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Commutative algebra is about commutative rings: Z, k[x1, . . . , xn],
etc.

The philosophy of the subject is to try to think of a commutative ring 7/10
as a ring of functions on some space.

1 Basics

1.1 Rings & homomorphisms

Definition. A ring R is a set with two binary operations, + and ·, such
that:

(1) (R,+) is an abelian group (with identity 0);

(2) (R, ·) is a monoid (with identity (1);

(3) Addition distributes over multiplication [sic?]:

x(y + z) = x y +xz and (y + z)x = y x + zx

for all x, y, z ∈ R.

Examples. Though we won’t deal with them in this course, here are
some examples of noncommutative rings:

(1) For a field k, the ring Mnk of n ×n matrices over k; and

(2) For a field k and a group G , the group ring kG .

In this course, a ring means commutative ring unless otherwise stated.

Examples. The following are examples of rings:

(1) fields, such asQ, R, C, Fp =Z/p for p a prime;

(2) the ring Z of integers;

(3) the ring k[x1, x2, . . . , xn] of polynomials with coefficients in a field k;

(4) for a topological space X the ring C (X ) of continuous functions
X →R;
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(5) for a smooth manifold X the set C∞(X ) of smooth functions X → R
forms a ring.

Remark. We don’t require 0 6= 1 in a ring. If 0 = 1 in a ring R, then
(Exercise!) R = {0} = {1}, and we call this ring the zero ring, R = 0.

Exercise. 0 · x = 0 and (−1) · x =−x for every x ∈ R.

Definition. Let R be a ring. Say x ∈ R is a unit (or is invertible) if there
is an element y in R such that x y = 1. If so, then y is unique (Exercise!)
and so write y = x−1 or y = 1

x .
An element x ∈ R is a zerodivisor if there is a nonzero element y ∈ R

such that x y = 0. An element x ∈ R is nilpotent if there is a n > 0 such
that xn = 0.

Definition. A ring R is a field if 1 6= 0 in R and every nonzero element
of R is invertible. We say R is an integral domain (or just a domain) if
1 6= 0 in R and the product of any two nonzero elements of R is nonzero.
A ring R is reduced if the only nilpotent element of R is 0.

Examples.

(1) The zero ring is reduced but is not a domain (or a field).

(2) For a positive integer n, the ring Z/n is a field iff it’s a domain, iff n
is prime. Also, Z/n is reduced iff n is a product of distinct primes.
In Z/12, for instance, 6 is nilpotent and nonzero, the elements 2 & 3
are zerodivisors but not nilpotent, and 5 is a unit.

(3) Z and k[x1, . . . , xn] are domains and not fields if n ≥ 1. (See Exam-
ple(s) Sheet 1.)

Definition. A homomorphism from a ring A to a ring B is a function
f : A → B that preserves +, ·, and 1; that is,

• f (x + y) = f (x)+ f (y) for all x, y ∈ R;

• f (x y) = f (x) f (y) for all x, y ∈ R;

• f (1A) = 1B .

Can check that a homomorphism f satisfies f (0) = 0 and f (−x) =
− f (x). (Exercise!)

Example. If A is a subring of B then the inclusion map A ,→ B is a ring
homomorphism. Also, if f : A → B and g : B → C are ring homomor-
phisms, then so is the composite g ◦ f . Rings and homomorphisms form
a category.

Definition. An ideal I in a ring R is an additive subgroup such that for
any x ∈ I and y ∈ R, x y ∈ I .

Remark. The kernel of any ring homomorphism is an ideal.

Examples.

(1) The only ideals in a field k are 0 and k.

(2) Any ideal I ⊆ R that contains 1 must be all of R. So an ideal is not
usually a subring.

(3) Z is a PID: i.e., every ideal in Z is of the form (n) = {nx : x ∈Z} for
some n ∈Z.

(4) If A is a ring of functions on a space X and Y ⊆ X is a subspace,
then

I = {
f ∈ A : f (y) = 0∀y ∈ Y

}
is an ideal.

10/10

Definition. For ideals I and J in a ring R we define I + J to be the ideal
(Check: Exercise!) I + J := {

x + y : x ∈ I , y ∈ J
}
.

For an ideal I in a ring R , the quotient ring R/I is the quotient abelian
group with product structure defined by f (x) f (y) := f (x y) (where f is
the quotient map f : R�R/I ).

This is well defined since I is an ideal, and f : R�R/I is a ring homo-
morphism. Usually we use the same name x for an element of R and its
image in R/I .
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Example. InQ[x] the elements x3 and 5x2 aren’t equal, but in the quo-
tient ringQ[x]/(x2 −5), we do have x3 = 5x.

For a ring homomorphism f : A → B the image f (A) = im f is a
subring of B , and ker f = {

a ∈ A : f (a) = 0
}

is an ideal of A. Moreover,
A/ker f and im f are isomorphic as rings: A/ker f ∼= im f .

Note: for a positive integer n, the quotient ring Z/(n) is usually called
Z/n for short.

Exercise. For a nonzero ring R, the following are equivalent:

(1) R is a field;

(2) the only ideals in R are 0 and R;

(3) any ring homomorphism from R to a nonzero ring is injective.

Exercise. Show that in any ring R the set of nilpotent elements forms
an ideal, called the nilradical of R, N = rad(0) ⊆ R. Show the quotient
R/N is reduced.

1.2 Modules

Definition. A module M over a ring R is an abelian group with a function
R ×M → M , written (r,m) 7→ r m, satisfying

(1) (r + s)m = r m + sm for all r, s ∈ R, m ∈ M ;

(2) r (m1 +m2) = r m1 + r m2 for all r ∈ R, m1,m2 ∈ M ;

(3) (r s)m = r (sm) for all r, s ∈ R, m ∈ M ;

(4) 1 ·m = m for every m ∈ M .

Remark. This definition makes sense for noncommutative rings and
defines a left R-module.

Examples.

(1) For a field k, a k-module is just a k-vector space.

(2) A Z-module is just an abelian group.

(3) For a field k, a k[x]-module M is equivalent to a k-vector space with
a k-linear map x : M → M .

(4) An ideal I in a ring R determines two R-modules. First, an ideal is
exactly an R-submodule of R. But also the quotient ring R/I is an
R-module.

Definition. An R-module homomorphism (or R-linear map) M1 → M2

is a homomorphism f : M1 → M2 of abelian groups such that f (r m1) =
r f (m1) for every r ∈ R, m1 ∈ M1.

This definition makes the collection of R-modules (for a fixed R) into
a category.

For R-modules M and N the set HomR (M , N ) of R-linear maps M →
N is an abelian group under pointwise addition: ( f +g )(m) = f (m)+g (m)
for m ∈ M . Since R is commutative, HomR (M , N ) is an R-module:

(a · f )(m) = a · f (m) for a ∈ R, f ∈ HomR (M , N ), m ∈ M .

Definition. An R-submodule of an R-module M is an abelian subgroup
N ⊆ M such that r ·n ∈ N for all r ∈ R, n ∈ N .

For an R-submodule N of M , the quotient R-module M/N is the quo-
tient abelian group with the obvious R-module structure: r ( f (m)) =
f (r m), if f : M�M/N is the quotient map.

For any homomorphism f : M → N of R-modules, the kernel is the
set ker f = {

m ∈ M : f (m) = 0
}
, the image is im f = f (M) ⊆ N , and the

cokernel is the set coker( f ) = N / f (M) are R-modules. Here f induces
an isomorphism

M/ker f
∼=−→ im f .

1.3 Prime & maximal ideals

Definition. An ideal I in a ring R is:

• maximal if R/I is a field;

• prime if R/I is a domain;

• radical if R/I is reduced.
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In particular maximal ⇒ prime ⇒ reduced.

Exercise. (1) An ideal I in R is maximal iff I 6= R and there is no ideal J
with I ( J (R.

(2) An ideal I is prime iff I 6= R and the product x y belongs to I only if
x ∈ I or y ∈ I .

(3) Write out what it means for I to be radical without mentioning R/I .

Examples.

(1) The maximal ideals in Z are (2), (3), (5), (7), . . . . The prime ideals
are 0 and (2), (3), (5), (7), . . . . Radical ideals in Z are 0 and the ideals
(p1, . . . , pr ) with r ≥ 0 and the pi distinct primes. (Note in any ring
(1) = R.)

(2) Let k be a field. Then k[x] is a PID and therefore a UFD (see Lang).
So every ideal in k[x] has the form ( f ) for some f ∈ k[x]. Therefore
an ideal in k[x] is either (0) or k[x] = (1), or ( f e1

1 , . . . , f er
r ), where

f1, . . . , fr ∈ k[x] are irreducible polynomials, distinct modulo units
(note k[x]∗= k∗), and e1, . . . ,er are each ≥ 1. So the nonzero prime
ideals in k[x] are ( f ) with f irreducible over k.

Example. If k is algebraically closed, the only irreducible polynomials
(up to units) are x −a for a ∈ k.

Example. Some examples of prime ideals in Z[x] are (0), (7), (x), and
(7, x). Of these, only (7, x) is maximal.

Definition. For a homomorphism f : A → B of rings and an ideal J ⊆ B ,
the contraction of J in A is the preimage f −1(J ), which is an ideal of A.

For a ring homomorphism f : A → B and an ideal I ⊆ A, the extended
ideal I e = I B ⊆ B is the ideal generated by f (I ) ⊆ B .

In particular, for f the inclusion of a subring A of B , the contracted
ideal of J ⊆ B is just the intersection J ∩ A ⊆ A, and the extended ideal is
I B ⊆ B .

Lemma 1.1. For any ring homomorphism f : A → B and any prime ideal
p⊆ B , the contraction f −1(p) ⊆ A is prime.

Proof. Notice that the contraction f −1(p) is the kernel of the composite

A
f−→ B −→ B/p.

Since p is prime in B , the quotient B/p is a domain, and the image
im(A → B/p), which is a subring of B/p, must also be a domain. Observ-
ing that im(A → B/p) ∼= A/ker(A → B/p) = A/ f −1(p), we conclude that
f −1(p) is prime in A.

Note that, unlike prime ideals, maximal ideals don’t always pull back 12/10
under ring homomorphisms: under the inclusion Z ,→ Q, the inverse
image of the maximal ideal 0 ⊆Q is the prime ideal 0 ⊆Z, which is not
maximal.

We’ll show that every nonzero ring contains a maximal ideal, hence a
prime ideal. (For the zero ring, the only ideal is not maximal.)

The proof relies on Zorn’s Lemma, which is equivalent to the Axiom of
Choice.

Lemma 1.2 (Zorn’s Lemma). Let S be a poset. Suppose every chain
(totally ordered subset) of S has an upper bound in S. Then S has a
maximal element.

Theorem 1.3. Every nonzero ring R contains a maximal ideal.

Proof. Let S be the poset of proper ideals of R (ordered by ⊆). We have
to show that every totally ordered subset C of ideals in R has an upper
bound; i.e., that there exists a proper ideal J ⊆ R such that I ⊆ J for every
I ∈C .

If C =∅ then the ideal 0 ⊆ R suffices. If C 6=∅, then let J = ⋃
C ⊆ R.

Because C is totally ordered, J is an ideal in R. It remains to show that
J 6= R . If J = R then 1 belongs to J , but then 1 belongs to some I ∈C ; then
I = R, a contradiction. So J is an upper bound for C , and we’re done by
Zorn’s Lemma.

Corollary 1.4. Every proper ideal I in a ring R is contained in some
maximal ideal.
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Proof. We use the theorem applied to R/I . Because I 6= R, the quotient
R/I is nonzero, so R/I has a maximal ideal m. Then the composite

R�R/I� (R/I )/m

has kernel a maximal ideal of R, since (R/I )/m is a field.

Definition. For a ring R the prime spectrum Spec(R) is the set of prime
ideals in R.

We define a topology on the set Spec(R), the Zariski topology: For
an ideal I ⊆ R, define V (I ) := {

p ∈ Spec(R) : p⊇ I
}
. We define the closed

subsets of Spec(R) to be the subsets V (I ) for an ideal I ⊆ R. (A subset
S ⊆ Spec(R) is open iff Spec(R)àS is closed.)

Why do we do this? Say R is the ring of functions on a set X with values
in a field k containing the constant k. Then a point p ∈ X gives a maximal
ideal in R , namely the kernel ker(R� k) of the evaluation map f 7→ f (p).
For an arbitrary commutative ring R consider the homomorphisms from
R to any field. The kernel of a ring homomorphism from R to a field is a
prime ideal. Conversely, a prime ideal p is the kernel of the composite
R�R/p ,→ Frac(R/p). (The ring Frac(R/p) is the field of fractions of the
domain R/p.) Then we have

V (I ) = {
p ∈ Spec(R) : ∀ f ∈ I , f maps to 0 in the ring R/p

}
.

If I = ( f1, . . . , fr ) ⊆ R, then we write V (I ) = { f1 = 0, . . . , fr = 0}.

Theorem 1.5. For any ring R, the set Spec(R) is a topological space.

Proof. We have to show:

(1) Both ∅ and Spec(R) are closed subsets of Spec(R);

(2) the intersection of any collection of closed subsets is closed; and

(3) the union of two closed subsets is closed.

(1) The closed set V (0) ⊆ R is exactly the set
{
p ∈ Spec(R) : p⊇ 0

} =
Spec(R). So Spec(R) is closed. Also V (R) = {

p ∈ Spec(R) : p⊇ R
}=∅,

so ∅ is closed.

