong to L, so they too will have to be coded. A more substantive
di�culty is that, although our trees will have size ℵ1, they will typically have
uncountable levels. With a view toward de�ning a suitable countable analogue
of the αth level of a tree, we present our trees as increasing sequences of
countable subtrees.

De�nition 2.1. A tree presentation is a sequence T⃗ = ⟨Tα ∶ α ≤ ω1⟩ of trees
satisfying the following conditions.
(i) T⃗ is concrete: Each Tα is a tree on a subset of ω1. Moreover, the height
of Tα is a limit ordinal, and Tα is countable i� α is countable.

(ii) T⃗ is increasing: if α < β then Tα ⊆ Tβ. Moreover, if α < β, then Tβ is
an end-extension of Tα: that is, if s ≤Tβ

t and t ∈ Tα, then s ∈ Tα also.
(iii) T⃗ is continuous: if α ≤ ω1 is a limit ordinal, then Tα = ⋃β<α Tβ.

Remarks.
(1) Any two presentations of the same tree agree on a club. �at is, if

⟨Tα ∶ α ≤ ω1⟩ and ⟨Uα ∶ α ≤ ω1⟩ are two tree presentations with
Tω1 = Uω1 , then Tα = Uα for a club of α < ω1.

(2) If Tω1 is an Aronszajn tree, then one naturally obtains a tree presenta-
tion of Tω1 by taking Tα to be the set of nodes on level < α.

We will typically use ≤ or ≤T⃗ to refer to the order on any tree in a tree
presentation.

De�nition 2.2. Let T⃗ = ⟨Tα ∶ α ≤ ω1⟩ be a tree presentation.�e αth boundary

of T⃗ is the set of suprema in Tω1 ∖ Tα of branches through Tα .�at is, a node
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t ∈ Tω1 lies on the αth boundary of T⃗ i� t ∉ Tα but

{s ∈ Tω1 ∶ s < t} ⊆ Tα .

De�nition 2.3. Let X be a subset of ω1 and T⃗ be a tree presentation. We say
that X is codable along T⃗ if Tω1 has no uncountable branches, but the set

{α < ω1 ∶ Tα has a co�nal branch in L[X ∩ α]}

is club in ω1.
�e Tree Re�ection Principle at ℵ1, abbreviated TRP(ℵ1), is the assertion

(∀X ⊆ ω1)(∀tree presentations T⃗)X is not codable along T⃗ .

Here we are primarily interested in presentations of trees that have uncount-
able levels, but De�nition 2.3 is relevant even for ℵ1-Aronszajn trees. Even if
Tα has many co�nal branches (as will be the case if Tω1 has only countable
levels, for example), it may not have any co�nal branches in L[X ∩ α]. In
fact, TRP(ℵ1) is consistent (see�eorem 2.4), so it does not contradict the
existence of ℵ1-Aronszajn trees.
Our main theorem,�eorem 1.2, factors conveniently through the Tree

Re�ection Principle.

�eorem 2.4. L(R)-absoluteness for ccc posets implies TRP(ℵ1).

Since σ-closed posets do not add reals, L(R)-absoluteness for σ-closed ∗
ccc posets holds if and only if L(R)-absoluteness for ccc posets holds in every
extension by a σ-closed poset. With this observation in hand, we obtain the
following corollary.

Corollary 2.5. L(R)-absoluteness for σ-closed ∗ ccc posets implies that
TRP(ℵ1) holds in every σ-closed forcing extension.

Combining the forward direction of Schindler’s�eorem 1.1 with Corol-
lary 2.5 gives the following consistency result.

�eorem 2.6. AssumeV = L. If κ is a remarkable cardinal, then inVColl(ω,<κ)

the following holds: TRP(ℵ1) holds in every extension by a σ-closed forcing.

�eorem 2.6 can be proved directly, without going through�eorem 2.4.
�e following theorem will be proved as�eorem 3.1, completing the proof

of�eorem 1.2.

�eorem. If TRP(ℵ1) holds in every σ-closed forcing extension, then κ = ℵV
1

is remarkable in L.

Now we turn toward the proof of�eorem 2.4.
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2.1. Coding along trees. �e following lemma gets to the heart of our coding
argument.

Lemma 2.7. Suppose that X is codable along T⃗ . �en, in a ccc generic
extension, there is a real g such that L[g] has uncountably many reals.

We may assume that ℵL[X∩α]
1 is countable for every α < ω1; otherwise we

could take the trivial poset and let g be any real coding X ∩ α.
Let C ⊆ ω1 be a club witnessing that X is codable along T⃗ . In a series of

claims we modify T⃗ until it is suitable for coding.

Claim 2.8. �ere is a tree presentation T⃗ ′ = ⟨T ′

α ∶ α ≤ ω1⟩ such that T ′

ω1 has
no co�nal branches and for every α ∈ C, the subtree T ′

α has in�nitely many
co�nal branches in L[X ∩ α]. Moreover, for any �nite subset F of Tω1 , there
are in�nitely many co�nal branches of T ′

α in L[X ∩ α] each disjoint from F.

Proof of Claim 2.8. Let T ′

α be the image under a de�nable bijection ω1 × ω →

ω1 of Tα × ω ordered as the disjoint union of in�nitely many copies of Tα .

By replacing T⃗ with T⃗ ′ if necessary, we may assume that T⃗ satis�es the
conclusion of Claim 2.8.

Claim 2.9. �ere is a tree presentation T⃗ ′ = ⟨T ′

α ∶ α ≤ ω1⟩ satisfying the
conclusion of Claim 2.8 such that T ′

ω1 has no co�nal branches and if b ∈

L[X ∩ α] is a co�nal branch through Tα, then b has a supremum in Tα+1.

Proof of Claim 2.9. Notice �rst that Tα has countably many co�nal branches
in L[X ∩ α], by our assumption that ℵL[X∩α]

1 is countable. Recursively de�ne
● T ′

0 = T0,
● T ′

γ = ⋃β<γ T
′

γ for γ limit, and
● T ′

α+1 = T ′

α ∪ Sα,
where the order on T ′

α is extended to make Sα exactly the set of suprema of
co�nal branches through Tα that belong to L[X ∩ α]. Notice that Tα and
T ′

α have the same branches, so in fact T ′

α+1 has suprema of every branch in
L[X ∩ α] through T ′

α.
To satisfy concreteness, the Sα should be chosen to be sets of countable

ordinals, and in the end a de�nable bijection ω1 × 2 → ω1 should be used
to ensure that the T ′

α are trees on ω1. We leave it to the reader to �ll in the
details.

�e point of Claim 2.9 is to guarantee that the specializing function will
not diverge along a countable branch of the tree. Again, by replacing T⃗ with
T⃗ ′ if necessary, we may assume that T⃗ satis�es the conclusion of Claim 2.9.
Now we can mimic the coding argument in [8], using the presentation

⟨Tα ∶ α ≤ ω1⟩ in place of the sequence of initial segments of the tree.
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We review the de�nition of the modi�ed specializing poset de�ned in [8],
tweaked for our purposes.

De�nition 2.10. Let ⟨dα ∶ α < ω1⟩ be a sequence of reals, construed here
as subsets of ω. Conditions in the poset P(dα ∶ α < ω1) are �nite partial
specializing functions Tω1 ⇀ Q that code d⃗ along T⃗ . Precisely, a condition is
a �nite partial function p∶Tω1 ⇀ Q with the following properties:
(a) s < t in Tω1 implies p(s) < p(t) inQ, and
(b) if t is on the αth boundary of T⃗ and belongs to the domain of p, then
either p(t) ∈ dα or p(t) is not an integer.

Baumgartner’s original argument for the ccc of the specializing poset (see [9,
Lemma 16.18], for example) can be repeated to show:

Claim 2.11. If Tω1 has no uncountable branches, then P(dα ∶ α < ω1) has the
ccc.

Suppose that G is P(dα ∶ α < ω1)-generic and consider the generic special-
izing function f = ⋃G∶Tω1 → Q.

Remarks.
(1) As in [8], a crucial observation for us is that f is continuous: if t is a
node on a limit level of Tω1 then f (t) = sup{ f (s) ∶ s < t}.

(2) �e other crucial observation is that f ′′Bα ∩Z = dα for α ∈ C, where
Bα is the intersection of the αth boundary of T⃗ with L[X ∩ α].�e ⊆
inclusion follows directly from condition (b) in the de�nition of the
poset; the other inclusion follows from a genericity argument, using
the properties of the presentation obtained in Claims 2.8 and 2.9.

Proof of Lemma 2.7. It will be convenient and harmless to assume that T0 has
in�nite height. For α < ω1 we will write α∗ for min(C ∖ (α + 1)).
�e ccc poset will be a length-ω �nite-support iteration of posets of the

form P(dα ∶ α < ω1). Since each iterate is ccc, the full iteration is ccc.1
First, let ⟨d0α ∶ α < ω1⟩ be any sequence of ω1 distinct reals such that, for

all α ∈ C, d0α codes α∗, Tα∗ , and X ∩ α∗. Suppose inductively that fn is the
generic specializing function added by P(dn

α ∶ α < ω1). Let dn+1
α be a real

coding fn ↾ Tα∗ .
In the extension by the full iteration, let g be any real coding (the countable

sequence of reals) ⟨dn
β
∶ n < ω, β <min(C)⟩.

We will verify that X, C, ⟨dn
α ∶ α < ω1⟩, and T⃗ all belong to L[g]. �is

su�ces, since it implies in particular that ⟨d0α ∶ α < ω1⟩ ∈ L[g]. We prove
by induction on α ∈ C that dn

α belongs to L[g]. Moreover, the proof gives
1Note that the tree Tω1 is special a�er the �rst forcing, so none of the later posets can add
uncountable branches to it.



CODING ALONG TREES AND GENERIC ABSOLUTENESS 7

a uniform de�nition of dn
α in L[g] from n and α; this uniformity in turn is

used for the limit case of the proof.
�e base case of α =min(C) is immediate from the choice of g.
Suppose �rst that the induction hypothesis holds for α ∈ C; we will show

that it holds for α∗. From d0α we can decode α∗, Tα∗ , and X ∩ α∗. From dn+1
α

we can decode fn ↾ Tα∗ , which gives us dn
α∗ by Remark (2).

�e interesting case is when α ∈ lim(C). As in Remark (2), let Bα be the
intersection of the αth boundary of T⃗ with L[X∩α]. We claim that Bα belongs
to L[g]. By the inductive assumption and the uniformity of the proof, the
sequence ⟨dn

β
∶ n < ω, β ∈ C ∩ α⟩ belongs to L[g]. From this sequence one

can decode X ∩ α, Tα, and f ↾ Tα. From Tα and X ∩ α one can decode Bα.
Moreover, if s ∈ Bα , then we can (in L[g]) compute fn(s): the continuity of

f implies that fn(s) = sup{ fn(t) ∶ t ≤ s, t ∈ Tα}. Now dn
α = f ′′n Bα ∩Z belongs

to L[g], and the induction is complete.

We need one more fact, which is well known.

�eorem 2.12 (Woodin). Suppose that L(R)-absoluteness holds for ccc po-
sets. �en ℵ1 is inaccessible to the reals, meaning that ℵ

L[x]
1 < ℵ1 for every

real x.

�eorem 2.12 follows from a lemma ofWoodin [24]: If X is an uncountable
sequence of reals in V and c is Cohen-generic over V , then in V[c] there is
no random real over L(X , c). In fact, full L(R)-absoluteness for ccc posets
is not needed for�eorem 2.12; the theorem can be proved from the abso-
luteness of Σ14 sentences to Cohen and Random extensions. (See Bagaria [1,
�eorem 2.1.1.3].) Likewise,�eorem 2.4 requires only the absoluteness of Σ14
sentences to ccc extensions, since the existence of a real x for which ℵL[x]

1 is
uncountable can be expressed as a Σ14 sentence.

Proof of�eorem 2.4. �e theorem follows immediately from Lemma 2.7, the
de�nition of “codability along T⃗ ,” and�eorem 2.12.

3. The reflection argument

We will complete our proof of�eorem 1.2 by proving the following theo-
rem.

�eorem 3.1. Suppose that TRP(ℵ1) holds in every extension by a σ-closed
poset.�en κ = ℵV

1 is a remarkable cardinal in L.

De�nition 3.2 (Schindler). Let κ be a cardinal and λ ≥ κ another cardinal.
We say that κ is λ-remarkable if there is a cardinal λ < κ and in the extension
VColl(ω,<κ) an elementary embedding j∶H(λ) → H(λ) such that j(κ) = κ,
where κ is the critical point of j.
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If κ is λ-remarkable for every λ > κ, then we just say that κ is remarkable.

Remarks.
(1) If we replaced VColl(ω,<κ) with V in the de�nition, we would get su-
percompactness, by a theorem of Magidor [13]. (See [11,�eorem
22.10].)

(2) �e embedding j in the de�nition is (in VColl(ω,<κ)) a countable object;
its existence is therefore absolute between any two extensions of V
where κ = ℵ1.

(3) By standard arguments, if κ is λ+-remarkable, then in VColl(ω,<κ) the
set of X ∈ [H(λ)]ω for which the anticollapse of X witnesses the
λ-remarkability of κ is stationary in [H(λ)]ω. (See [20].)

See Schindler [22, Lemma 1.6] for a characterization of remarkability that
does not refer to forcing.
In consistency strength, remarkable cardinals sit strictly between ine�able

and ω-Erdős cardinals. (�is is proved in [22].) For a more detailed analysis
of the consistency strength of remarkable cardinals, see [6, §4], but for our
purposes the following will su�ce.

Fact (Schindler [22]).
(a) Every remarkable cardinal is weakly compact.
(b) If 0♯ exists, then every Silver indiscernible is remarkable in L.
(c) Remarkability is downward-absolute to L.

Since their discovery by Schindler, remarkable cardinals have been ana-
lyzed from many perspectives. For instance, Cheng and Gitman [4] de�ne a
version of the Laver Preparation for remarkable cardinals and use it to obtain
an indestructibly remarkable cardinal, and their ideas are extended in [3]
to obtain a weak version of the Proper Forcing Axiom from a remarkable
cardinal. It is also shown there that this weak version of PFA implies that ℵV

2
is remarkable in L. In Section 7, we will show that their forcing axiom implies
a strong form of the Tree Property at ℵ2.

3.1. Remarkability from branchless trees. Let κ = ℵV
1 . Let λ ≥ κ be an

ordinal and f ∶ κ → λ a bijection. (We will later assume that λ is a cardinal
of L and force to add f .)�e rest of the de�nitions in this section are made
relative to f and λ.
In order to re�ect properties of ⟨κ, λ⟩ to a pair ⟨κ, λ⟩ of countable ordinals,

we need to arrange that κ is ℵ1 in a suitable inner model. For this we use the
following tree, a version of the tree of attempts to express κ as an ordinal of
countable co�nality, modi�ed to have height ω1.

De�nition 3.3. Let S, a tree of height κ, be de�ned as follows. Nodes are
pairs ⟨α, s⟩, where α < κ is an ordinal and s is a strictly increasing �nite
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sequence of ordinals, each less than κ. We also require that α ∈ [sn−1, sn),
where s = ⟨s0, s1, . . . , sn−1, sn⟩. Nodes are ordered by the ordinal order in the
�rst coordinate and by extension of sequences in the second.

If we de�ne Sβ as in De�nition 3.3 but a�er replacing “< κ” with “< β,” it
is easy to see that we get a tree presentation ⟨Sβ ∶ β ≤ ω1⟩ in the sense of
De�nition 2.1.
Let β ≤ ω1. If b were an uncountable branch through Sβ, then the �rst

coordinates of nodes on b would have to be unbounded in β. Conversely, any
co�nal ω-sequence in β de�nes a co�nal branch through Sβ.�at is, we have:

Lemma 3.4. Sβ has a co�nal branch i� β has countable co�nality.

Our second tree will capture the fact that λ is a cardinal of L.

De�nition 3.5. If δ is an ordinal, then we write γ(δ) for the least ordinal γ
(if any exist) such that δ is not a cardinal in Lγ+1.

Remarks. Notice that if γ(δ) is de�ned, then
(1) γ(δ) < (δ+)L, and
(2) every element of Lγ(δ)+1 is de�nable in Lγ(δ)+1 from parameters in δ.

�e following de�nition will apply to the rest of this section. We will de�ne
point di�erently in Section 5.

De�nition 3.6. Let α < κ. De�ne εα to be the ordertype of f ′′α.
A point is a countable ordinal α such that γ(εα) is de�ned. Points are

ordered as follows. If α and α∗ are points, then we say α <T α∗ i�:
(i) α < α∗ (as ordinals).
(ii) Let j∶ εα → f ′′α and j∗∶ εα∗ → f ′′α∗ be the anticollapse embeddings.
Let π∶ εα → εα∗ be the composite ( j∗)−1 ○ j. �en π extends to an
elementary embedding π̂∶ Lγ(εα)+1 → Lγ(εα∗)+1 with π̂(εα) = εα∗ .