(2) We’re given a collection (Iα)α∈S of ideals, and we want to find a
J such that V (J) = ⋂

α∈S V (Iα). Let J = ∑
α∈S Iα, the ideal of finite

sums of elements of
⋃
α∈S Iα. Then it is obvious that a prime ideal

p⊆ R contains J iff p contains every Iα. So
⋂
α∈S V (Iα) is closed.

(3) Given ideals I and J in R, we want to find an ideal K ⊆ R such that
V (K ) = V (I )∪V (J). Let K = I ∩ J , which is an ideal. We need to
show that the prime p contains I ∩ J = K if and only if p⊇ I or p⊇ J .
It is easy to see that if p⊇ I or p⊇ J , then I ∩ J = K ; so suppose the
prime p contains I ∩ J and suppose that p contains neither I nor J .
Then there are elements x ∈ I and y ∈ J that are not in p. We have
x y ∉ p because p is prime, but x y ∈ I ∩ J , a contradiction. Therefore
we have proved the other implication.

Examples.

• The spectrum Spec(Q) ofQ, or of any field, is just a point.

• Spec(Z) is a set {(2), (3), (5), . . . } of discrete points along with a blob
0. The points (p) for p prime are closed in Spec(Z), but the closure
of the point 0 is Spec(Z). In this case 0 is called the generic point.

• Spec(C) is just C with a generic point. A subset of Spec(C[x]) is
closed (?) if and only if it is either the whole space or it is a finite
subset of Cà {0} ⊆ Spec(C[x]).

Different ideals in a ring R can give the same closed set V (I ) ⊆ Spec(R).
We’ll now analyze when this occurs. The first step is the following theo-
rem.

Theorem 1.6. For every ring R, the nilradical of R is the intersection of
all prime ideals in R.

Proof. One direction is easy: if x ∈ R is nilpotent, i.e. xn = 0 for some
n ≥ 1, then x ∈ p for every ideal p in R. Indeed, R/p is a domain, so the
image of x in the quotient R/p is nilpotent; so x = 0 in R/p, i.e., x ∈ p.

Conversely, suppose that x ∈ R belongs to every prime ideal and that
x is not nilpotent. Let S be the set of ideals I in R such that xn ∉ I for all
n > 0. First we’ll show that S has a maximal element using Zorn’s Lemma.
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Clearly S 6=∅ since the ideal 0 is an element of S. Suppose that {Iα} is
a totally ordered nonempty subset of S; we have to find an upper bound
J in S for {Iα}. Let J =⋃

Iα, which is an ideal since {Iα} is totally ordered.
We have to show that J ∈ S, i.e. that xn ∉ J for all n > 0. If xn were in J ,
we would have xn ∈ Iα for some α, a contradiction. So by Zorn’s Lemma
S contains a maximal element J . I claim J is prime. (Clearly x ∉ J , so
that will finish the proof.) If not, there are a ∈ R à J and b ∈ R à J such
that ab ∈ J . Then the ideals J + (a) and J + (b) do not belong to S by
the maximality of J , so there exist positive integers m and n such that
xm ∈ J+(a) and xn ∈ J+(b). But then xm+n ∈ J+(ab) = J , a contradiction.
We conclude that J is prime.

The theorem about the nilradical implies the following: for an ideal I14/10
in a ring R, the set closed set V (I ) associated to I is equal to Spec(R) if
and only if I ⊆ rad(0) ⊆ R.

Definition. For an ideal I in a ring R, the radical rad(I ) of I is the ideal

rad(I ) = {
x ∈ R : (∃n > 0) xn ∈ I

}
.

Clearly I ⊆ rad(I ); it’s easy to check that rad(I ) is radical and is the
smallest radical ideal that contains I . (Exercise!) Also, rad(I ) is the
inverse image in R of the nilradical in R/I .

Lemma 1.7. For any ideal I in a ring R, the radical rad(I ) of I is the
intersection of all prime ideals that contain I .

Proof. Look at the quotient ring R/I . We know that the nilradical of R/I
is the intersection of the primes in R/I . The primes in R/I are exactly
those whose preimages in R are prime and contain I .

Corollary 1.8. For any ideals I and J in a ring R, their associated closed
sets are equal if and only if their radicals are equal: V (I ) = V (J) if and
only if rad(I ) = rad(J ).

Proof. By definition, V (I ) = V (J) if and only if the set of primes con-
taining I is the set of primes containing J . This is true if and only if
rad(I ) = rad(J ) by the Lemma (1.7).

So we have a one-to-one correspondence between radical ideals in R
and closed subsets of Spec(R). Given a closed subset S ⊆ Spec(R), the
corresponding radical ideal is

⋂
S ⊆ R.

Example. For an integer n 6= 0, the closed subset V ((n)) = {n = 0} of
Spec(Z) is exactly the set of prime ideals (p) for prime numbers p divid-
ing n. So the subset {12 = 0} ⊆ Spec(Z) is the pair of points {(2), (3)}. This
is the same as the closed subset {6 = 0} ⊆ Spec(Z), since rad((12)) = (6).

Definition. The product I J of ideals I , J ⊆ R is the ideal containing all
finite products ab with a ∈ I and b ∈ J .

Clearly I J ⊆ I ∩ J . In some examples I J = I ∩ J , but that isn’t always
true.

Example. In the ring Z, the intersection of the ideals (2) and (3) is the
same as their product: (2)∩ (3) = (6) = (2)(3). But this isn’t always the
case: for example, (2)∩ (2) = (2), whereas (2)(2) = (4).

Exercise. Show that I J has the same radical as I ∩ J .

With this in mind, observe that V (I )∪V (J ) =V (I ∩ J ) =V (I J ). (Recall
we proved the first equality in showing that the Zariski topology formed
a topology.)

Since the topology on Spec(R) can’t distinguish between the intersec-
tion I ∩ J and the product I J , we will often use the product, which is
the simpler of the two. Indeed, if I = ( f1, . . . , fa) and J = (g1, . . . , gb), then
I J is generated by all products fi g j , whereas it’s not clear how to write
down generators for I ∩ J .

In particular, for an ideal I and a positive integer n, we define I n to be
the product ideal

I n = I I · · · I︸ ︷︷ ︸
n

.

By convention I 0 = R.

Theorem 1.9. Let f : A → B be a homomorphism of commutative rings.
Define the associated map g : Spec(B) → Spec(A) by g (p) = f −1(p).
Then:
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(1) g is continuous;

(2) for a homomorphism A → A/I for an ideal I ⊆ A, the map g is a
homeomorphism Spec(A/I ) onto the closed subset V (I ) of Spec(A).

Proof.

(1) It suffices to prove that the preimage under g of every closed set
in Spec(A) is closed in Spec(B). Let V (I ) be a closed set in Spec(A);
we want to show that g−1(V (I )) =V (J), some ideal J in B . Let J be
the extended ideal J = f (I ) ·B ⊆ B . We want to show that a prime
ideal p in B contains the extended ideal f (I )B if and only if f −1(p)
contains I . But this is obvious: p ⊇ f (I )B iff p ⊇ f (I ) since p is an
ideal, and p ⊇ f (I ) iff f −1(p) ⊇ I . This completes the proof that
g−1(V (I )) =V (J ).

(2) I’ll show that g : Spec(A/I ) → Spec(A) is injective. Because f is
surjective, we the equality f −1(p) = f −1(q) implies p= q. That is, the
map g is injective. The proof that g has a continuous inverse is an
exercise.

Now for some language without much content:

2 Affine schemes

An affine scheme is a topological space X and a commutative ring R

together with a homeomorphism X
∼=−→ Spec(R). In this case we call R

the ring O (X ) of regular functions on the affine scheme X .

Example. For any field k the spectrum Spec(k) is just a point as a topo-
logical space, but as a scheme this scheme determines the field k.

Definition. For a ring R and n ≥ 0, we define affine n-space over R to be
the affine scheme Spec(R[x1, . . . , xn]). A morphism of affine schemes is a
map Spec(B) → Spec(A) given by a ring homomorphism A → B .

So a morphism X → Y of affine schemes determines a ring homo-
morphism O (Y ) → O (X ). This is like the setting when f : X → Y is a
continuous map of topological spaces, and f induces a ring homomor-
phism C (Y ) →C (X ) (given by precomposition by f ).

3 Irreducible closed subsets of Spec(R)

Lemma 3.1. Let R be a domain. The closure in Spec(R) of the point
corresponding to the prime ideal 0 ⊆ R is all of Spec(R). We call that
point the generic point of Spec(R).

Proof. Suppose we have an ideal I such that V (I ) contains the point p
corresponding to the prime (since R is a domain) ideal 0 ⊆ R. Then 0
contains I , which means I = 0. So V (I ) = Spec(R).

Corollary 3.2. For any ring R and any point p ∈ Spec(R) let p be the
corresponding prime ideal in R. Then the closure of the point p is the
closed subset V (p).

Proof. We know Spec(R/p) is homeomorphic to the closed subset V (p) ⊆
Spec(R) (Theorem 1.9). This homeomorphism sends the prime ideal 0
in R/p to its inverse image in R, which is p. So the closure of the point p
in Spec(R) is V (p), by the lemma.

Definition. A topological space X is connected if X is nonempty and
is not the union of two disjoint nonempty closed subsets. We say X is
irreducible if X is nonempty and cannot be written as A ∪B , for A,B
proper closed subsets of X .

Example. The unit interval [0,1] ⊆ R is connected but not irreducible:
[0,1] = [0,1/2]∪ [1/2,1].

Lemma 3.3. For a ring R there is a one-to-one correspondence among
the following:

(1) prime ideals in R;

(2) points in Spec(R);

(3) irreducible closed subsets of Spec(R).

Proof. The equivalence (1) ↔ (2) follows from the definition of Spec(R).
For every point p ∈ Spec(R), the closure {p} =V (p) is irreducible. Indeed,
suppose V (p) = A∪B for A,B closed in Spec(R), and A 6=V (p) and B 6=
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V (p). Clearly p ∈ A or p ∈ B ; say p ∈ A. But then, since A is closed, it must
be that A ⊇ {p} =V (p), a contradiction. So V (p) is irreducible.

Conversely, I claim any irreducible closed subset of Spec(R) is the
closure of a point. The subset can be written as V (I ) ⊆ Spec(R); we may
assume I is a radical ideal. I claim that, if V (I ) is irreducible, then I
must be prime. (The proof of this completes the proof, since V (p) for
a prime p is the closure of a point {p}.) Clearly I 6= R, since V (R) =∅.
It remains to show that if a,b ∈ R satisfy ab ∈ I , then a ∈ I or b ∈ I .
Suppose for a contradiction that neither a nor b belongs to I . Then
V (I+(a))(V (I ) and V (I+(b))(V (I ). We get a contradiction by proving
that V (I ) =V (I + (a))∪V (I + (b)): Clearly the inclusion ⊇ holds; we have

V (I + (a))∪V (I + (b)) =V ((I + (a))(I + (b))),

but (I + (a))(I + (b)) ⊆ I + (ab) ⊆ I since ab ∈ I . Therefore V (I ) ⊆V ((I +
(a))(I + (b))).

17/10

Exercise. Show that closed points in Spec(R) are in one-to-one corre-
spondence with maximal ideals in R.

So we have one-to-one correspondences

{closed points in Spec(R)} ←→ {maximal ideals in R},

{irreducible closed subsets of Spec(R)} ←→ {prime ideals in R},

{closed subsets of Spec(R)} ←→ {radical ideals in R}.

Example. The subset {x y = 0} ofA2
k is not irreducible: it’s the union of

two irreducible subsets {x = 0}∪ {y = 0}.

4 Operations on modules

Definition. Let M be a module over a ring R. We define the annihilator
ideal to be

AnnR (M) := {a ∈ R : am = 0 ∀m ∈ M } .

Also the annihilator of an element m ∈ M is defined to be

AnnR (m) = {a ∈ R : am = 0} .

The direct sum of the R-modules M and N is the product set M ⊕N :=
M ×N with the module structure

(m1,n1)+ (m2,n2) = (m1 +m2,n1 +n2),

a(m,n) = (am, an).

The direct product of a collection {Mα}α∈S of R-modules is
∏
α∈S Mα

with obvious module structure.
The direct sum of {Mα}α∈S is the submodule of the direct product

consisting of elements (mα :α ∈ S) such that mα = 0 for all but finitely
many α.

A free R-module is the direct sum of some collection of copies of R,
written R⊕S for a set S. (e.g., (r1, . . . ,rm ,0, . . . ,0, . . . ) is a typical element of
R⊕R .)

This free module contains one copy of R for each element of S. Every
element of R⊕S is a finite R-linear combination of the basis elements
(0, . . . ,0,1,0, . . . ). Using that, one proves a ‘universal property’ of free
modules: R-linear maps R⊕S → M (for any R-module M) are in one-to-
one correspondence with functions S → M .

Definition. A sequence of R-linear maps

· · · −→ Mi+1
di+1−→ Mi

di−→ Mi−1 −→ ·· ·

is called exact if im(di+1) = kerdi for every i .

Examples.

(1) A sequence 0 −→ M
f−→ N is exact iff f is injective.

(2) A sequence M
f−→ N −→ 0 is exact iff f is surjective.

9



(3) You can check (Exercise!) that the sequence 0 −→ M
f−→ N −→ 0 is

exact iff M
f−→ N is an isomorphism.