Notice that the extended embedding in (ii) is determined uniquely from π,
by Remark (2) above.
�e de�nition of point depends on both the ordinal λ and the function f .

When we wish to emphasize this dependence, we will call a point a ⟨λ, f ⟩-
point.
Let T = T(λ, f ) be the tree of increasing sequences of ⟨λ, f ⟩-points.

Lemma 3.7. If there is an uncountable branch through T(λ, f ), then λ is not
a cardinal of L.

Proof. Let ⟨αξ ∶ ξ < ω1⟩ be a branch through T of length ω1 and for conve-
nience put ε(ξ) = εαξ

. For ξ < ζ < ω1 let πξ,ζ ∶ ε(ξ)→ ε(ζ) and π̂ξ,ζ ∶ Lγ(ε(ξ))+1 →

Lγ(ε(ζ))+1 be the maps determined by (ii) above. It is easy to see that the πξ,ζ
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commute, so themaps π̂ξ,ζ also commute. LetM∞ be the direct limit of the sys-
tem ⟨Lγ(ε(ξ))+1, π̂ξ,ζ ∶ ξ < ζ < ω1⟩, which is wellfounded since it is taken along
a sequence of length ω1. Let π̂ξ,∞∶ Lγ(ε(ξ))+1 → M∞ be the direct-limit maps.
Because the maps π̂ξ,ζ extend the maps πξ,ζ determined by the anticollapses
of f ′′α, because supξ αξ = κ = ω1, because π̂ξ,ζ(є(ξ)) = є(ζ), and because
f ′′κ = λ, the modelM∞ is an end-extension of Lλ+1, and π̂ξ,∞(ε(ξ)) = λ for
every ξ. But then, by the elementarity of these maps, λ is not a cardinal in
M∞, so λ is not a cardinal in L.
Lemma 3.8. If λ is not a cardinal of L, then there is in L[ f ] a branch of length
ω1 through T(λ, f ).
Proof. Let γ∗ ≥ λ be least so that λ is not a cardinal in Lγ∗+1. For each α < ω1,
letHα be the hull in Lγ∗+1 of f ′′α.�ere is a clubC of α for whichHα∩λ = f ′′α.
For every α ∈ C, let Mα be the transitive collapse of Hα, let jα ∶Mα → Hα

be the anticollapse embedding, so that jα(εα) = λ and Mα = Lγ(εα)+1 by
elementarity. Every α ∈ C is a point, and, for α < α′ each in C, the map
( jα′)−1 ○ jα witnesses that α <T α′. So C is a branch through T .
It is clear that this construction can be carried out in any inner model with

f as an element, in particular in L[ f ].

�e tree T = T(λ, f ) has a natural tree presentation, namely ⟨T ∩ α ∶ α ≤

ω1⟩.

Proof of�eorem 3.1. Assume the Tree Re�ection Principle at ℵ1 in all count-
ably closed forcing extensions and let λ ≥ κ be a cardinal of L. We must show
that κ is λ-remarkable in L.�at is, we must �nd κ < λ < κ and (possibly in a
generic extension of V) an embedding j∶ Lλ → Lλ such that κ is the critical
point of j and j(κ) = κ.�e de�nition requires the domain of j to be H(λ)L,
so we must also arrange that λ is a cardinal of L; this is the main di�culty.
By �rst forcing with the (countably closed) poset Coll(ℵ1, λ) if necessary,

we can assume that ∣λ∣ = ℵ1 in V . (By assumption, TRP(ℵ1) holds in this
extension.) Fix a bijection f ∶ κ → λ. �e embedding we �nd to witness
remarkability will extend the anticollapse of a set f ′′κ.
�e following is routine.

Claim 3.9. �ere are a set X ⊆ κ and a club of κ < κ satisfying the following.
Let H be the hull in Lλ of f ′′κ, and let ρ∶H → Lλ be the collapsing map.
(a) f ′′κ ∩ κ = κ.
(b) H ∩On = f ′′κ.
(c) �e map ρ ○ f ∶ κ → λ belongs to L[X ∩ κ].
(d) For every α < κ, L[X ∩ κ] ⊧ ∣α∣ ≤ ℵ0.
Fix X ⊆ κ as given by Claim 3.9. We can use Lemma 3.4 to see that Sκ

has no uncountable branches in V . Since λ is a cardinal of L, we can use
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Lemma 3.7 to see that T(λ, f ) has no uncountable branches in V . We can
therefore apply TRP(ℵ1) to the natural tree presentation of S ∪ T(λ, f ) to
obtain a stationary set of κ < κ such that Sκ and T(λ, f ) ∩ κ each have no
co�nal branches in L[X ∩κ]. Fix such a κ that also satis�es the conclusions of
Claim 3.9. Lemma 3.4 applied in L[X∩κ] to Sκ implies that κ has uncountable
co�nality in L[X ∩ κ]; combining this fact with item (d) of Claim 3.9, we see
that κ = ℵ

L[X∩κ]
1 .

Let H be the hull in Lλ of f ′′κ, and notice that H is countable. By Con-
densation, H collapses to an initial segment Lλ of L; let ρ∶H → Lλ be the
collapsing map. We aim to show that ρ−1 witnesses the λ-remarkability of κ.
By clauses (a) and (b) of Claim 3.9, ρ−1 has critical point κ, and the image of
its critical point is κ.
Let f ∶ κ → λ be themap ρ○ f . Clause (c) of Claim 3.9 ensures that f belongs

to L[X ∩ κ].

Claim 3.10. �e tree T(λ, f ) ∩ κ is exactly the tree T(λ, f ) as computed in
the model L[X ∩ κ].

Proof of Claim 3.10. �e key observation is that ρ restricts to an order isomor-
phism f ′′α → f ′′α for every α < κ.�is and the fact that κ = ℵ

L[X∩κ]
1 imply

that α < κ is a ⟨λ, f ⟩-point in V i� it is a ⟨λ, f ⟩-point in L[X ∩ κ].
To see that the tree orderings agree for ⟨λ, f ⟩-points and for ⟨λ, f ⟩-points,

notice that the maps π in item (ii) of De�nition 3.6 are the same for ⟨λ, f ⟩-
points and ⟨λ, f ⟩-points, since the order-isomorphisms given by ρ commute
with the maps j and j∗ and their inverses.

�e point of Claim 3.10 is that

L[X ∩ κ] ⊧ T(λ, f ) has no co�nal branches,

so we can apply Lemma 3.8 in L[X ∩ κ] to T(λ, f ), concluding that λ is
a cardinal of L. (Here we have used the fact that L[X ∩ κ] ⊇ L[ f ], which
follows from item (c) of Claim 3.9.)�is concludes the proof that ρ−1∶ Lλ → Lλ

witnesses the λ-remarkability of κ in L.

4. Generic absoluteness from remarkability

In this section we review the upper-bound portion of Schindler’s theo-
rem (�eorem 1.1(a)), that L(R)-absoluteness for proper posets holds in the
extension by the Levy collapse to turn a remarkable cardinal into ℵ1. �e
point of this diversion is to emphasize the level-by-level upper bound that his
argument gives. We will need to strengthen our de�nition of λ-remarkability

so that it better resembles the de�nition of λ-subcompactness.
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De�nition 4.1. Let κ ≤ λ be cardinals. We say that κ is strongly λ-remarkable

if for every X ⊆ λ there is in VColl(ω,<κ) an embedding j∶ ⟨H(λ), X , κ⟩ →
⟨H(λ), X , κ⟩ such that κ < κ and j ↾ κ is the identity.

A standard argument shows that if κ is strongly λ-remarkable, then in
VColl(ω,<κ) the set of M ∈ [H(λ)]ω whose anticollapses witness the strong
λ-remarkability of κ is stationary in [H(λ)]ω.
A cardinal is remarkable if and only if it is strongly λ-remarkable for all λ,

since
λ+-remarkable ⇒ strongly λ-remarkable ⇒ λ-remarkable.
Recall that a poset P is µ-linked if there is a function f ∶P → µ such that

f (p) = f (q) only if p and q are compatible conditions.
We show that Schindler’s argument gives the following re�ned version of

�eorem 1.1(a).

�eorem 4.2. Assume V = L. If κ is strongly µ+-remarkable, then in the
extension VColl(ω,<κ), L(R)-absoluteness holds for posets that are proper and
µ-linked.

By well-known arguments (see [22, Lemma 2.2] and also [2, Lemma 1.2]),
it su�ces to show the following:

�eorem. Assume V = L. Suppose that κ is strongly µ+-remarkable, G is
Coll(ω, <κ)-generic over V , and H is generic over V[G] for some proper,
µ-linked poset P ∈ V[G]. Suppose further that x is a real in V[G][H].�en
in V there are a poset Qx of size < κ and a Qx-generic F over V such that
x ∈ V[F].

Assume V = L. We �rst reduce the problem to posets of size µ+.

Claim 4.3. If P is a µ-linked poset and τ is a P-name for a real, then P has a
µ-linked complete subposet P of size µ+ such that τ is a P-name.
Consequently, the empty condition forces τ[Ġ ∩P] = τ[Ġ], where Ġ is the

canonical name for the generic.

Proof. Since µ-linked posets have the µ+-cc, we can assume that the name
τ has size µ. Let f ∶P→ µ witness the linkedness of P. Choose θ su�ciently
large, and let X ≺ H(θ) be an elementary submodel of size µ+ such that
Xµ ⊆ X and τ ∈ X.�en P ∩ X is as desired. Notice that f ↾ P ∩ X witnesses
that P∩ X is µ-linked, and every maximal antichain of P∩ X is maximal in P,
by the elementarity of X and the fact that X is closed under µ-sequences.

In V[G], let P be a µ-linked, proper poset, and let τ be a P-name for the
real x. In light of Claim 4.3, we can assume that P has size µ+. By replacing P
with an isomorphic copy, we can further assume that P ⊆ µ+. Let f ∶ µ+ → µ
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witness that P is µ-linked. Both P and f are coded by subsets of µ+, so we
can apply the strong µ+-remarkability of κ to �nd (in V[G]) an embedding
j∶ Lµ+ → Lµ+ such that

● j has critical point κ,
● j(κ) = κ,
● there are P, τ, and f such that j is an elementary map ⟨Lµ+ ,P, τ, f ⟩→

⟨Lµ+ ,P, τ, f ⟩,
● and µ is a cardinal of L.

As noted earlier, images of embeddings of this type form a stationary subset
of [Lµ+]

ω. We can therefore extend j to an embedding Lθ → M ≺ Lθ , which
we also call j, for whichM is countable and P, τ, f ∈ M. (We do not assume
that θ is a cardinal of L.) Take θ large enough to witness the properness of P
in V[G].

Claim 4.4. M[G] ∩On = M ∩On.

Proof of Claim. �is just uses the κ-cc of the collapse. Suppose that σ ∈ M is
a Coll(ω, <κ)-name for an ordinal. Since Coll(ω, <κ) has the κ-cc, we can
assume that σ has size < κ. By elementarity of M the size of σ belongs to
M ∩ κ = κ. Since κ ⊆ M it follows that σ ⊆ M. It follows by standard forcing
arguments that σ[G] ∈ M.

Claim 4.5. M[G] ≺ Lθ[G].

Proof. �is is a standard forcing argument, using no special properties of the
poset.

So we have an extended anticollapse embedding, which we also call j,
from a model of ordinal height θ onto its image M[G]. By a condensation
argument, the domain of jmust be exactly Lθ[G], where G = j−1′′G = G ∩ κ.
(�is follows from the fact thatM ∩ κ = κ.)

Claim 4.6. �e set of countable N ≺ Lθ[G] such that N = M[G] for some
M = N ∩ V ≺ Lθ is club in [Lθ[G]]ω.

Proof. �is is another straightforward application of the collapse’s chain con-
dition. �e set is clearly closed. Consider some countable set X ⊆ Lθ[G].
�ere is a countable set X∗ of Coll(ω, <κ)-names, each of size < κ (i.e., count-
able in V[G]), for the members of X. Choose a countable model M ≺ Lθ

such that X∗ ⊆ M. Since each name σ ∈ X∗ is countable, it is a subset ofM,
soM[G] ⊇ X.

In light of Claim 4.6 and the properness of P, we can choose our modelM
so that P has master conditions forM[G]; that is, we can chooseM ≺ Lθ so
that H is P-generic overM[G].
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We have an embedding j∶ Lθ[G] → M[G] ≺ Lθ[G] with critical point κ.
Recall that P = j−1(P) and τ is the P-name j−1(τ). Let H = j−1′′H. �e
elementarity of j implies that H is P-generic over Lθ[G].

Claim 4.7. H is P-generic over L[G].

Proof. �e strength of the remarkability assumption in L comes from the
ability to choose the height of the embedding’s domain to be a cardinal of
L, and it is here that we make use of that. By the κ-cc of Coll(ω, <κ), the L-
cardinal µ+ remains a cardinal in L[G], the extension by Coll(ω, <κ). Every
antichain of P has size ≤ µ, since f witnesses the µ-linkedness of P. It follows
that every antichain of P in L[G] belongs to Lµ+[G]. And now, since H is
P-generic over Lθ[G] ⊇ Lµ+[G], it must also be generic over L[G].

Now we’re ready to argue that the real x belongs to L[G][H], a generic
extension of L by the small poset Qx ∶= Coll(ω, <κ)∗ Ṗ.�is follows, in L[G],
from the fact that τ is a P-name for x:

n ∈ x i� (∃p ∈ H)p ⊩P ň ∈ τ

i� (∃p ∈ H ∩M[G])p ⊩P ň ∈ τ

i� (∃p ∈ H ∩ Lθ[G])p ⊩P ň ∈ τ

i� ň ∈ τ[H].

�e second “i�” uses the fact thatH is generic overM[G], the third “i�” uses
the elementarity of j, and the fourth uses the Forcing�eorem, for which we
needed to know that H was P-generic over L[G].

Remark. Although Neeman & Zapletal obtained L(R)-absoluteness for rea-
sonable2 posets, Schindler’s proof here seems to use properness in an essential
way. Indeed, Schindler has shown [21] that L(R)-absoluteness for reasonable
posets is strong enough to give an inner model with a strong cardinal, much
stronger in consistency strength than the existence of a remarkable cardinal.

5. A better lower bound

In the previous section, we showed that the consistency of a strongly λ+-
remarkable cardinal is enough to imply the consistency of L(R)-absoluteness
for λ-linked proper posets.�e arguments of Sections 2 and 3 give a naive
level-by-level lower bound, too: L(R)-absoluteness for σ-closed ∗ ccc posets
that are λ-linked implies the λ-remarkability of ℵV

1 in L. While we do have
an equiconsistency between full remarkability and L(R)-absoluteness for all

2A poset P is reasonable if for all uncountable cardinals κ, ([κ]ω)V is stationary in ([κ]ω)VP
.

See [5].
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σ-closed ∗ ccc posets, we do not have a level-by-level equiconsistency. In this
section, we improve the naive lower bound to get closer to a level-by-level
equiconsistency. To do this, we adapt the methods of Neeman [16].

De�nition 5.1 (See [16]). Let λ be a cardinal. A Σ21 truth for λ is a pair ⟨Q ,ψ⟩

such thatQ ⊆ λ, ψ is a �rst-order formula with one free variable, and there is a
set B ⊆ H(λ+) (called the witness for ⟨Q ,ψ⟩) such that ⟨H(λ+), ∈, B⟩ ⊧ ψ[Q].
An interval [κ, λ] of cardinals is called Σ21 -indescribable if for every Σ21

truth ⟨Q ,ψ⟩ for λ, there are cardinals κ ≤ λ < κ, Q ⊆ λ, and an embedding
j∶H(λ)→ H(λ) such that ⟨Q ,ψ⟩ is a Σ21 truth for λ, and j is elementary from
⟨H(λ), ∈, κ,Q⟩ to ⟨H(λ), ∈, κ,Q⟩ with j ↾ κ = id.
We de�ne what it means for the interval [κ, λ] to be Σ21 -remarkable by weak-

ening the de�nition of “Σ21 -indescribable” to require only that the embedding
j exist in VColl(ω,<κ).

Notice that the interval [κ, λ] is Σ21 -indescribable for every λ ≥ κ if and only
if κ is supercompact. (See [18].) A similar argument shows that, likewise, the
interval [κ, λ] is Σ21 -remarkable for every λ ≥ κ if and only if κ is remarkable.

�eorem 5.2. Let κ = ℵV
1 , and let λ ≥ κ be a cardinal of L. Assume L(R)-

absoluteness for σ-closed ∗ ccc posets that are also c ⋅ ∣λ∣-linked.�en, in L,
the interval [κ, λ] is Σ21 -remarkable.