(4) Finally, can check (Exercise!) that the ‘short’ sequence

0 −→ A −→ B −→C −→ 0

is exact iff A is isomorphic to a submodule of B and C ∼= B/A.

An R-module M is generated by a subset S ⊆ M if M is the smallest
submodule of M containing S.

Definition. An R-module M is finitely generated (as an R-module) if M
is generated by a finite set S.

If a module M is generated by a set S, then we get a surjection

R⊕S −→ M −→ 0. exact

Given a set S of generators for an R-module M , let K = ker(R⊕S�M).
Let T be a set of generators for the R-module K . Then we have an exact
sequence

R⊕T φ−→ R⊕S −→ M −→ 0.

Such a diagram is called a presentation of M as an R-module. In this way,
we see that M is completely determined by a set S and a set T ⊆ R⊕S .

Example. Consider the Z-module Z〈e1,e2 |2e1 = 2e2〉, ie Z⊕2/(2,−2).
Can check that this is isomorphic to Z⊕Z/2.

Definition. A module M over R is projective iff there is an R-module N
such that M ⊕N is free.

For example, a free R-module is projective.

Lemma 4.1. Let M be an R-module. The following are equivalent:

(1) M is projective as an R-module;

(2) For any short exact sequence

0 −→ A −→ B −→ M −→ 0,

the sequence splits, i.e. there is an R-linear map M → B such that
the composition M → B → M is the identity. (This implies B ∼=
A⊕M .)

(3) For any short exact sequence

0 −→ A −→ B −→C −→ 0,

of R-modules and any R-linear map M → C , this map lifts to B ;
that is, there is an R-linear map M → B such that the composites
M → B →C and M →C are equal.

Proof. (3) ⇒ (2): Apply (3) to the sequence in (2) and the identity map
M → M .

(2) ⇒ (1): Let S be a set of generators for M : so we have the exact
sequence

0 −→ K −→ R⊕S −→ M −→ 0.

Given (2) this sequence splits, so R⊕S ∼= M ⊕K . Therefore M is projective.
Suppose M is a projective R-module and B → C is a surjective R- 19/10

linear map. We want to show that any R-linear map M →C lifts to a map
M → B . There is an R-module N such that M ⊕N ∼= R⊕S for some set S.
Consider the projection R⊕S�M . Such a map (M →C ??) is equivalent
to a function S →C . For every s ∈ S pick an element of B that maps to
the image of s in C . This gives an R-linear map R⊕S → B (because the
map B →C is surjective). Restrict this to the submodule M ⊆ R⊕S to get
a map M → B . Check that this map composed with the given map B →C
is the given map M →C .

Example. The Z-module Z/2 is not projective, since the exact sequence

0 −→Z
2−→Z−→Z/2 −→ 0

does not split: the only map Z/2 →Z is the zero map. (Generalise this.
Exercise!)

10



Remark. A finitely generated projective R-module is equivalent to a
vector bundle on SpecR for a noetherian ring R.

Exercise. Show that a finitely generated projective module over a ring R
is the summand of a finitely generated free module, R⊕n for some n ∈N.
(Use the Lemma.)

5 Direct limits

A directed set S is a poset S such that for any a,b ∈ S there is a c ∈ S
such that a ≤ c and b ≤ c. A directed system of sets A is a functor from a
directed set to the category Set of sets.1 That is, every s ∈ S is assigned a

set As , and every pair of elements s ≤ t is assigned a map As
fst−→ At such

that

(1) fss is the identity on As ; and

(2) if s ≤ t ≤ u in S, then fsu = ftu ◦ fst as maps As → Au .

Definition. Define the direct limit lim−−→ As of a directed system (As : s ∈ S)
of sets to be the quotient of the disjoint union

∐
s∈S As by the following

relation: a ∈ As is equivalent to b ∈ At if there is an element u ∈ S such
that u ≥ s, u ≥ t , and fsu(a) = ftu(b) in Au .

Think of the greater elements of S as things coming later in time; so
the relation identifies things that are eventually equal.

The same definition defines the direct limit of a directed system of
groups, rings, R-modules, etc.

If (As : s ∈ S) is a directed system of R-modules, then the direct limit
lim−−→ As is an R-module: the sum of the elements a ∈ As and b ∈ At is
given by an element u ∈ S such that s ≤ u and t ≤ u; define a +b by
mapping a and b into the R-module Au and adding them there. One
checks that this is well defined on lim−−→ As . Multiplication by an element
of R is defined similarly.

1See Lang’s Algebra if you’re unfamiliar with functors.

Exercise. Prove the universal property of direct limits of R-modules:
for any directed system (As : s ∈ S) of R-modules there is a one-to-one
correspondence between R-linear maps lim−−→ As → N and families of R-
linear maps (As → lim−−→t∈S

At )s∈S such that for every pair s ≤ t in S the

composite As −→ At
g t−→ N is the map gs : As → N .

Example. The direct limit of the Z-modules

Z
2−→Z

2−→Z
2−→ ·· ·

is isomorphic to Z[ 1
2 ], the subgroup of Q of elements a

2b . Indeed, the
limit is isomorphic to the direct limit

lim−−→(Z ,→ 1
2Z ,→ 1

4Z ,→··· ) = ⋃
s≥0

1
2sZ=Z[ 1

2 ].

Also, the direct limit of the Z-modules

Z
0−→Z

0−→Z
0−→ ·· ·

is the group 0.

6 Tensor products

Let R be a (commutative) ring and M , N R-modules. Then an R-bilinear
map f : M ×N → P is a function M ×N → P that is linear in each vari-
able; that is, f (m,−) : N → P is an R-linear map for every m ∈ M and
f (−,n) : M → P is an R-linear map for every n ∈ N .

Theorem 6.1. For any two R-modules M and N there is an R-module
M ⊗R N , called the tensor product of M and N , with a bilinear map
M ×N → M ⊗R N , such that for any R-bilinear map f : M ×N → P there
is a unique R-linear map

g : M ⊗R N → P

such that the composite M ×N −→ M ⊗R N
g−→ P is equal to f .

11



Proof. Consider the free R-module R⊕(M×N ). Write a ⊗b for the basis
element corresponding to a ∈ M , b ∈ N . So every element of R⊕(M×N ) is
uniquely a finite sum

∑N
i=1 ri (mi ⊗ni ) for some ri ∈ R, mi ∈ M , ni ∈ N .

Define M ⊗R N as the quotient of R⊕(M×N ) by the following relations:

(m1 +m2)⊗n = m1 ⊗n +m2 ⊗n,

m ⊗ (n1 +n2) = m ⊗n1 +m ⊗n2,

(r m)⊗n = r (m ⊗n),

m ⊗ (r m) = r (m ⊗n)

(for every r ∈ R, mi ,m ∈ M , ni ,n ∈ N ). (That is, take the quotient by the
submodule generated by all elements (m1 +m2)⊗n − (m1 ⊗n +m2 ⊗n),
etc.)

Clearly, by these relations, the obvious map M ×N → M ⊗R N is R-
bilinear. (We’ve forced it to be!) And for any R-module P with an R-
bilinear map f : M × N → P , there is a corresponding R-linear map
R⊕(M×N ) → P . Because f is bilinear, the submodule of R⊕(M×N ) that we
killed maps to 0 in P . So f factors through the quotient to give a map
g : M ⊗R N → P . Uniqueness of this map g is left as an exercise.

Tensor products allow us to describe bilinear maps in terms of linear
maps, which are simpler.

Remark. (1) By construction, every element of M ⊗R N can be written
as a finite sum

∑
ri (mi ⊗ni ) =∑

(ri mi )⊗ni . But it isn’t obvious how
to tell whether two such sums define the same element of M ⊗R N .
The elements of M ⊗R N of the form m⊗n are called decomposable.
Every element of M ⊗R N is a finite sum of decomposable elements
but might not be decomposable itself.

(2) It can be hard to tell whether two elements of M ⊗R N are equal. For
instance, in the Z-moduleQ⊗ZZ/2, we have

1⊗1 = 2( 1
2 )⊗1 = 1

2 ⊗2 = 1
2 ⊗0 = 0.

In factQ⊗ZZ/2 = 0, as we will see.

(3) For a noncommutative ring R , the tensor product M⊗R N is defined
whenever M is a right R-module and N is a left R-module. In this
case, we have the equality

(mr )⊗n = m ⊗ (r n).

In general (for R noncommutative), the tensor product M ⊗R N is
an abelian group, but not necessarily an R-module. If there is a
commutative ring R and a homomorphism from A into the centre
of R, then M ⊗R N is at least an A-module, though.

Exercise. Show that (for R commutative) the tensor product is a functor
in each variable. In particular, if M1 → M2 is an R-linear map, then the
tensor product gives an R-linear map M1 ⊗R N → M2 ⊗R N . (Hint: use
the universal property of tensor products.)

21/10

Theorem 6.2. For all R-modules A, B , and C , there exist isomorphisms:

(1) A⊗R B
∼=−→ B ⊗R A;

(2) (A⊗R B)⊗R C
∼=−→ A⊗R (B ⊗R C );

(3) (A⊕B)⊗R C
∼=−→ (A⊗R C )⊕ (B ⊗R C );

(4) R ⊗R A
∼=−→ A.

Proof sketch. The main point is to construct maps in both directions
using the universal property of ⊗: For (1), for example, we want to try
to map a ⊗b to b ⊗a, a ∈ A, b ∈ B . By the universal property of A ⊗R B
it suffices to construct an R-bilinear map A ×B → B ⊗R A; the obvious
choice is (a,b) 7→ b ⊗a. But this is bilinear, so we get the map we want.
Composing this map with the map we obtain in the other direction
is the identity on decomposable elements, hence the identity on all
elements.

This theorem implies, for instance, that (R⊕a)⊗R (R⊕b)
∼=−→ R⊕ab for

a,b ∈ N. Set M = R⊕a and N = R⊕b . If M is a free R-module with ba-
sis e1, . . . ,ea and N is free with basis f1, . . . , fb , then M ⊗R N is a free
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R-module with basis elements ei ⊗ f j for 1 ≤ i ≤ a, 1 ≤ j ≤ b. So every
element of M ⊗R N can be uniquely written as a sum∑

1≤i≤a
1≤ j≤b

ci j ei ⊗ f j .

Contrast this with the direct-sum situation: R⊕a ⊕R⊕b
∼=−→ R⊕a+b .

Lemma 6.3. Let A → B → C → 0 be an exact sequence of R-modules.
Then for every R-module M , the maps

A⊗R M −→ B ⊗R M −→C ⊗R M −→ 0

form an exact sequence.

(Note that this lemma does not generalise to exact sequences of arbi-
trary shape!)

Proof sketch. The image im(B ⊗R M →C ⊗R M) contains all decompos-
able elements of C ⊗R M (since the given map B →C is surjective), so it
contains all elements of C ⊗R M .

Clearly the composite map A⊗R M → B ⊗R M →C ⊗R M is 0, because
the given map A → 0 is 0. That is, we have the inclusion

im(A⊗R M → B ⊗R M) ⊆ ker(B ⊗R M →C ⊗R M).

To prove exactness use the universal property of B ⊗R M .

Example. For an element f ∈ R consider the exact sequence

R
f−→ R�R/( f ) −→ 0

(where the map R
f−→ R is ‘multiplication by f ’). The lemma gives that

for any R-module M , we have an isomorphism

M ⊗R R/( f ) ∼= M/ f M .

Using that, we can write out what the tensor product of any two finitely
generated R-modules over a PID R is. (For this we assume the classifica-
tion of finitely generated modules over a PID; see Lang’s Algebra if this is
unfamiliar.)

More generally, the lemma implies that for any ring R, if M is an R-
module with generators e1, . . . ,ea and relations ri ∈ R⊕a and N is an
R-module with generators f1, . . . , fb and relations s j ∈ R⊕b , then the
tensor product M⊗R N is the R-module with generators ei ⊗ f j (1 ≤ i ≤ a,
1 ≤ j ≤ b) modulo relations given by ei ⊗ s j = 0 and ri ⊗ f j = 0 (for all i , j
that make sense).

6.1 Algebras and tensor products

Definition. For a commutative ring A, an A-algebra is a ring B with a
given ring homomorphism A → B .

Example. The polynomial ring k[x1, . . . , xn] is a k-algebra (and the given
homomorphism is the obvious one).

Definition. An A-algebra homomorphism B → C is a ring homomor-
phism B →C such that the diagram

A B

C

commutes.

This definition of morphism makes A-algebras (for a fixed ring A) into
a category. It is often more natural to work in the category of k-algebras
for a field k, rather than all commutative rings.

Remark. Among noncommutative rings an A-algebra B means A is a
commutative ring, B is perhaps noncommutative, and there is a given
homomorphism A → Z (B), the centre of B .

13



For example, the ring Mn(k) of n ×n matrices over a field k is a k-
algebra: the given homomorphism sends an element a ∈ k to the diag-
onal matrix aIn (In is the identity matrix). Likewise, for a group G , the
group ring kG is a k-algebra.

Back to commutative rings:
For a ring A, the polynomial ring A[x1, . . . , xn] has the following uni-

versal property: For every A-algebra B , A-algebra homomorphisms
A[x1, . . . , xn] → B are equivalent to functions {1,2, . . . ,n} → B . We say
an A-algebra B is of finite type of it is finitely generated as an A-
algebra. Equivalently, B ∼= A[x1, . . . , xn]/I for some n ∈ N and ideal
I ⊆ A[x1, . . . , xn].

We say a morphism X → Y of affine schemes is of finite type if the ring
O (X ) of regular functions is an algebra of finite type over O (Y ). Equiva-
lently, X is of finite type over Y if X is isomorphic to a closed subspace
ofAn

Y for some n ∈N. (Affine spaceAn
Y is defined to be Speck[x1, . . . , xn]

endowed with the Zariski topology.)

Definition. A closed subscheme of Spec(R) is an affine scheme of the
form Spec(R/I ).

Example. Suppose k is a field and we have a map X = Spec(O (X )) →
Spec(k). Then the map X → Speck is of finite type if and only if O (X )
is a finitely generated k-algebra, if and only if there is an isomorphism

O (X )
∼=−→ k[x1, . . . , xn]/I , n ∈N, for some ideal I .

Definition. An affine variety over a field k is an affine scheme of the
form Spec(R), such that R is a k-algebra of finite type and R is a domain.
In particular, an affine variety is irreducible as a topological space.

Example. An
k is an affine variety over k for n ≥ 0. Also, { f = 0} ⊆ An

k for f
an irreducible polynomial in k[x1, . . . , xn] is an affine variety.

If B is an algebra over a ring A, then there is a natural functor from the
category B-Mod of B-modules to A-Mod. Given a ring homomorphism
f : A → B and a B-module M , we can view M as an A-module by defining
a ·m := f (a)m ∈ M for a ∈ A, m ∈ M .

There is also a less obvious functor, extension of scalars, from A-Mod
to B-Mod. For an A-module M , I claim M⊗A B is a B-module in a natural
way. We define b1(m⊗b2) = m⊗b1b2. Using the universal property of ⊗,
show this is well defined.

Example. If M if a free A-module of rank n, then M ⊗A B is a free
B-module of rank n (by the basic properties of ⊗). More generally,
if M has a presentation M = A 〈e1, . . . ,ea |ri ∈ A⊕a〉, then M ⊗A B =
B 〈e1, . . . ,ea |ri ∈ B⊕〉.

Example. Let M be the Z-module M =Z〈e1,e2 |2e1 = 2e2〉(∼=Z⊕Z/2).
Then we see that

M ⊗ZQ∼=Z〈e1,e2 |2e1 = 2e2〉 ∼=Q2/Q(2,−2) ∼=Q.

And

M ⊗Z (Z/2) ∼=Z/2〈e1,e2 |2e1 = 2e2〉
= (Z/2)⊕2/(Z/2)(2,−2) ∼= (Z/2)⊕2.

If B and C are A-algebras, then the tensor product B⊗A C is an A-algebra
with multiplication defined on decomposable elements: (b1 ⊗ c1)(b2 ⊗
c2) = b1b2 ⊗ c1c2. One checks this is well-defined.

24/10

Examples.

(1) Q⊗Z (Z/2) ∼=Q/2Q= 0. (For the first isomorphism, recall Lemma
6.3 and the following example.)

(2) For a field k, we have an isomorphism of polynomial rings: k[x]⊗k

k[y] ∼= k[x, y]. The obvious map k[x]⊗k k[y] → k[x, y] is an isomor-
phism since a basis for k[x]⊗k k[y] given by the elements xi ⊗ y j ,
i ≥ 0, j ≥ 0, maps to a basis of elements xi y j for k[x, y]. (Notice that
every module over a field is free; i.e., every vector space has a basis.)
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Remark. In the Part III Algebraic Geometry course,An
k means kn with the

Zariski topology. Here,An
k = Speck[x1, . . . , xn] with the Zariski topology.

One can actually view kn as a subset of Speck[x1, . . . , xn] by the following
inclusion:

(a1, . . . , an) 7→ ker(k[x1, . . . , xn] → k),

where the map k[x1, . . . , xn] → k is given by evaluation at (a1, . . . , an). This
discrepancy is nothing to worry about, though, because the categories of
affine k-varieties for each definition ofAn

k (for k algebraically closed) are
equivalent. For example, in both categories the collection of mapsAm

k →
An

k consists of k-algebra homomorphisms k[x1, . . . , xn] → k[x1, . . . , xm],
which are just polynomials ( f1(x1, . . . , xm), . . . , fn(x1, . . . , xm)) over k.

6.2 Exactness properties of tensor products

We showed (Lemma 6.3) that tensoring an exact sequence

A −→ B −→C −→ 0

of R-modules with any R-module M gives an exact sequence. But it’s
not true that tensoring an exact sequence, e.g.,

A −→ B −→C ,

with M gives an exact sequence in general.

Example. Indeed, consider the product (0 −→ Z
2−→ Z)⊗Z (Z/2). The

result is a sequence

0 −→Z/2
2−→Z/2, (∗)

but the map 2: Z/2 →Z/2, x 7→ 2x, is just the zero map; so the sequence
(∗) is not exact since the map 0: Z/2 →Z/2 is not injective.

It turns out to be fruitful to analyse those modules M for which ten-
soring by M does preserve exactness:

Definition. For a ring R, an R-module is flat if and only if the functor
N 7→ M ⊗R N is exact (i.e., for an exact sequence N1 → N2 → N3, the
sequence M ⊗R N1 → M ⊗R N2 → M ⊗R N3 is exact).

Examples. (1) Z/2 is not flat as a Z-module, as we’ve seen.

(2) Clearly R is flat as an R-module.

(3) Also, the direct sum of any collection of flat modules is flat, since
the tensor product ⊗R is distributive over the direct sum (of even
infinitely many modules). So every free R-module is flat.

It sounds like checking flatness will turn out to be quite difficult, as it
requires considering many sequences. The following theorem allows us
to check only some of those sequences.

Theorem 6.4. If R is a ring and M is an R-module, then the following
are equivalent:

(1) M is a flat R-module;

(2) Tensoring with M preserves injections of R-modules;

(3) For any ideal I ⊆ R the R-linear map M ⊗R I → M ⊗R R ∼= M is
injective.

Proof. That (1) implies (2) is clear from the definition of a flat R-module
and the expression of an injection as an exact sequence. That (2) implies
(3) is also clear. We will prove that (2) implies (1) and delay the proof that
(3) implies (2). (Though there is an elementary proof, it will be easier to
prove this after we have introduced the Tor functor: Lemma 10.9.)

Let N1
f1−→ N2

f2−→ N3 be an exact sequence of R-modules. Then we
have an exact sequence

N1
f1−→ N2

f2−→ f2(N2) −→ 0,

since f2 is a surjection onto its image. So we have an exact sequence

M ⊗R N1 −→ M ⊗R N2 −→ M ⊗R f2(N2) −→ 0.

Since M satisfies (2), the map M ⊗R f2(N2) → M ⊗R N3 is injective. There-
fore the sequence

M ⊗R N1 −→ M ⊗R N2 −→ M ⊗R N3
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is exact, as the map M ⊗R N2 −→ M ⊗R N3 factors through M ⊗R f2(N2).

Exercise. Using Theorem 6.4, prove the following:

(1) For a domain R, any flat R-module is torsion-free. (By definition,
an R-module is torsion-free if, for all r ∈ R, m ∈ M , the equation
r m = 0 implies r = 0R or m = 0M .)

(2) If R is a PID, then an R-module is flat if and only if it’s torsion-free.
(e.g., R =Z, R = k[x], . . . )

We say an R-algebra A is flat if and only if A is flat as an R-module.

7 Localisation

Localising a ring means ‘inverting some elements of the ring’, and it’s
related to concentrating attention near a point in a space. The process
also generalises passing from a domain R to FracR, its field of fractions
(e.g., Z Q).

Example. We can think of C[x] as a ring of functions C→C. Its fraction

field is called C(x), the field of rational functions f (x)
g (x) , f , g ∈C[x], g 6= 0.

An element of C(x) can be viewed as a function Cà S → C (where S
is the finite set of points a where g (a) = 0). A typical localisation of
C[x] is the ring of rational functions defined near 0 in C, that is, the set{

f (x)
g (x) : g (0) 6= 0

}
.

Definition. A subset S of a ring R is multiplicatively closed if it is a
submonoid of (R, ·); that is, 1 ∈ S and the product of any two elements of
S is in S.

Theorem 7.1. Let R be a ring and S a multiplicatively closed subset of R .
Then there is a ring R[S−1] with a ring homomorphism f : R → R[S−1]
such that

(1) for every s ∈ S the image f (s) is invertible in R[S−1];

(2) R[S−1] is universal with respect to property (1): That is, for any ring
B and ring homomorphism g : R → B with the property that all
elements of R map to invertible elements of B , there is a unique
ring homomorphism h : R[S−1] → B such that g = h f .

Before proving the theorem, we prove that the universal property (2)
characterises R[S−1] up to unique isomorphism:

Suppose the rings C1 and C2 have properties (1) and (2). Thus we have
ring homomorphisms f1 : R →C1 and f2 : R →C2 such that (1) and (2)
hold for both (C1, f1) and (C2, f2). Then by property (2) there are ring
homomorphisms g1 : C1 →C2 and g2 : C2 →C1 such that f2 = g1 f1 and
f1 = g2 f2. You can check that g1g2 and g2g1 are both identity maps (by
the uniqueness part of (2)). (Exercise!) So g1 : C1 →C2 is an isomorphism
of rings. It isn’t difficult to see that such an isomorphism must be unique.

Sketch of proof of 7.1. Define elements of R[S−1] as ‘fractions’ a
s , a ∈ R,

s ∈ S. That is, R[S−1] is the set of equivalence classes for an equivalence
relation on R ×S.

(One’s first idea for such an equivalence relation might be to say
a
s = b

t iff at = bs in R. But this does not define an equivalence
relation in general. Indeed, if (at − bs)u = 0 in R for some
a,b ∈ R, s, t ,u ∈ S, then — as u becomes invertible in R[S−1] —
we would also have a

s = b
t in R[S−1].)

In general we say that (a, s) ∼ (b, t) and write a
s = b

t if (at −bs)u = 0 for
some u ∈ S. I claim this is an equivalence relation. That it is reflexive and
symmetric is obvious. Suppose a

s = b
t and b

t = c
u . Then we have v, w ∈ S

such that (at −bs)v = 0 and (bu −ct )w = 0. Multiplying each side of the
first equation by uw and each side of the second by sv , we see that

atuv w = bsuv w = cst v w,

so (au−cs)t v w = 0 in R . But t v w belongs to S, since S is multiplicatively
closed. Therefore a

s = c
u , which proves the relation is transitive.
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So we have a set R[S−1] of equivalence classes of fractions a
s , a ∈ R,

s ∈ S. One defines addition and multiplication in R[S−1] by the usual
rules for fractions:

a

s
+ b

t
= at +bs

st
,

a

s
· b

t
= ab

st
.

(Note that st ∈ S since S is multiplicatively closed.) The homomorphism
R → R[S−1] is given by a 7→ a

1 . The following exercise completes the
proof:

Exercise. Check that these operations are well defined and that they
make R[S−1] into a ring. Prove the universal property (2) of this ring
R[S−1].

26/10

Lemma 7.2. The kernel of the ring homomorphism R → R[S−1], a 7→ a
1 ,

is the set
{a ∈ R : as = 0 for some s ∈ S} .

Proof. The equality a
1 = 0

1 in R[S−1] holds if and only if there is some
s ∈ S such that as = (a ·1−0 ·1)s = 0 in R.

Example. Suppose R is a domain and S is a multiplicatively closed
subset of R à {0}. Define the ring R[S−1] to be the fraction field Frac(R).
In this case R ⊂ Frac(R) by the lemma.

For example, Frac(Z) = Q, and Frac(k[x1, . . . , xn]) is called the field
k(x1, . . . , xn) of rational functions over the field k in n variables. The
elements of the field k(x1, . . . , xn) of rational functions are of the form
f (x1,...,xn )
g (x1,...,xn ) for f , g ∈ k[x1, . . . , xn], g 6= 0.

More generally, for R a domain and S a multiplicatively closed subset
of R à {0}, we have inclusions R ⊆ R[S−1] ⊆ Frac(R). So in this case we
could define R[S−1] as the subring of Frac(R) generated by R and the
inverses of elements s ∈ S.

But if 0 ∈ S then R[S−1] = 0, which is not a subring of Frac(R) (since
1Frac(R) ∉ 0).

7.1 Special cases of localisation

(1) For a ring R and an element f ∈ R, define

R
[

1
f

]
:= R[S−1] where S = {

f n : n ≥ 0
}

.

(2) For a ring R and a prime ideal p of R the set R àp is multiplicatively
closed. (This is exactly what it means for p to be prime.) So we can
define Rp := R[S−1], called the localisation of R at the prime ideal p.

Example. For p a prime number, the ring Z[1/p] is given by

Z
[

1
p

]
=

{
a

pc ∈Q : a ∈Z, c ≥ 0
}

,

a subring ofQ. And by contrast,

Z(p) =
{ a

b ∈Q : a ∈Z, b ∈Z, p - b
}

.

We can also invert elements in polynomial rings. For example, define
k[x, x−1] to be the subring k[x, x−1] = k[x][ 1

x ] of k(x), the field of rational
functions over k. An element of k[x, x−1] is a rational function that can
be written as f (x)

xc for some f ∈ k[x], c ≥ 0. Equivalently, k[x, x−1] is the
ring of Laurent polynomials

a−n x−n +·· ·+an xn , ai ∈ k.