�e reader may, of course, replace c ⋅ ∣λ∣ with ∣λ∣ at the cost of assuming CH,
but there are models where L(R)-absoluteness for proper posets holds but
2ℵ0 ≥ ℵ2. For example, force over L with Coll(ω, <κ), where κ is remarkable,
and then force over the extension to add ℵ2 Cohen reals.
To prove�eorem 5.2 we must repeat the argument of Section 3, �nding

an embedding j∶ Lλ → Lλ that witnesses the λ-remarkability of κ and also
re�ects a prescribed Σ21 truth ⟨Q ,ψ⟩ for λ.
We adapt the methods of [16], especially those of the �rst section of that

paper, though we will re�ect a gap [κ, λ] of cardinals instead of a single
cardinal κ (which in that paper is ωV

2 ). Whereas the embeddings of [16]
extend inclusion maps ε → ε, ours will extend re�ections of a bijection κ → λ.
Our strategy will initially resemble our strategy in Section 3, though we

will have to work harder to re�ect a Σ21 truth. We �rst collapse λ to have size
κ, �xing a bijection f ∶ κ → λ in the extension. It will be convenient to assume
that f (0) = κ, so that in what follows we needn’t worry about taking α large
enough that κ ∈ f ′′α. We will ultimately capture the Σ21 truth by applying the
Tree Re�ection Principle to many more trees than we considered in Section 3.
If we could collapse λ+L, then we could establish the Σ21 -remarkability of

[κ, λ+L], which implies our desired conclusion. In particular, we needn’t
consider the case when λ+L has countable co�nality in V .



16 ITAY NEEMAN AND ZACH NORWOOD

5.1. Basic de�nitions. De�nitions in this subsection are made relative to a
function f whose domain is κ = ℵ1 and whose range is an ordinal λ. We cau-
tion the reader that our re�ection argument will later require us to relativize
these de�nitions to a di�erent function f whose domain, while countable, is
ℵ1 in an inner model of V . �e dependence on f will not always be made
explicit, both to maintain readability and because later we will show that
many de�nitions do not change a�er relativizing.
De�nition 5.3. For α ≤ κ, let πα denote the collapsing map of f ′′α, and let εα

denote range(πα). Finally, we write fα,α′ ∶ εα → εα′ for the function πα′ ○ π−1α .
Fix a club C ⊆ κ on which α ↦ εα is one-to-one.
An f -point is a limit ordinal β such that there is α ∈ C ∪ {κ} satisfying the

following conditions.
● Lβ ⊧ εα is the largest cardinal, and
● β is not a cardinal of L.

�e α in the de�nition is unique (by choice of C), is called the level of β, and
is denoted α(β). We will write ε(β) for εα(β). (�e reader is encouraged to
think of α as re�ecting κ and of εα as re�ecting λ.)
Notice that α(β) depends on the club C, but only on C ∩ β.

NB. Unlike in [16], the level of an f -point β is not the largest cardinal in Lβ.
We will continue to use De�nition 3.5: write γ(β) for the least γ (if any

exist) such that β is not a cardinal in Lγ+1.
Let β be a point on level α. Let α < α and let H be the hull in Lγ(β)+1 of

range( fα,α) (= πα
′′( f ′′α)). We say that α is stable in the f -point β if α ⊆ f ′′α

and H ∩ εα = range( fα,α). In that case, the anticollapse of H is an embedding
M → Lγ(β)+1 that extends fα,α and has critical point α. Its domainM must be
a level of L; in fact, it must be Lγ(β)+1 for some β, which we denote projα(β),
and β must be an f -point on level α.�e antiprojection embedding, which
we call jβ,β∶ Lγ(β)+1 → Lγ(β)+1, is unique because β projects below εα.

Claim 5.4. Suppose that β is an f -point and that α < α is an ordinal.�ere is
at most one f -point β on level α such that there is an elementary embedding
j∶ Lγ(β)+1 → Lγ(β)+1 with critical point α.

�e proofs of the following two claims are straightforward and analogous
to the proofs of Claims 1.3–1.4 of [16].
Claim 5.5 (Commutativity of projections). Suppose that α < α < α∗ and that
β, β, and β∗ are all f -points, respectively on levels α, α, and α∗. Suppose
further that β = projα(β∗) and β = projα(β). (We mean this to imply that α

is stable in β and α is stable in β∗.)�en α is stable in β∗, projα(β∗) = β, and
jβ,β∗ = jβ,β∗ ○ jβ,β.
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Claim 5.6 (�e projection ordering is “treelike”). Suppose that α < α < α∗

and that β, β, and β∗ are all f -points, respectively on levels α, α, and α∗.
Suppose that β = projα(β∗) and β = projα(β∗).�en β = projα(β).

�e following claim is analogous to Claim 1.5 of [16] and is proved similarly.
Notice that item (2) follows from Claim 5.4.

Claim 5.7 (Points on the same level I). Suppose that β and β∗ are points on the
same level α, with β < β∗. Let α < α be stable in β∗, let β

∗

= projα(β∗), and
let j∗ denote j

β
∗

,β∗ . Suppose that β is de�nable in Lγ(β∗)+1 from parameters
in range( fα,α) (that is, β belongs to the range of j∗).�en:
(1) α is stable in β.

Let β = projα(β) and let j = jβ,β.

(2) β = ( j∗)−1(β). (In particular, projα(β) < projα(β∗).)
(3) j = j∗ ↾ Lγ(β)+1.

A thread of f -points is a sequence T = ⟨βα ∶ α ∈ D⟩ such that:
(i) D is club in ω1, and, for each α ∈ D, βα is an f -point.
(ii) Let α ∈ D and let α < α.�en α ∈ D i� α is stable in βα.
(iii) Let α < α both belong to D.�en βα = projα(βα).

By Claim 5.5, the system
⟨Lγ(βα)+1, jβ,β ∶ α, α ∈ C , α < α⟩

commutes. We write dlm(T) to denote the direct limit of this system. Since
this direct limit is taken along a sequence of uncountable co�nality, the direct
limit is well-founded and therefore a level of L; in fact, it must equal Lγ(β∗)+1
for some β∗, and the direct-limit embeddings must be the antiprojection
embeddings jβα ,β∗ . We call β∗ the limit of T and write β∗ = lim(T).

Claim 5.8. Let β be an f -point on level ω1.�en there is a thread T ∈ L[ f ,C]

with lim(T) = β.

Contrast with Claim 1.7 of [16], which draws the stronger conclusion T ∈ L.

Proof. �e hulls in Lγ(β)+1 of f ′′α for α stable in β form a thread whose limit
is β.

5.2. Capturing the Σ21 statement. In [16], a Σ21 statement ⟨Q ,ψ⟩ is captured
by taking direct limits of levels of L that capture ⟨Q ∩α,ψ⟩ for various α; here,
we will need to approximate Q using f , rather than by simply using initial
segments of Q.
�e de�nitions in this section are made relative to a function f as in the

previous section and also to a subset Q of the range of f . Let ψ be a formula
with one free variable. For α ≤ κ, put Qα ∶= πα

′′(Q ∩ f ′′α).
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We say that an f -point β captures ⟨Q ,ψ⟩ if the following hold:
(i) Qα ∈ Lβ.
(ii) �ere is η < γ(β) and there is B ⊆ Lβ in Lη+1 such that ⟨Lβ; ∈, B⟩ ⊧

ψ[Qα].
�e witness of β, denoted η(β), is the least η witnessing condition (ii).

�ere is a subset of Lβ in Lη(β)+1 ∖ Lη(β), and so the following holds.

Claim 5.9. Every element of Lη(β)+1 is de�nable in Lη(β)+1 from parameters
in Lβ.

If β < β∗ are f -points on the same level α that each capture ⟨Q ,ψ⟩, then
we say β and β∗ are compatible if there is an elementary embedding Lη(β)+1 →

Lη(β∗)+1 with critical point β. If β and β∗ are compatible f -points on level α,
then the embedding witnessing this is unique by Claim 5.9 and it is denoted
φβ,β∗ .

Claim 5.10. φβ∗ ,β,∗∗ ○ φβ,β∗ = φβ,β∗∗ .