Thus an element of C[x, x−1] can be viewed as a function Cà {0} →
C, whereas C[x](x) is the ring of rational functions defined on some
neighbourhood of 0.

7.2 Local rings

Definition. A ring R is local if it has exactly one maximal ideal m. The
field R/m is called the residue field of R.

We will often use the following characterisation of local rings to prove
that a ring is local.
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Lemma 7.3. A ring R is local if and only if the nonunits in R form an
ideal.

Proof. Suppose R is local with maximal ideal m. If a ∈m then a is not a
unit; else we would have aa−1 = 1 ∈m. Conversely, if a ∈ R àm then a is
a unit, as we’ll show. Suppose for a contradiction that (a) 6= R. Then (a)
must be contained in some (the only) maximal ideal. But then (a) ⊆m,
which contradicts our assumption that a ∈ R àm. So the non units in R
are exactly the elements of m, which is an ideal.

For the other implication, suppose the set I of nonunits in R forms an
ideal. Then I 6= R since 1 ∉ I . And if J is any ideal strictly larger than I ,
then J contains some unit, so J = R. So I is maximal. If m 6= I were some
maximal ideal distinct from I , then there would be some element of m
that wasn’t an element of I ; that element would have to be a unit, which
would guarantee that m= R, a contradiction. Therefore there is no such
m, and I is the only maximal ideal in R.

Exercise. For a field k and a positive integer n, the power series ring
k�x1, . . . , xn� is a local ring. Prove this using the lemma (7.3). Recall an
element of k�x1, . . . , xn� is an infinite formal sum

∑
i j≥0 ai1···in xi1

1 · · ·xin
n ,

ai1···in ∈ k.

Theorem 7.4. Let R be a ring and S a multiplicatively closed subset of R .
Then the prime ideals in R[S−1] are in one-to-one correspondence with
prime ideals p⊂ R such that p∩S =∅.

Proof. Write f : R → R[S−1] for the ring homomorphism given by the lo-
calisation. This induces a (continuous) map of spectra g : SpecR[S−1] →
SpecR that sends a prime ideal p in R[S−1] to its preimage f −1(p) in R.
(cf. Theorem 1.9.) We will show that, for every prime ideal p in R[S−1],
the intersection f −1(p)∩S is empty. If s ∈ S ∩ f −1(p), then f (s) ∈ p and
f (s) is also a unit in R[S−1]; this is impossible since the prime ideal p
contains no units.

Next we’ll show that the map g : SpecR[S−1] → SpecR is injective.
That is, a prime ideal p⊂ R[S−1] is determined by its preimage f −1(p) ⊂ R .
For elements a ∈ R and s ∈ S, the fraction a

s belongs to p if and only if

a
1 ∈ p since s is a unit in R[S−1]. But this is true if and only if a ∈ f −1(p)
in R . So the prime ideal p⊂ R[S−1] is determined by its preimage f −1(p).
That is, the map g is injective.

It remains to show that for every prime ideal q ⊂ R disjoint from S,
there is a prime ideal p ⊂ R[S−1] such that f −1(p) = q. Consider the
diagram

R Frac(R/q)

R[S−1]

R/q ⊂
f h

We can construct a ring homomorphism h : R[S−1] → Frac(R/q) as
shown that makes the diagram commute if and only if the elements
of S map to units in Frac(R/q) (by the universal property of R[S−1]). The
elements of S do map to units in the quotient Frac(R/q), since q∩S =∅.
Defining p := kerh, we see that p is a prime ideal of R[S−1]. We want to
show that f −1(p) = q. For an element a ∈ R, we have a ∈ f −1(p) if and
only if f (a) ∈ p, if and only if h( f a) = 0 in Frac(R/q). This occurs if and
only if a = 0 in R/q, since the inclusion R/q ,→ Frac(R/q) is injective. But
this is equivalent to a ∈ q, and so f −1(p) = q, as desired.

Notice that the correspondence described by Theorem 7.4 is compati-
ble with inclusion: if p and q are prime ideals in R disjoint from S and
p⊆ q, then the inclusion f −1(p) ⊆ f −1(q) certainly also holds.

Corollary 7.5. The localisation of any ring R at any prime ideal p is a
local ring.

Proof. The prime ideals in Rp are in one-to-one correspondence with
the prime ideals in R that are contained in p. In this collection of prime
ideals, there is a unique maximal element p ⊂ R. So Rp has a unique
maximal ideal.

(Explicitly, this maximal ideal is the extended ideal pRp.)

Example. (1) Any field is a local ring.
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(2) The ringsZ(p) for a prime number p and the polynomial ring k[x](x)

are local rings. The residue fields of these two local rings are Z/(p)
and k, respectively.

(3) More generally, for any ring R and any prime ideal p in R , the residue
field of the local ring Rp is Frac(R/p), as you can check (Exercise!).

Exercise. Describe which rational functions are in the local ring
C[x, y](x). The residue field of C[x, y](x) is C(y); try to say ‘geometrically’
what the restriction map C[x, y](x)�C(y) is.

In general R[S−1] need not be a local ring.

Exercise. Show Z[1/p] is not local.

Definition. For a ring R and an element f ∈ R, a subset of SpecR of the
form

D( f ) := Spec(R)àV (( f )) = { f 6= 0}

is called a standard open subset of SpecR.

Exercise. Show that the (continuous) map Spec[1/ f ] → SpecR is a
homeomorphism onto its image. Show that the image is the standard
open set D( f ) ⊆ Spec(R).

Remark. One says a regular function on { f 6= 0} ⊆ Spec(R) is exactly an
element of R[1/ f ].

Insert Pictures.28/10

7.3 Localisation of modules

Let R be a ring, S ⊆ R a multiplicatively closed subset of R, and M an
R-module. We define an R[S−1]-module M [S−1] in the following way:
elements of M [S−1] are written m

s , m ∈ M , s ∈ S, and we say that m
s = n

t
if there is an element u ∈ S such that u(tm − sn) = 0. This defines an
equivalence relation on M ×S, so it defines a set M [S−1] of equivalence
classes. Addition and multiplication of elements of M [S−1] are defined
by the obvious formulas:

m
s + n

t = tm+sn
st ; m

s · n
t = ms

nt .

In particular, we have M [ 1
f ] for f ∈ R and Mp for a prime ideal p of R.

An R-linear map f : M → N gives an R[S−1]-linear map
f [S−1] : M [S−1] → N [S−1] defined by

f [S−1] : m
s 7→ f (n)

s .

This makes the assignment M 7→ M [S−1] into a functor from the category
R-Mod of R-modules to the category R[S−1]-Mod of R[S−1]-modules.

Theorem 7.6. The functor M 7→ M [S−1] is exact. That is, if M1
f1−→

M2
f2−→ M3 is an exact sequence of R-modules, then the induced se-

quence

M1[S−1]
f1[S−1]−→ M2[S−1]

f2[S−1]−→ M3[S−1]

is exact.

Proof. Since g f = 0 the map g [S−1] f [S−1] is also zero (because M 7→
M [S−1]) is a functor). That is, an element m

s ∈ M1[S−1] maps first to f (m)
s

in M2[S−1], and then to g ( f (m))
s = 0

s = 0
1 in M3[S−1]. Thus we have proven

the containment im f1[S−1] ⊆ ker f2[S−1].
Suppose an element m

s ∈ M2[S−1] maps to 0 ∈ M3[S−1] (under f2[S−1]).

That is, g (m)
s = 0 in M3[S−1], so there is an element t ∈ S such that

t g (m) = 0. Since g is R-linear, it must be that g (tm) = 0 in M3. By the
exactness of the first sequence at M2, there is an element m1 ∈ M1 such
that f (m1) = tm. Then f1[S−1] maps the element m1

st in M1[S−1] to the

element f (m1)
st = tm

st = m
s in M2[S−1]. Therefore im f1[S−1] = ker f2[S−1],

q.e.d.

Theorem 7.7. Let R be a ring, S a multiplicatively closed subset of R,
and M and R-module. Then there is an isomorphism of R[S−1]-modules

M ⊗R R[S−1]
∼=−→ M [S−1].

Proof. Omitted. See Atiyah–MacDonald or check it yourself.
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Corollary 7.8. For every ring R and multiplicatively closed subset S ⊆ R ,
the localisation R[S−1] is a flat R-algebra.

Proof. Apply Theorems 7.6 and 7.7.

Example. Let M be the Z-module

M =Z⊕2 ⊕Z/2⊕Z/8⊕Z/5.

The localisation of M at the prime ideal (0) ⊂ Z is M ⊗ZQ ∼= Q2, since
Q=Z(0).

The localisation of M at the prime (2) ⊂Z is given by:

M ⊗ZZ(2) = (Z(2))
⊕2 ⊕Z/2⊕Z/8.

Another example:

M(5)
∼= (Z(5))

⊕2 ⊕Z/5.

For a prime number not equal to 2 or 5, we have

M(p)
∼= (Z(p))

⊕2.

Definition. We say a property P of rings R is local if R has property P if
and only if all localisations of R at prime ideals p have the same property.

Likewise, we say a property P of R-modules M is local if M has prop-
erty P if and only if Mp has property P for every prime ideal p⊂ R.

Lemma 7.9. Let R be a ring and M an R-module. Then the following are
equivalent:

(1) M = 0;

(2) Mp = 0 for every prime ideal p⊂ R;

(3) Mm = 0 for every maximal ideal m⊂ R.

That is, being 0 is a local property of R-modules.

Proof. The implication (1)⇐(2) is easy, and the implication (2)⇐(3) is
trivial.

Suppose M is a nonzero R-module and that x is a nonzero element
of M . Let I be the annihilator AnnR (x) in R of x, an ideal of R. Note
I 6= R since 1 · x 6= 0 ∈ M . So I is contained in some maximal ideal m⊂ R.
We will show that x 6= 0 in Mm. If the equation x

1 = 0
1 holds in Mm, then

there is some s ∈ R àm such that sx = 0. But then s ∈ AnnR (x) = I ⊆m, a
contradiction. So in fact Mm 6= 0.

Lemma 7.10. Let R be a ring and f : M → N an R-linear map. The
following are equivalent:

(1) f is injective;

(2) f is locally injective: fp : Mp → Np is injective for every prime ideal
p⊂ R;

(3) fm : Mm → Nm is injective for every maximal ideal m⊂ R.

Likewise for f ‘surjective’ or ‘an isomorphism’.

Proof. By Theorem 7.7 we can identify Mp with M ⊗R Rp. Then the im-
plication (1)⇐(2) holds since Rp is flat over R. Again, (3) is a special case
of (2), so we need only prove that (3) implies (1).

Let f : M → N be an R-linear map such that fm : Mm → Nm is injective
for every maximal ideal m⊂ R . Let K = ker f . We have an exact sequence

0 −→ K −→ M
f−→ N

of R-modules. Since localisation is an exact functor (Theorem Theorem
7.6), we have a corresponding exact sequence

0 −→ Km −→ Mm
fm−→ Nm

for every maximal ideal m⊂ R. Here fm is injective, so Km = 0 (by exact-
ness). The previous lemma (7.9) guarantees that K must be 0. That is, f
is injective.

A similar proof applies when f is surjective or an isomorphism.
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Flatness is also a local property of R-modules:

Lemma 7.11. Let R be a ring and M an R-module. The following are
equivalent:

(1) M is a flat R-module;

(2) Mp is a flat Rp-module for every prime ideal p⊂ R;

(3) Mm is a flat Rm-module for every maximal ideal m⊂ R.

Proof. First note that flatness is preserved by any extension of scalars:
If R → S is a ring homomorphism and M is a flat R-module, then the
extended module M ⊗R S is a flat S-module. (To prove this, prove that
(M ⊗R S)⊗S N ∼= M ⊗R (S⊗R N ) = M ⊗R N for any S-module N . Exercise!)
So if M is a flat R-module, then Mp = M ⊗R Rp is a flat Rp-module for
every prime p⊂ R. This proves that (1) implies (2).

As usual, (3) is a special case of (2).
Suppose M is an R-module such that Mm is a flat Rm-module for every

maximal ideal m⊂ R. By Theorem 6.4, it suffices to show that tensoring
with M preserves injectivity. Let A → B be an injective R-linear map.
We want to show that the induced map A ⊗R M → B ⊗R M is injective.
We know that Am → Bm is injective for every maximal ideal m⊂ R, since
localisation defines an exact functor. Since Mm is a flat Rm-module, the
map Am⊗Rm Mm → Bm⊗Rm Mm is injective for every maximal ideal m⊂ R .
You can check (Exercise!) that this map is the localisation at m of the map
A⊗R M → B ⊗R M . By the previous lemma, the map A⊗R M → B ⊗R M
is injective. So M is R-flat.

7.4 Nakayama’s Lemma

Lemma 7.12 (Nakayama’s Lemma). Let M be a finitely generated mod-
ule over a local ring R with maximal ideal m. If M ⊗R (R/m) = 0, then
M = 0.