Let Y be a set of compatible f -points on the same level α.�e direct limit
of the system ⟨Lη(β)+1, φβ,β′ ∶ β, β′ ∈ Y ∧ β < β′⟩ is denoted hlim(Y) and is
called a horizontal direct limit to emphasize that f -points in Y are on the same
level. If hlim(Y) is wellfounded, then it is a level of L and by elementarity of
the direct-limit embeddings it must be the �rst level of L satisfying

(∃B ⊆ Lβ∗) ⟨Lβ∗ , ∈, B⟩ ⊧ ψ[Qα].

Notice that β∗ = sup(Y), because crit(φβ,β′) = β and φβ,β′(β) = β′.
�ere is no reason to expect Q ∩ f ′′α to belong to L, since f need not.

Luckily, we can re�ect membership of Q in L to membership of Qα in Lβ for
many points β, as the next claim shows.

Claim 5.11. Suppose that β and β are f -points and that β = projα(β). Let
j = jβ,β.�en ( j−1)′′Qα = Qα. In particular, if Qα ∈ Lβ, then j−1(Qα) = Qα.

Proof. �is follows immediately from the de�nition of Qα and the fact that j
extends fα,α = πα ○ π−1

α
.

Claim 5.12 (Points on the same level II). Suppose that β and β∗ are points on
the same level α, with β < β∗. Let α < α be stable in β∗, let β

∗

= projα(β∗), and
let j∗ denote j

β
∗

,β∗ . Suppose that β is de�nable in Lγ(β∗)+1 from parameters
in range( fα,α) (that is, β belongs to the range of j∗).
Recall from Claim 5.7 that α is stable in β. Let β = projα(β) and let j = jβ,β.
Suppose also that β and β∗ capture ⟨Q ,ψ⟩ and that α is large enough that

Qα is de�nable in Lγ(β∗)+1 from parameters in range( fα,α).
�en:
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(1) β and β
∗

capture ⟨Q ,ψ⟩.
(2) β and β

∗

are compatible i� β and β∗ are compatible.
Assume that β and β∗ are compatible. Let φ = φβ,β∗ and φ = φ

β,β
∗ .

(3) φ = j∗(φ).
(4) j∗ ○ φ = φ ○ j.

Proof. �e proof resembles the proof of Claim 1.9 in [16], except that our
Claim 5.11 is needed for item (1).

5.3. �e forcing and the trees. Now we suppose that f ∶ κ → λ is a bijection
and that ⟨Q ,ψ⟩ is a Σ21 truth for λ in L.
Following [16], we express the Σ21 truth as a statement about a club E of

points on level κ and then force to add a set K so that limits of threads through
K are exactly the points in E, e�ectively turning the Σ21 statement into a Π11
statement.

Claim 5.13. �ere is a club E ⊆ λ+L such that:
(a) every β ∈ E is an f -point on level κ,
(b) β captures ⟨Q ,ψ⟩,
(c) for any two β, β∗ ∈ E, the points β and β∗ are compatible, and
(d) hlim(E) is wellfounded.

Proof. Follow the proof of Claim 1.11 of [16], replacing κ with λ throughout.

De�nition 5.14. As in [16], we add a system K ⊆ κ by countable conditions
as follows. (�e only clause in this de�nition that di�ers materially from
its analogue in [16, De�nition a�er Claim 1.11] is clause (g).) A condition
in A is a countable set p ⊆ κ ∪ (λ, λ+L) of f -points satisfying the following
conditions.
(a) Every point in p captures ⟨Q ,ψ⟩, and if β ∈ p ∖ κ then β ∈ E.
(b) For every α < κ all the points in p on level α are compatible, and their
horizontal direct limit is wellfounded.

(c) �e set {α < κ ∶ p has points on level α} is closed, with a largest ele-
ment.

�e set of f -points in p on levels < κ is called the stem of p, denoted stem(p),
and the set of f -points in p on level κ is called the commitment of p, denoted
cmit(p). Let levels(p) denote the set of α < κ so that p has f -points on level
α.�e ordering on A is de�ned by setting q ≤ p i� the following conditions
are satis�ed.
(d) p ⊆ q.
(e) If α ∈ levels(p) then p and q have the same f -points on level α. If

α ∈ levels(q) ∖ levels(p) then α ≥ sup(levels(p)).
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(f) If α ∈ levels(q) ∖ levels(p) then α is stable in β for every β ∈ cmit(p),
and

{projα(β) ∶ β ∈ cmit(p)} ⊆ q.
(g) If α ∈ levels(q) ∖ levels(p) then α must be large enough that both of
the following hold.
(i) For every pair β < β′ such that β and β′ both belong to cmit(p),

β is de�nable in Lγ(β′)+1 from parameters in f ′′α; and
(ii) for every f -point β ∈ cmit(p), Q is de�nable in Lγ(β)+1 from
parameters in f ′′α.

(h) If α ∈ levels(q) ∖ levels(p), β, β′ ∈ cmit(p), and there are no ele-
ments of E between β and β′, then there are no f -points in q between
projα(β) and projα(β′). Similarly, if there are no elements of E below
β, then there are no f -points in q on level α below projα(β).

�e proofs of the following two claims follow the proofs of their analogues
Claims 1.12 and 1.14 of [16], with the use and proof of clause (g) modi�ed in
an obvious way.

Claim 5.15. Let ⟨pn ∶ n < ω⟩ be a decreasing sequence of conditions in A.
�en there is a condition q such that q ≤ pn for every n.

Claim 5.16. Let p be a condition in A and let ξ < κ.�ere is q ≤ p such that
q has f -points on levels above ξ.

For Claim 5.16, notice that the proof of Claim 1.14 in [16], even though
κ = ℵV

2 there, needs only that κ has uncountable co�nality in V .
Notice that A is κ-linked, since any two conditions with the same stem are

compatible.
Let G be A-generic over V , and let K = ⋃p∈G stem(p). �e remaining

de�nitions in this section depend on K, f , and C, and will later be relativized
to K ∩ κ, f , and C ∩ κ. A thread T (of height ω1) is a thread through K if
unboundedly many f -points of T belong to K.
We will re�ect the Σ21 statement by re�ecting the branchlessness of several

trees, which we de�ne now.

De�nition 5.17. Let R1 be the tree of attempts to build a thread through K
with unboundedly many f -points on levels in levels(K) that do not belong to
K. More precisely, a node in R1 is an f -point β with α(β) ∈ levels(K) so that
(1) for unboundedly many α < α, projα(β) ∈ K, and
(2) for unboundedly many α < α in levels(K), projα(β) ∉ K (possibly
because α is not stable in β and so projα(β) is not de�ned).

�e ordering on R1 is de�ned by projection: β <R1 β′ i� β = projα(β′).�is is
a tree ordering by Claim 5.6. For α < κ write R1 ↾ α for the tree R1 restricted
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to nodes < α.�is gives a tree presentation ⟨R1 ↾ α ∶ α ≤ κ⟩ in the sense of
De�nition 2.1.

�e following claim is proved exactly like Claim 1.15 of [16], except that
(as usual) “de�nable from parameters in ν” should be replaced by “de�nable
from parameters in f ′′ν.”

Claim 5.18. Let T be a thread of height κ and let β = lim(T).�e following
are equivalent.
(1) T is a thread through K.
(2) β ∈ E.
(3) All su�ciently large points in T on levels in levels(K) belong to K.

It follows that in V[G], R1 has no co�nal branches.

De�nition 5.19. Let R2 be the tree of attempts to build a thread with only
boundedly many points of K to its right.�at is, a node in R2 is a pair ⟨ξ, δ⟩
so that δ is an f -point, α(δ) ∈ levels(K), ξ < α(δ), and for every α that is
stable in δ and greater than ξ, there are no points β of K on level α with
β > projα(δ).�e ordering on R2 is given by equality on the �rst coordinate
and projection on the second: ⟨ξ, δ⟩ <R2 ⟨ξ′, δ′⟩ i� ξ = ξ′ and δ = projα(δ)(δ′).
�e fact that this gives a tree ordering again follows from Claim 5.6.
For α < κwewriteR2 ↾ α tomean the treeR2 restricted to nodes ⟨ξ, δ⟩ ∈ α×

α.�is gives a tree presentation ⟨R2 ↾ α ∶ α ≤ κ⟩ in the sense of De�nition 2.1.

To prove the following claim, copy the proof of Claim 1.17 in [16], replacing
“de�nable from parameters in α” by “de�nable from parameters in f ′′α.”

Claim 5.20. In V[G], R2 has no co�nal branches.