Proof. We have 0 = M ⊗R (R/m) = M/(mM) (Why?!!!). That is, we have
mM = M . Suppose M 6= 0 and let x1, . . . , xn be a set of generators for M

as an R-module, with n as small as possible. Then xn ∈mM , so xn can
be written as:

xn = a1x1 +a2x2 +·· ·+an xn

with the ai in the maximal ideal m. Rearranging, we have the equation

(1−an)xn = a1x1 +·· ·+an−1xn−1. (†)

But 1−an does not belong to m (since 1 = 1−an +an does not belong to
m), so 1−an is a unit in the local ring R. Multiplying each side of (†) by
(1−an)−1 thus shows that xn ∈ Rx1 +·· ·+Rxn−1. But then M is gener-
ated as an R-module by the n −1 elements x1, . . . , xn−1, a contradiction.
Therefore M = 0.

31/10

Example. Beware: Nakayama’s lemma fails for non-finitely generated
modules over a local ring. Let R =Z(2) =

{ a
b : b odd

}
, M =Q. Then M is a

non-finitely generated R-module. Here M 6= 0 but

M ⊗Z(2) Z/2 = M ⊗Z(2) Z(2)/2Z(2) = M/2M =Q/2Q = 0.

Corollary 7.13 (of Lemma 7.12). Let M be a finitely generated module
over a local ring R. Then the elements x1, . . . , xn generate M as an R-
module if and only if the images of x1, . . . , xn span the R/m-vector space
M ⊗R R/m(= M/mM).

Proof. The ’only if’ implication ⇒ is trivial.
Suppose that the images of x1, . . . , xn ∈ M span the R/m-vector space

M/mM . Let Q be the quotient of M by the R-submodule generated
by x1, . . . , xn . We want to show that Q is 0 as an R-module. Clearly
Q is a finitely generated R-module, so by Nakayama Q = 0 if we have
Q ⊗R R/m= 0. We have an exact sequence

R⊕n −→ M −→Q −→ 0

where the map R⊕n −→ M is given by sending the i th generator of R⊕n

to xi . This induces an exact sequence of modules

(R/m)⊕n�M ⊗R R/m−→Q ⊗R R/m−→ 0,
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where the first map is surjective by assumption. Therefore Q ⊗R R/m=
0.

Remark. (1) Why isZ/8⊗ZZ(2)
∼=Z/8? (Recall Example 7.3.) Because all

the elements of S =Zà(2) act invertibly onZ/8, so (Z/8)[S−1] ∼=Z/8.
(If m ∈ Z/8 and s ∈ Zà (2), then m

s ∈ (Z/8)[S−1] is equal to the
element y ∈Z/8 such that s y = m.)

(2) Notation: M
f
�N means f is surjective; M

f
,→ N means f is injec-

tive.

8 Noetherian rings2

Definition. A ring R is noetherian if every sequence I1 ⊆ I2 ⊆ ·· · of ideals
in R terminates; that is, there is N > 0 such that IN = IN+1 = ·· · .

We say R satisfies the ascending chain condition (ACC) on ideals in
this case. A ring R is artinian if it satisfies the descending chain condition
(DCC) on ideals.

Theorem 8.1. Let R be a ring. The following are equivalent:

(1) R is noetherian (ie, R satisfies ACC for ideals);

(2) every ideal in R is finitely generated.

Proof. First suppose that R is noetherian and suppose I be an ideal in R
that is not finitely generated. Then I 6= 0, so pick a nonzero element x1 ∈
I . Then I 6= (x1) since I is not finitely generated, so can pick x2 ∈ I à (x1).
Then I 6= (x1, x2), so pick x3 ∈ I à (x1, x2). Repeat. We get an infinitely
increasing sequence of ideals:

0( (x1)( (x1, x2)( · · ·(R.

This is a contradiction, so I is finitely generated.
Conversely, suppose every ideal in R is finitely generated. Let I1 ⊆

I2 ⊆ ·· · be a chain of ideals in R. Let J = ⋃
n In , which is an ideal. By

2Due to Emmy Noether, 1882–1935.

assumption J is finitely generated as an ideal: say J = (x1, . . . , xn). Each xi

belongs to some I j , so, taking the max of these finitely many j s, there is a
j > 0 such that x1, . . . , xn ∈ I j . So J = I j , whence the sequence terminates:
I j = I j+1 = I j+2 = ·· · .

Examples. (1) Every field is noetherian and artinian.

(2) The ring Z is noetherian but not artinian. It’s not artinian since it
contains the strictly decreasing chain

(2)) (4)) (8)) · · · .

Every PID is noetherian, since every ideal is generated by one ele-
ment. So likewise the polynomial ring k[x], for k a field, is noethe-
rian but not artinian. (Exercise!)

(3) The polynomial ring k[x1, x2, . . . ] in countably many variables is
neither noetherian nor artinian. The chain of ideals

0( (x1)( (x1, x2)( (x1, x2, x3)( · · ·

shows that it’s not noetherian. But R = k[x1, x2, . . . ] is a domain, so
R is contained in its fraction field FracR , which is, of course, noethe-
rian. Thus a subring of a noetherian ring need not be noetherian.

(4) Later we’ll show that every artinian ring is noetherian: Theorem
12.4.

Lemma 8.2. Any quotient ring of a noetherian ring is noetherian. Like-
wise for artinian rings.

Proof. Let R be a noetherian ring and I an ideal of R. There is a one-to-
one order-preserving correspondence between ideals in R/I and ideals
in R containing I .

Theorem 8.3 (Hilbert’s Basis Theorem3). If R is noetherian, then R[x] is
noetherian.

3David Hilbert, 1862–1943
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Corollary 8.4. If R is noetherian (for example, a field), then any algebra
of finite type over R is noetherian.

Proof of corollary. The ring R[x1, . . . , xn] = R[x1][x2] · · · [xn] is noetherian
for R noetherian by induction on n. An R-algebra of finite type is iso-
morphic to R[x1, . . . , xn]/I for some ideal I .

This corollary gives us an important example of a noetherian ring: the
polynomial ring k[x1, . . . , xn] over a field k.

Proof of the Hilbert Basis Theorem. Let R be a noetherian ring. We’ll
show that any ideal I in R[x] is finitely generated as an ideal. For each
j ∈N let I j be the set of elements a ∈ R such that there is an element of I
of the form ax j + [lower-degree terms]. (That is, I j is the set of elements
of R that appear as leading coefficients of degree- j members of I .) Since
I is an ideal in R[x], it is easy to check that each I j is an ideal in R. We
have a chain of ideals

I0 ⊆ I1 ⊆ I2 ⊆ ·· · ⊆ R,

since multiplying an element of I ⊆ R[x] by x gives an element of I .
Because R is noetherian this sequence of ideals terminates: there is
N ∈ N such that IN = IN+1 = ·· · . For each j = 0, . . . , N choose finitely
many generators for the ideal I j : I j = ( f j ,1, . . . , f j ,m j ) ⊆ R. Then for each
of these finitely many elements f j ,k in R we can choose an element
g j ,k ∈ I of the form

g j ,k = f j ,k x j + [lower-degree terms].

We claim I is generated by the finitely many elements g j ,k , 1 ≤ k ≤ m j ,
0 ≤ l ≤ N . Let h be an element of I . We want to show that h is an R[x]-
linear combination of the g j ,k s. Using induction on degh, we need only
prove that we can subtract from h some R[x]-linear combination of the
g j ,k s to get something of degree less than degh.

If degh = d ≤ N , then we can subtract some linear combination of
gd ,1, gd ,2, . . . from h to get something of degree < d . If d = degh > N ,
then we can subtract from h the product of xd−N with some R-linear

combination of the gN ,i s to get something of degree less than d , since
in this case Id = IN = ( fN ,1, . . . , fN ,mN ). We conclude that I is finitely
generated.

Lemma 8.5. Let R be noetherian and S ⊆ R a multiplicatively closed
subset of R. Then the localised ring R[S−1] is noetherian.

Proof. Let π : R → R[S−1] be the natural ring homomorphism. Then for
any ideal I ⊆ R[S−1], we have I = (p−1(I )) ·R[S−1]. (Indeed, if r

f ∈ I , then
r
1 ∈ I , so r ∈ π−1(I ). Therefore every element of I is the product of an
element of π−1(I ) and 1

s ∈ R[S−1].) So if I is any ideal in R[S−1], then
π−1(I ) ⊆ R is finitely generated; say π−1(I ) = (x1, . . . , xm) ⊆ R. Then I is
generated by the images x1, . . . , xm as an ideal of R[S−1].

2/11

Definition. Let R be a ring. An R-module M satisfies ACC on R-
submodules if any sequence of R-submodules M1 ⊆ M2 ⊆ M3 ⊆ ·· · ter-
minates.

Example. A ring R is noetherian if and only if R satisfies ACC on R-
submodules.

Lemma 8.6. Let

0 −→ A
α−→ B

β−→C −→ 0

be an exact sequence of R-modules. Then B satisfies ACC on R-
submodules if and only if both A and C do.

Proof. Exercise! Or see Atiyah–MacDonald, which offers (a condensed
version of) the following proof (6.5i):

An ascending chain of submodules in A or C gives rise to an ascending
chain in B , hence terminates. This proves the ‘only if’ implication.

Let (Ln)n≥1 be an ascending chain of submodules in B . Then
(α−1(Ln))n≥1 is an ascending chain of submodules in A, and (β(Ln))n≥1
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is an ascending chain of submodules in C . Each of these chains termi-
nates, so for sufficiently large n we have α−1(Ln) =α−1(Ln+1) = ·· · and
β(Ln) =β(Ln+1) = ·· · .

...

Corollary 8.7. Let R be a noetherian ring and M a finitely generated
R-module. Then every R-submodule of M is finitely generated as an
R-module. Also, M satisfies ACC on R-submodules.

Proof. We know R satisfies ACC for R-submodules. So by the lemma
(8.6) the free module R⊕n satisfies ACC on R-submodules for every n ∈N.
By the lemma, any finitely generated R-module also satisfies ACC for
submodules, as it is a quotient module of R⊕n for some n.

This implies that any submodule N ⊆ M is finitely generated by a
proof very similar to the one we used for ideals. (Which theorem? Which
proof?!)

Next we discuss why noetherian rings are useful geometrically.

8.1 Decomposition of irreducible closed subsets

Theorem 8.8. Let R be a noetherian ring. Then Spec(R) can be written
as a finite union of irreducible closed subsets:

Spec(R) = X1 ∪X2 ∪·· ·∪Xm ,

with no Xi contained in any X j for i 6= j . Moreover, this decomposition
is unique up to the order of X1, . . . , Xm .

The subsets Xi in the statement of the theorem are called the irre-
ducible components of X = Spec(R). Note that any closed subset of
Spec(R) can be viewed (recall Theorem 1.9) as Spec(R/I ) for some ideal
I , so any closed subset of Spec(R) has a similar decomposition with the
same properties.

The idea here is that we’re (vaguely) generalising unique factorisation
in Z: every ideal is related to a finite list of primes. In the case R =Z the
irreducible components of the closed set {n = 0} = Spec(Z/n) ⊆ Spec(Z)
(for n ∈Zà {0}) are the sets Spec(Z/p) for the prime divisors p of n.

Since the closed subsets of Spec(R) correspond to radical ideals in R,
we can state the theorem purely algebraicly:

Corollary 8.9. Suppose R is noetherian and I is an ideal of R. Then the
ideal rad I is a finite intersection of prime ideals:

rad I = p1 ∩·· ·∩pm

for some m > 0 and some prime ideals pn , where pi 6= p j for i 6= j .

These ideals are exactly the minimal ideals that contain I . (cf. Example
Sheet 1, Question 12.)

Proof of Theorem 8.8. Let X = Spec(R). Since R is noetherian, R (in par-
ticular) satisfies the ACC for radical ideals, so X satisfies the DCC for
closed subsets: if we have a sequence X ⊆ X1 ⊆ X2 ⊆ ·· · of closed subsets
of X , then the sequence terminates.

Suppose X cannot be written as a finite union of irreducible closed
subsets. Then X 6=∅ (otherwise we’d be done with m = 0). Also X is
not irreducible; otherwise we’d be done with m = 1. So we can write
X = Y1∪Z1 for some closed proper subsets Y1, Z1 of X . At least one of Y1,
Z1 cannot be written as a finite union of irreducible closed subsets; say
it’s Y1. Then Y1 6=∅ and Y1 is not irreducible, so we can write Y1 = Y2∪Z2

for some pair Y2, Z2 of proper closed subsets of Y1. We can assume that
Y2 is not a finite union of closed irreducible subsets. Repeat to get a
strictly decreasing sequence of closed subsets of X :

X ) Y1 ) Y2 ) · · · ,

a contradiction.
Proof of uniqueness of such a decomposition is left as an exercise.

This theorem gives a rough description of ideals and modules over a
noetherian ring, but there can be many ideals with the same radical.
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Example. Let R = C[x, y] and let I be an ideal of R with rad I = (x, y).
(Think of the ideal (x, y) as the ideal of functions that vanish at 0 ∈ C.)
Equivalently, there is some N > 0 such that

(x, y)N ⊆ I ⊆ (x, y).

(Recall that (x, y)N = (xN , xN−1 y, . . . , y N ).) An example of such an I is a
monomial ideal I = (xa1 yb1 , xa2 yb2 , . . . ). The monomial ideal (y2, x2 y, x4)
is pictured below. The cells in the grid represent members of a basis
for C[x, y] as a C-vector space, and so the ideal is the set of all C-linear
combinations of monomials that appear above or to the right of the
ideal’s generators (in this case, y2, x2 y , and x4).

...

y3 ...
...