De�nition 5.21. For an f -point δ de�ne β(δ) to be the smallest β > δ in K on
the same level as δ if there is one, and leave β(δ) unde�ned otherwise. If T is
a thread of height ω1, then this function δ ↦ β(δ) is de�ned on unboundedly
many points of T . (See the proof of Claim 1.17 in [16].)
A node in R3 is an f -point δ such that α(δ) ∈ levels(K) and for every

ν < α(δ) there are α ≠ α′ between ν and α(δ) such that β(projα(δ)) and
β(projα′(δ)) are each de�ned, but neither is a projection of the other.�e
ordering on R3 is given by projection: δ <R3 δ′ i� δ = projα(δ)(δ′).
For α < κ we use R3 ↾ α to denote the restriction of R3 to nodes δ < α.�is

gives a tree presentation ⟨R3 ↾ α ∶ α ≤ κ⟩ in the sense of De�nition 2.1.

�e following claim is analogous to Claim 1.18 of [16] and is proved simi-
larly.

Claim 5.22. In V[G], R3 has no uncountable branches.
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5.4. Relativizing de�nitions. Anticipating our need to re�ect f ∶ κ → λ to a
countable function f ∶ κ → λ and work in an inner model in which κ = ℵ1, we
collect some claims relating the de�nitions of the preceding sections relative
to f to those same de�nitions relative to f . For now we need only assume
that κ is (in V) a countable ordinal and that f = πκ ○ ( f ↾ κ). Write λ for εκ,
the range of f .
Where necessary, we will use superscripts to distinguish between a de�ni-

tion relative to f and its analogue relative to f , so for instance we write π
f
α

for the collapsing map f ′′α → εα and π
f
α for the collapsing map f ′′α → εα.

�e de�nition of α(β) depends on the club C, but only on C ∩ β, so it will
be harmless to ignore this dependence.

Claim 5.23. Let β < κ.
(a) β is an f -point i� it is an f -point, and in that case α f (β) = α f (β) and

ε f (β) = ε f (β).
(b) π

f
α = π

f
α ○ (π

f

κ
↾ f ′′α).

Let α = α(β) and let α < α.
(c) fα,α = f α,α.
(d) α is f -stable in β i� it is f -stable in β, and the de�nitions of the
projection map and antiprojection map do not depend on whether f -
or f -points are considered.

Proof. (a) It is enough to check that ε f (β) = ε f (β), and this follows from
the de�nition of f and the fact that π

f

κ
is an order-isomorphism.

(b) is very important but follows immediately from the uniqueness of the
Mostowski collapse.

(c) Follows from the de�nition of fα,α and item (b):

fα,α = π
f
α ○ (π

f

α
)−1 = π

f
α ○ (π

f

κ
↾ f ′′α) ○ ((π

f

κ
)−1 ↾ f ′′α) ○ (π

f

α
)−1

= π
f
α ○ (π

f

α
)−1 = f α,α .

(d) Assuming that β is either f - or f -stable, we get f ′′α = f ′′α, since π
f

κ

is the identity on α.�e rest follows from item (c).

Claim 5.24. Let Q = Qκ = π
f

κ
′′(Q ∩ f ′′κ). �e de�nition of Qα can be

reinterpreted using Q instead of Q; that is, by Qα we mean π
f

α
′′(Qκ ∩ f ′′α).

(a) Qα = Qα.
(b) An f -point β f -captures ⟨Q ,ψ⟩ i� it f -captures ⟨Q ,ψ⟩, and in that
case the de�nitions of η(β), compatibility, the horizontal embeddings
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φβ,β′ , and horizontal direct limit do not depend on whether f -points
capturing ⟨Q ,ψ⟩ or f -points capturing ⟨Q ,ψ⟩ are considered.

Proof. (a) Since π
f

κ
is a bijection, Q ∩ f ′′α = π

f

κ
′′(Q ∩ f ′′α). Now apply

Claim 5.23(b).
(b) All of this follows immediately from (a).

�e de�nitions of the trees R1, R2, and R3 depend on C, f , and K. �e
dependence on C and K can be safely ignored, since we are re�ecting each
of C and K to one of its initial segments. (Contrast this with the situation
in [16], where K is not re�ected to an initial segment of itself.) So we write
Ri( f ) to emphasize the dependence on f .
�e next claim follows easily from Claim 5.23.

Claim 5.25. Suppose that M is an inner model in which κ = ℵ1. For each
i = 1, 2, 3, Ri( f ) ↾ κ = RM

i ( f ).

5.5. Proof of the theorem. A�er forcing with Coll(κ, λ), a σ-closed, c ⋅ ∣λ∣-
linked poset to collapse λ to have size ℵ1, �x a bijection f ∶ κ → λ. Assume
for convenience that f (0) = κ. Suppose that ⟨Q ,ψ⟩ is a Σ21 truth for λ in L.
Fix E as given by Claim 5.13 and force with the σ-closed poset A to add the
system K of f -points. Let G be the Coll(κ, λ)∗ Ȧ-generic over V . Coll(κ, λ)
has size c ⋅ ∣λ∣, and A is κ-linked.

L(R)-absoluteness for ccc posets of size κ will hold in V[G], and that
is enough to apply�eorem 2.4, since the posets used in the proof of that
theorem all have size ≤ κ.
We will need the trees S and T from Section 3 to ensure that κ and λ are

cardinals in L[X].
Choose X ⊆ κ so that, for a club of κ, X ∩ κ codes C ∩ κ, π f

κ
○ f ↾ κ, and

K ∩ κ. �e trees R1, R2, R3, S, and T are trees of size ℵ1 with natural tree
presentations, and they have no uncountable branches in V[G]. We can
therefore apply�eorem 2.4 to �nd κ < κ satisfying the following:
(1) κ is a regular cardinal of L.
(2) X ∶= X ∩ κ codes C ∶= C ∩ κ, f ∶= π

f

κ
○ f ↾ κ, and K ∶= K ∩ κ.

(3) f ′′κ ∩ κ = κ, and HullLλ
( f ′′κ) ∩ λ = f ′′κ.

(4) R1 ↾ κ, R2 ↾ κ, R3 ↾ κ, S ↾ κ, and T ↾ κ all have no co�nal branches in
L[X].

Remark. We do not require the tree R0 of [16] for item (1), since we can
use the Harrington–Shelah theorem that L(R)-absoluteness for ccc posets
implies the weak compactness of κ in L.

We will show that the anticollapse j∶ Lλ → Lλ of HullLλ
( f ′′κ) witnesses the

Σ21 -remarkability of [κ, λ]. Argue as in the proof of�eorem 1.2 to see that
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κ = ℵ
L[X]

1 and that λ is a cardinal of L, using the fact that S ↾ κ and T ↾ κ have
no co�nal branches in L[X]. It remains to show that ⟨ j−1′′Q ,ψ⟩ is a Σ21 truth
for λ in L.
First, notice that

j−1′′Q = π
f

κ
′′Q = π

f

κ
′′(Q ∩ f ′′κ) = Q .

So we need to show that ⟨Q ,ψ⟩ is a Σ21 truth for λ in L.
Work in L[X]. Let E be the set of limits of threads through K. K is a set of

f -points below κ, so by Claim 5.24 every point in K is an f -point capturing
⟨Q ,ψ⟩. So E is a set of points on level κ, each capturing ⟨Q ,ψ⟩.

Claim 5.26. E consists of compatible points.

Proof. Repeat the proof of Claim 1.21 in [16], except that there is no need for
us to appeal to condition (3) on page 10 there, since our K is just an initial
segment of K. (As usual, “de�nable from parameters in α” should be changed
to “de�nable from parameters in f ′′α” and Q ∩ Lκ should be replaced by
Qκ.)

Claim 5.27. hlim(E) is wellfounded.

Proof. �e proof of Claim 1.22 of [16] can be repeated, changing de�nability
from parameters in ν to de�nability from parameters in f ′′ν and changing
Q ∩ Lκ to Qκ throughout.

Claim 5.28. E is unbounded in λ
+L
.

Proof. �e proof follows the proof of Claim 1.24 in [16], but we give it here in
full, since it is the heart of the argument. Fix an f -point δ ∈ (λ, λ

+L
). Wemust

�nd a β ∈ E with β > δ. Let B be the set of α < κ that are stable in δ. Apply
Claim 5.8 (in L[X]) to conclude that B is club in κ and ⟨projα(δ) ∶ α ∈ B⟩ is
a thread with limit δ. (�is di�ers slightly from the proof in [16]: there, the
thread belongs to L, whereas here it only belongs to L[X].)
Let D be the set of α ∈ levels(K) such that there is a f -point β in K on

level α with β > projα(δ). Let βα be the least such β.
Since R2 ↾ κ has no co�nal branches in L[X], D is unbounded in κ. Since

R3 ↾ κ has no co�nal branches in L[X], there is ν < κ such that for all
α, α′ ∈ D∩ (ν, κ), one of βα and βα′ is a projection of the other. It follows that
{βα ∶ α ∈ D ∧ α > ν} generates a thread. �is is a thread through K, which
has limit greater than δ by Claim 5.7.