...

y2 x y2 x2 y2 x3 y2 · · ·
y x y x2 y x3 y · · ·
1 x x2 x3 x4 · · ·

There are many such examples of ideals with radical (x, y). This picture
shows how to produce infinitely many distinct examples, but one can
easily write down ‘continuous families’ of them.

Lemma 8.10. Let R be a noetherian ring and I ⊆ R an ideal. Then for
some N > 0 we have

(rad I )N ⊆ I ⊆ rad I .

Proof. We know rad I is finitely generated as an ideal; say rad(I ) =
(x1, . . . , xm). Some positive power of each xi lies in I . Since there are
only finitely many xi , there is n > 0 such that (x1)n ∈ I , . . . , (xm)n ∈ I .
Notice that any product of at least mn +1 of the generators x1, . . . , xm

(allowing repetitions) is a multiple of (xi )n for some i . Therefore such a
product must belong to I , and we have (rad I )mn+1 ⊆ I .

Theorem 8.11. Let R be a noetherian ring and M a finitely generated
R-module. Then there exists a chain

0 = M0 ⊆ M1 ⊆ M2 ⊆ ·· · ⊆ Mr = M

of R-modules such that, for 1 ≤ i ≤ r , we have Mi /Mi+1
∼= R/pi for some

prime ideal pi .

Remark. Such a ‘decomposition’ of M is far from unique. Even the set of
primes pi that occur is not uniquely determined by M .

Exercise. Give an example for R = Z and M a finitely generated Z-
module of nonuniqueness.

Exercise. Let M be a finitely generated module over a noetherian ring
R. Show that in any decomposition as in Theorem 8.11, the intersection
p1 ∩·· ·∩pr is equal to rad(AnnR (M)).

The closed subset of Spec(R) defined by the ideal AnnR (M) is called
the support of M . The support of M is the set of prime ideals p ∈ Spec(R)
such that Mp 6= 0. The module M can be viewed as an (R/AnnR (M))-
module, so we view M as ‘sitting on’ its support, the closed subset
Spec(R/AnnR (M)) of Spec(R).

4/11

Proof of Theorem 8.11. We will show that for any nonzero module M
over a noetherian ring, M contains a submodule isomorphic to R/p
for some prime p⊂ R. Given that, the theorem follows by the following
argument: Let M be a finitely generated module. If M = 0 we’re gone with
r = 0. So suppose M 6= 0 and let M1

∼= R/p1 6= 0 for some prime p1 ⊂ R.
Look at M/M1. If this is 0, then we’re done with r = 1. Otherwise M/M1

contains a submodule isomorphic to R/p2 for some prime p2 ⊂ R. Let
M2 be the inverse image of this submodule in M1. Repeat. The process
stops after finitely many steps, since M satisfies ACC for R-modules.

Now we’ll prove the claim: By Example Sheet 2, there is a nonzero
element x of M whose annihilator in R is maximal among annihilators
of nonzero elements (since R is noetherian). Let p= AnnR (x). We will
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show that p is prime. (Then R/p as a submodule, R ·x ⊆ M .) The identity
1 does not belong to p, since x 6= 0. Suppose r, s ∈ R satisfy r s ∈ p and
s ∉ p. That is, we have r sx = 0 and sx 6= 0. Then p ⊆ AnnR (sx). By the
maximality property of p, we have p = AnnR (sx). But r ∈ AnnR (sx), so
r ∈ p. This completes the proof.

Definition. A finite A-algebra is an A-algebra that is finitely generated
as an A-module.

Contrast: An A-algebra B is of finite type if B is finitely generated as an
A-algebra.

Example. The polynomial ring k[x] is of finite type over k, but it is not
finite over k.

9 Homological algebra

Lang’s Algebra is a good reference for this topic. Note that most of the
material for today’s lecture also works for left modules over noncommu-
tative rings.

A sequence of R-linear maps

· · ·Mi+1
di+1−→ Mi

di−→ Mi−1
di−1−→ ·· ·

is a chain complex (or just complex) if di di+1 = 0 for every i . Equivalently,
im(di+1) ⊆ ker(di ) for every i . We define the homology groups of a chain
complex (of R-modules) to be the R-modules

Hi (M∗) := kerdi

im(di+1)
.

Thus the chain complex M∗ is an exact sequence if and only if its homol-
ogy groups are all 0.

Let M∗ and N∗ be complexes of R-modules. A chain map (or map of
chain complexes) f : M∗ → N∗ is a collection of R-linear maps fi : Mi →

Ni such that the diagram

· · · −−−−→ M2
d2−−−−→ M1

d1−−−−→ M0 −−−−→ ·· ·
f2

y f1

y f0

y
· · · −−−−→ N2

e2−−−−→ N1
e1−−−−→ N0 −−−−→ ·· ·

commutes.

Exercise. A chain map f : M∗ → N∗ determines an R-linear map
f∗ : Hi (M∗) → Hi (N∗) on homology groups. (Note Hi ( f ) is also used
to denote f∗.)

Let f and g be chain maps M∗ → N∗. A chain homotopy F from f to g
is a collection of R-linear maps Fi : Mi → Ni+1 such that dF +F d = g − f
as R-linear maps Mi → Ni for every i ∈Z:

· · · M2 M1 M0 · · ·

· · · N2 N1 N0 · · ·

d d

g − f

d

F1 g − f

d

F2 g − f

d d d d

Exercise. Write f ∼ g if there is a chain homotopy from f to g . If
f ∼ g : M∗ → N∗, then f∗ = g∗ as R-linear maps Hi (M∗) → Hi (N∗) on
homology.

Finally, a chain homotopy equivalence f : M∗ → N∗ is a chain map
such that there is a chain map g : N∗ → M∗ with f g ∼ 1N∗ and g f ∼ 1M∗ .

Exercise. If f : M∗
'−→ N∗ is a chain homotopy equivalence, then

f∗ : Hi (M∗) → Hi (N∗) is an isomorphism for every n ∈Z.

Definition. Let M be an R-module. A projective resolution of M is an
exact sequence of R-modules

· · · −→ P1 −→ P0 −→ M −→ 0(−→ 0 −→ 0 −→ ·· · )
with each Pi a projective R-module.
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Every R-module has a projective resolution, in fact a free resolution.
Say I is a set that generates M ; then P0 := R⊕I �M → 0 is exact. Choose
P1 free that maps onto ker(P0 → M), etc.

Examples. (1) The Z-module Z has the projective resolution

· · · −→ 0 −→ 0 −→Z
n−→Z−→ 0.

(2) The Z-module Z/n (for n 6= 0) has the projective resolution

· · · −→ 0 −→ 0 −→Z−→Z−→Z/n −→ 0.

More generally, for any commutative ring R and any non-
zerodivisor f ∈ R, the quotient R/( f ) as an R-module has the pro-
jective resolution

· · · −→ 0 −→ 0 −→ R
f−→ R −→ R/( f ) −→ 0.

To be precise, we say that the projective resolution of M is the chain
complex

· · · −→ P2 −→ P1 −→ P0 −→ 0

(not including M). This is a chain complex P∗ with Pi projective and

Hi (P∗) ∼=
{

M if i = 0

0 if i 6= 0
.

Projective resolutions generalise the idea of generators and relations
for a module. If we have a projective resolution

· · · −→ P2 −→ P1 −→ P0 −→ M −→ 0,

then P0 represents the generators for M , P1 represents the relations, P2

represents relations between relations, etc.
Projective resolutions are far from unique, but they do have the fol-

lowing in common:

Theorem 9.1. Let M be an R-module. Then any two projective resolu-
tions of M are chain-homotopy-equivalent.

Proof. See Lang for the proof, or do it yourself. (Exercise!) The idea is to
use the lifting property of projective modules (Lemma 4.1) to define the
homotopy equivalence.

9.1 Derived functors

A functor T : R-Mod → R-Mod is called additive if T ( f + g ) = T f +T g
for every pair of R-linear maps f , g : M → N .

Example. For a given R-module N , define

TN (M) := M ⊗R N .

Then TN is an additive functor. By definition TN is exact if and only if
N is a flat R-module. An additive functor T : R-Mod → R-Mod is right
exact if for every exact sequence

A → B →C → 0

of R-modules the sequence

T A → T B → TC → 0

is also exact.
For example, the functor −⊗R N = TN is right exact for every R-module

N (Lemma 6.3).

Definition. Let T : R-Mod → R-Mod be a right exact functor. The de-
rived functors Ti : R-Mod → R-Mod for i ≥ 0 are defined in the following
way: for an R-module M , let P∗ be a projective resolution of M . Then
we define Ti (M) := Hi (T (P∗)). That is, look at the sequence

· · · −→ T P2 −→ T P1 −→ T P0 −→ 0,

which is, by the functoriality of T , always a chain complex of R-modules
(though not necessarily exact).

Remark. It’s easy to show that T0(M) = T (M).
The R-modules Ti (M) are independent of choice of projective resolu-

tion P∗ because any two projective resolutions of M are chain-homotopy-
equivalent. We have P∗ ' Q∗, so T (P∗) ' T (Q∗); therefore T (P∗) and
T (Q∗) have the same homology groups.
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Definition. For R-modules M and N , we write

TorR
i (M , N ) := (TN )i (M),

an R-module for every i ≥ 0.

We have
TorR

0 (M , N ) ∼= M ⊗R N .

(Think of Tor as describing how far N is from being flat.)
7/11

More concretely, we can define TorR
i (M , N ) for i ≥ 0 by choosing a

projective resolution

· · · −→ P1 −→ P0 −→ M −→ 0.

We then look at the chain complex

· · · −→ P2 ⊗R N −→ P1 ⊗R N −→ P0 ⊗R N −→ 0. (?)

The Tor groups TorR
i (M , N ) are the homology groups of the complex (?).

Remark (Properties of Tor).

(1) TorR
0 (M , N ) ∼= M ⊗R N . To see this, use that ⊗R is right exact.

(2) If M is projective, then we have

TorR
i (M , N ) =

{
M ⊗R N if i = 0

0 if i 6= 0
.

If N is flat, then

TorR
i (M , N ) =

{
M ⊗R N if i = 0

0 if i 6= 0
.

(3) Relation of Tor to torsion: Compute TorR
r (R/( f ), N ) with f ∈ R a

non-zerodivisor as follows: Use the projective resolution

0 −→ R −→ R −→ R/( f ) −→ 0.

So TorR∗ (R/( f ), N ) are the homology of the sequence

0 −→ N
f−→ N −→ 0.

That is,

TorR
i (R/( f ), N ) =


N / f N if i = 0

N [ f ] if i = 1

0 if i > 1

,

where N [ f ] = {
x ∈ N : f x = 0

}
is the f -torsion submodule.

The other fundamental example of a derived functor is Ext. Consider
the (contravariant) right exact functor

HN (M) = HomR (M , N ) : R-Mod → (R-Mod)op.

An R-linear map M1 → M2 gives an R-linear map HomR (M2, N ) →
HomR (M1, N ). The derived functors of HN are called Exti

R (M , N ), i ≥ 0.
That is, let P∗ be a projective resolution of M , and then Ext∗R (M , N ) are
the homology groups of the sequence

0 −→ HomR (P0, N ) −→ HomR (P1, N ) −→ ·· · .

Example. Compute Exti
R (R/( f ), N ) with f a non-zerodivisor. Use the

obvious projective resolution of R/( f ) and apply HomR (−, N ) to get a
chain complex

0 −→ HomR (R, N ) −→ HomR (R, N ) −→ 0 −→ ·· · .

But we have an isomorphism HomR (R, N ) ∼= N , and the map N ∼=
HomR (R, N ) −→ HomR (R, N ) ∼= N is just the multiplication-by- f map,
so we can read off the homology:

Exti
R (R/( f ), N ) ∼=


N [ f ] if i = 0

N / f N if i = 1

0 if i > 1

.

(Notice that we always have Ext0
R (M , N ) ∼= HomR (M , N ).)
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Remark. Ext1
R (M , N ) can be interpreted as the set of isomorphism classes

of extensions of R-modules:

0 −→ N −→ E −→ M −→ 0.

The ‘trivial’ extension E = M ⊕N corresponds to 0 ∈ Ext1
R (M , N ).

Lemma 9.2 (Snake lemma, Example sheet 2). If we have a commutative
diagram of R-modules

0 −−−−→ A1 −−−−→ A2 −−−−→ A3 −−−−→ 0

f

y g
y h

y
0 −−−−→ B1 −−−−→ B2 −−−−→ B3 −−−−→ 0

with exact rows, then we have a canonical exact sequence

0 −→ ker f −→ ker g −→ kerh

−→ coker f −→ coker g −→ cokerh −→ 0.

(The interesting map here is, of course, the map kerh → coker f .)

This implies, with more diagram-chasing, the following theorem:

Theorem 9.3. Given a short exact sequence of chain complexes of R-
modules:

...
...

...y y y
0 −−−−→ Ai+1 −−−−→ Bi+1 −−−−→ Ci+1 −−−−→ 0y y y
0 −−−−→ Ai −−−−→ Bi −−−−→ Ci −−−−→ 0y y y
0 −−−−→ Ai−1 −−−−→ Bi−1 −−−−→ Ci−1 −−−−→ 0y y y

...
...

...

(a commutative diagram, with chain complexes in columns and rows
exact), there is a long exact sequence of R-modules in homology:

· · · −→ Hi (A) −→ Hi (B) −→ Hi (C )
∂−→ Hi−1(A) −→ ·· ·

Refer to Lang’s Algebra for a proof. Notice again that the ‘boundary
map’ ∂ : Hi (C ) → Hi−1(A) is the interesting one.