LetM = hlim(E). By Claim 5.27,M is wellfounded and is therefore a level
of L. (Since λ

+L
is countable in V , this is nontrivial.) Each of the points in E
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captures ⟨Q ,ψ⟩, so by the elementarity of the horizontal embeddings φβ,β′

it follows that M satis�es, “�ere exists B ⊆ Lβ∗ such that ⟨Lβ∗ , B⟩ ⊧ ψ[Q].”
Here β∗ = sup(E), which by Claim 5.28 equals λ

+L
. Since M is an initial

segment of L, we have shown that ⟨Q ,ψ⟩ is a Σ21 truth for λ in L, completing
the proof of the theorem.

6. The Tree Reflection Principle at larger cardinals

We conclude by discussing two natural generalizations of the Tree Re-
�ection Principle.�e �rst simply generalizes TRP to cardinals larger than
ℵ1.

De�nition 6.1. For a cardinal κ, the Tree Re�ection Principle at κ, abbreviated
TRP(κ), is the following assertion:

For all X ⊆ κ and all trees T on κ, either T has a co�nal branch
or

{α < κ ∶ T ↾ α has no co�nal branch in L[X ∩ α]}

is stationary in κ.
(For clarity we emphasize that here T ↾ α means the restriction of T to the
subset α, not the truncation of T to the �rst α levels.)

Proposition6.2. Suppose that λ ≥ κ+. If κ is λ-subcompact andG is Coll(κ, λ)-
generic over V , then TRP(κ) holds in V[G].

�e argument resembles the proof of�eorem 4.2, so we provide only a
sketch here.

Proof. Let Ẋ and Ṫ be Coll(κ, λ)-names for a set X ⊆ κ and a tree T ⊆ κ.�e
collapse has the λ+-cc, so we can assume that the names Ẋ and Ṫ are subsets
of λ. Let p be a condition that forces “Ṫ has no co�nal branches.” We use the
subcompactness assumption to �nd a map

e∶ ⟨H(λ), Ẋ , Ṫ⟩→ M ≺ ⟨H(λ), X , T⟩

with critical point κ and e(κ) = κ. Using the <κ-closure of Coll(κ, λ), we can
extend p to a master condition p∗ for M, and we can further insist that p∗
forces both

(Ṫ ∩M) ↾ κ = Ṫ ↾ κ and (Ẋ ∩M) ↾ κ = Ẋ ↾ κ.

Suppose that G ⊆ Coll(κ, λ) is generic over V with p∗ ∈ G, so that G ∩M

is generic overM.�en G ∶= e−1′′(G ∩M) is a Coll(κ, λ)-generic �lter over
H(λ) containing the condition e−1(p), which forces that T ∶= Ṫ[G] = T ∩ κ

has no co�nal branches in H(λ)[G].
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Put X = Ẋ[G] = X ∩ κ. Since λ ≥ κ+ ≥ κ+L[X], every subset of κ in L[X]

belongs to Lλ[X]. Since Lλ[X] ⊆ H(λ)[G], we have shown that T has no
co�nal branches in L[X].

7. The Strong Tree Reflection Principle

It seems natural to drop the coding requirement in TRP(κ) in favor of a
purely combinatorial assertion about trees.

De�nition 7.1. �e Strong Tree Re�ection Property at κ, denoted STRP(κ), is
the assertion:

For all trees T on κ, either T has a co�nal branch or

{α < κ ∶ T ↾ α has no co�nal branch}

is stationary in κ.

Unlike the TRP(κ), the STRP(κ) implies the Tree Property at κ: if every
level of a tree T has size < κ, then the initial segments of T form a club in
[T]<κ . And the usual Π11-re�ection argument to show that a weakly compact
cardinal has the Tree Property shows that it also has the Strong Tree Re�ection
Property.

Proposition 7.2. If κ is weakly compact, then STRP(κ) holds.

If V = L, then STRP(κ) and TRP(κ) are equivalent. Since the cardinals
in L with the usual Tree Property are exactly the weakly compact cardinals,
it follows that in L the STRP, TRP, and usual Tree Property all coincide and
hold exactly at the weakly compact cardinals of L.

7.1. A counterexample to STRP. Suppose that κ is a cardinal for which
κ<κ = κ. Under this assumption we can adapt the tree of De�nition 3.3 to
provide a counterexample to STRP(κ+).
For β an ordinal let Sβ be the tree with nodes ⟨α, s⟩, where s ∈ β<κ is a

strictly increasing sequence of double-successor length— say s∶ η + 2 → β

for concreteness— and α is an ordinal in the interval [s(η), s(η + 1)). Nodes
are ordered by the ordinal order in the �rst coordinate and by extension of
sequences in the second.
Notice that Sκ+ = ⋃β<κ+ Sβ. Notice also that Sβ has a co�nal branch in a

model M ⊇ κ+ if and only if cfM(β) ≤ κ. So Sκ+ has no co�nal branches,
yet Sβ has a co�nal branch for every β < κ+, and the cardinal-arithmetic
assumption is not needed to see this. But we need to know that Sκ+ can be
coded as a subset of κ+ in such a way that a club of its initial segments take
the form Sβ, and for this we need to know that Sβ has cardinality κ. �e
assumption κ<κ = κ is exactly what we need.
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So Sκ+ , a tree of size and height κ+, has no co�nal branches, yet a club of its
subtrees have co�nal branches. It is therefore a counterexample to STRP(κ+).
Of course, for STRP(κ+), a κ+-Aronszajn tree would also su�ce, but the
previous example may be relevant to the following question.

Question 7.3. Does the Tree Property at κ+ imply STRP(κ+)?

7.2. A weak form of PFA. Bagaria–Gitman–Schindler [3] isolate a weak
form of the Proper Forcing Axiom that they show to be equiconsistent with a
remarkable cardinal. Here we use their forcing axiom to prove that STRP(ℵ2)
is consistent. We do not know whether STRP can hold at other successor
cardinals.

De�nition 7.4. �e weak Proper Forcing Axiom (wPFA) is the following
assertion. IfM = ⟨M; ∈, ⟨Rα ∶ α < ω1⟩⟩ is a transitive model with ℵ1-many
predicates, φ(x) is a Σ1 formula, and φ[M] is forced to hold by some proper
poset, then there is (in V) a transitive modelM = ⟨M; ∈, ⟨Rα ∶ α < ω1⟩⟩ such
that φ[M] holds and there is in a set-forcing extension of V an elementary
embedding j∶M→M.

Proposition 7.5. wPFA implies STRP(ℵ2).

Proof. AssumewPFA, let T be a tree on ω2, and suppose that T has no co�nal
branches.
Consider the poset P of �nite ∈-increasing sequences of countable M ⪯

H(ω2), ordered by reverse inclusion.�is poset is strongly proper for count-
able structures: any condition s withM ∈ s is a strong master condition for
M. It follows (see e.g. [17, Lemma 3.7], which follows Mitchell’s [15, Lemma
2.10]) that P does not add branches of length ω1 to trees in V . Notice that P
also collapses ω2 to ω1.
Let M be the structure H(ℵ3) together with the tree ordering <T and a

relation coding each countable ordinal. Take φ to be the formula asserting
the existence of a club C ⊆ ω2 and a specializing function f ∶T ↾ C → ω, a Σ1
formula. (By T ↾ C wemean the restriction of T to nodes on levels in the club
C.)�e proper forcing P ∗ Ṡ, where S is the usual (ccc) poset to specialize
T ↾ C, forces φ[M]. Apply wPFA to �ndM, T , C, and f such that C is club
in κ ∶= ωM

2 , and f ∶T ↾ C → ω is a specializing function.
Since M ⊇ ω1, the critical point of the virtual elementary embedding

j∶M→Mmust be at least κ = ωM
2 , which in particular implies that T = T ∩ κ.

So T ↾ C is special, and therefore T ∩ κ has no co�nal branches.
We have shown how to �nd a single κ for which T ∩ κ has no co�nal

branches; to �nd stationarily many, one simply adds a club in ω2 as a predicate
ofM to ensure that κ belongs to that club.
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