Corollary 9.4 (Long exact sequence for Tor in the second variable). Let
M be an R-module, and let 0 → A → B → C → 0 be a short exact se-
quence of R-modules. Then we have a long exact sequence:

· · ·→ TorR
i (M , A) → TorR

i (M ,B) → TorR
i (M ,C ) → TorR

i−1(M , A) →···
→ TorR

2 (M ,C ) → TorR
1 (M , A) → TorR

1 (M ,B) → TorR
1 (M , A)

→ M ⊗R A → M ⊗R B → M ⊗R C → 0.

Proof. Let P∗ be a projective resolution of M . Then we have a short exact
sequence of chain complexes:

...
...

...y y y
0 −−−−→ Pi+1 ⊗R A −−−−→ Pi+1 ⊗R B −−−−→ Pi+1 ⊗R C −−−−→ 0y y y
0 −−−−→ Pi ⊗R A −−−−→ Pi ⊗R B −−−−→ Pi ⊗R C −−−−→ 0y y y

...
...

...

It’s easy to check commutativity (Exercise!), and it’s obvious that the
columns are chain complexes. The rows are exact because projective
modules are flat (Ex Sheet 1). By the theorem (9.3), we get a long exact
sequence of homology groups.
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Theorem 9.5. Let M and N be modules over R. Then the R-modules
TorR

i (M , N ) can be computed by a projective resolution of N , or more
generally by a flat resolution of N . That is, given any flat resolution of N :

· · · −→ F2 −→ F1 −→ F0 −→ N −→ 0 (Fi flat),

we have that the modules TorR
i (M , N ) are the homology groups of the

chain complex

· · · −→ M ⊗R F1 −→ M ⊗R F0 −→ 0.

Proof. Divide the exact sequence · · · −→ F1 −→ F0 −→ N −→ 0 into short
exact sequences:

0 −→ I j+1 −→ F j −→ I j −→ 0

where I j := im(F j → F j−1) for j > 0 and I0 := N . By 9.4 we get an exact
sequence

TorR
i+1(M ,F j ) → TorR

i+1(M , I j ) → TorR
i (M , I j+1) → TorR

i (M ,F j ). (†)

But TorR
i+1(M ,F j ) = TorR

i (M ,F j ) = 0 for i > 0, so (†) gives isomorphisms

TorR
j (M , N ) ∼= TorR

j−1(M , I1) ∼= ·· ·
∼= TorR

1 (M , I j−1) ∼= ker(M ⊗ I j → M ⊗F j−1).

Also, since ⊗R is right exact and the sequence F j+1 → F j → I j → 0 is
exact, the sequence

M ⊗R F j+1 −→ M ⊗R F j −→ M ⊗R I j −→ 0

is exact. So M ⊗R I j
∼= coker(M ⊗R F j+1 → M ⊗R F j ). Therefore

TorR
j (M , N ) ∼= H j (M ⊗R F j+1 → M ⊗R F j → M ⊗R F j−1).

From this theorem, we conclude that we can compute TorR
j (M , N )

using a projective resolution of M or of N , and we get the same answer.
Since M⊗R N ∼= N⊗R M , it follows that TorR

i (M , N ) ∼= TorR
i (N , M) (though

this isn’t obvious from the definition of Tor). In fact, you could also use a
flat resolution of M , not necessarily a projective resolution, and get the
same groups. It follows also that we have a long exact sequence for Tor
in the first variable.
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10 Integral Extensions

Definition. Let B be a ring and A be a subring of B . An element x ∈ B is
integral over A if there are elements a0, . . . , an−1 ∈ A such that

xn +an−1xn−1 +·· ·+a1x +a0 = 0,

that is, if x is a root of a monic polynomial with coefficients in A.

Example. Every x ∈ A is integral over A.

We highlight an important special case: suppose K /Q is a finite exten-
sion of fields. Define the set (ring, as we will see shortly) OK of algebraic
integers in K as follows:

OK = {
x ∈ K : x is integral over Z

}
.

Exercise. Show that OQ =Z. (To get started, show that 1
2 ∉OQ.)

Lemma 10.1. Suppose A is a subring of B . We (unfortunately) write A[x]
for the subring of B generated by A and the element x. The following are
equivalent:

(1) x ∈ B is integral over A;

(2) the subring A[x] of B is a finitely generated A-module;

(3) the subring A[x] of B is contained in a subring C ⊆ B that is finitely
generated as an A-module;

(4) there exists a faithful4 module M over the ring A[x] that is finitely
generated as an A-module.

Proof. The implication (1)⇒(2) is clear: if x is integral over A, then we
have

x ∈ A ·1+ A · x +·· ·+ A · xn−1.

4I don’t think we ever defined a faithful R-module. . . An R-module is faithful if
AnnR (M) = 0. (Atiyah–MacDonald 20)
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Now by induction on m, the element xn+m is also an A-linear combina-
tion of the elements 1, x, . . . , xn−1 for every m ≥ 0.

For the second implication, (2)⇒(3), just take C = A[x].
The third implication (3)⇒(4) is also easy: Take M = C , viewed as

an A[x]-module. Observe M is finitely generated by assumption and
faithful since A[x] ⊆C .

The heart of the proof is the final implication, (4)⇒(1): Let m1, . . . ,mr

generate M as an A-module. Then there are elements ai j ∈ A such that

xmi =
n∑

j=1
ai j m j .

Consider the matrix X := xI − (ai j ). If X = (yi j ) then
∑

yi j m j = 0. Now
multiply by adj(X ). Recall that for any square matrix, adj(X )X = (det X ) ·
I , so we get (det X ) ·mi = 0 for every i ; that is, (det X ) ·M = 0. But det X
belongs to A[x], which (by assumption) acts faithfully on M . So it must
be that det X = 0. But det X is a monic polynomial in x, with coefficients
in A, so x is integral over A.

From just this one technical lemma we can deduce a surprising num-
ber of useful facts.

Recall that an A-algebra B is finite over A (or a finite A-algebra) if B is
finitely generated as an A-module, whereas B is of finite type over A if B
is finitely generated as an A-algebra. Accordingly, a morphism f : X → Y
of affine schemes is finite if OX is finite over OY and of finite type if OX

is of finite type over OY . (Recall the definition of the ring OX of regular
functions on X .)

Lemma 10.2. Let A ⊆ B ⊆C be a chain of subrings. If B is finite over A
and C is finite over B , then C is finite over A.

Proof. Let b1, . . . ,bn generate B as an A-module and c1, . . . ,cr generate
C as a B-module. Check (Exercise!) that all elements bi c j generate C as
an A-module.

Corollary 10.3. Let B be a ring and A a subring. Suppose that each of the
elements x1, . . . , xn ∈ B is integral over A. Then the subring A[x1, . . . , xn]
of B is finitely generated as an A-module.

Proof. Induct on n. Induction has R := A[x1, . . . , xn−1] finitely generated
as an A-module. By assumption xn is integral over A, so integral over
R. Apply Lemmas 10.1 and 10.2 to conclude that A[x1, . . . , xn] is finitely
generated as an A-module.

Corollary 10.4. Let A be a subring of a ring B . Let C be defined by

C = {
x ∈ B : x is integral over A

}
.

Then C is a subring of B (and, obviously, A ⊆C ⊆ B).

Proof. Since A ⊆C , we have 0,1 ∈C . We need to show that for every pair
x, y of elements of C , the elements x y , x + y , and −x also belong to C .
But by the previous corollary, the subring A[x, y] generated by A, x, and
y is a finitely generated A-module, so all its elements are integral over A.
In particular, the elements x y , x + y , and −x are integral over A.

It seems we’ve cheated somewhere. We shouldn’t have been able, in
the proof of Corollary 10.4 that C was a ring without somehow exhibiting
monic polynomials over A of which x y and x+y are roots (cf. the exercise
below). But somehow Lemma 10.1 took care of all the combinatorial
work we had to do.

Exercise. Suppose x satisfies the monic polynomial f (with coefficients
from A) and y satisfies the monic polynomial g . Can you find monic
polynomials satisfied by x+ y and x y defined in terms of the coefficients
of f and g ? (Try f , g quadratic first, as a nice special case.)

Definition. The set
{

x ∈ B : x is integral over A
}

is called the integral clo-
sure of A in B . If the integral closure of A is all of B , we say B is integral
over A; if the integral closure of A is A, we say A is integrally closed in
B . An integral domain A is called normal (or integrally closed) if it is
integrally closed in its field of fractions.

Example. Z is normal by the first exercise of this section. A problem
on Example Sheet 2 (?) asks to prove that every UFD is normal. So
k[x1, . . . , xn] is normal, and Ok is normal (as we’ll see).
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Definition. Let f : A → B be a ring homomorphism. We say B is integral
over A if B is integral over f (A).

We could rephrase Corollary 10.3 to say that ‘B is finite over A iff B is
of finite type and integral over A’; more concisely, ‘finite = finite type +
integral’.

Corollary 10.5. Let A ⊆ B ⊆C be a chain of subrings. If B is integral over
A and C is integral over B , then C is integral over A.

Proof. If x ∈C , then there are elements bi such that xn +bn−1xn−1+·· ·+
b0 = 0. But A[b0, . . . ,bn−1] is finitely generated as an A-module, as each
bi is integral over A. Thus x is integral over R := A[b0, . . . ,bn−1], so the
subring A[b0, . . . ,bn−1, x] is finite over R (hence over A). Therefore x is
integral over A.

Corollary 10.6. Let A be a subring of a ring B , and let C be the integral
closure of A in B . Then C is integrally closed in B .

Proof. If x ∈ B is integral over C , then x is integral over A (by the previous
corollary, 10.5), so x ∈C .

Exercise. (‘Integrality behaves well with respect to quotients and locali-
sations’) Suppose A is a subring of B and suppose B is integral over A.
Show:

(1) if J is an ideal in B and I = J ∩ A, then the quotient B/J is integral
over the quotient A/I ;

(2) if S is a multiplicatively closed subset of A, then the localisation
B [S−1] is integral over the localisation A[S−1].

Lemma 10.7. Let A be a subring of a ring B , and let C be the integral
closure of A in B . Let S ⊂ A be multiplicatively closed. Then C [S−1] is
the integral closure of A[S−1] in B [S−1].

Proof. By the exercise above, C [S−1] is integral over A[S−1], so we need
only show that every element of B [S−1] that is integral over A[S−1] be-
longs to C [S−1].

If b/s ∈ B [S−1] is integral over A[S−1] then we have an equation

(b/s)n +an−1/sn−1(b/s)n−1 +·· ·+a0/s0 = 0

(in B [S−1]) for some elements ai ∈ A, si ∈ S. Clear denominators: put
t = s0 . . . sn−1 and multiply by (st )n , getting

(bt )n +en−1(bt )n−1 +·· ·+e0 = 0

(in B [S−1]) for some ei ∈ A. Multiply by some u ∈ S to get the equation

u(bt )n +uen−1(bt )n−1 +·· ·+ue0 = 0

in B , by definition of B [S−1]. Multiply once more by un−1 to see that the
element btu ∈ B is integral over A. So btu ∈C , whence b/s = (btu)/(stu)
belongs to C [S−1].

Hence normality is a local property:

Lemma 10.8. Let A be an integral domain. The following are equivalent:

(1) A is normal;

(2) Ap is normal for every prime p⊂ A;

(3) Am is normal for every maximal ideal m⊂ A.

11/11
Correction to Example Sheet 3: for #9, assume that A is a domain of

finite type over a field.
Next we discuss some basic properties of Ext.
Unlike Tor, Exti

R (M , N ) is in general not related to Exti
R (N , M) because

there is no relation between HomR (M , N ) and HomR (N , M). Nonethe-
less, Ext can be computed by either a projective resolution of M or an
injective resolution of N :

0 −→ N −→ I0 −→ Ii −→ ·· · .

Definition. An R-module is injective iff for every injective R-linear map
M ,→ N , every R-linear map M → I extends to an R-linear map N → I .
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(See Lang’s Algebra for a discussion of injective modules.)
Also, we have a long exact sequence for Ext in the first or second

variable: if M is an R-module and 0 → A → B → C → 0 is a short ex-
act sequence of R-modules, then we can define canonical long exact
sequences

0 −→ HomR (M , A) −→ HomR (M ,B) −→ HomR (M ,C )

−→ Ext1
R (M , A) −→ Ext2

R (M ,B) −→ ·· ·

and

0 −→ HomR (C , M) −→ HomR (B , M) −→ HomR (A, M)

−→ Ext1
R (C , M) −→ Ext2

R (B , M) −→ ·· ·

Now the application of Tor promised earlier (Theorem 6.4).

Lemma 10.9. Let M be an R-module. Then the following are equivalent:

(1) M is a flat R-module;

(2) for any injective R-linear map A → B , the map M ⊗R A → M ⊗R B is
injective;

(3) for any ideal I ⊆ R, the induced map M ⊗R I → M ⊗R R = M is
injective.

Proof. We showed that (1) and (2) are equivalent and that (2) implies (3)
in the proof of Theorem 6.4. We now show that (3) implies (1).

For any ideal I ⊆ R, we have a long exact sequence

· · · −→ TorR
1 (M ,R) −→ TorR

1 (M ,R/I ) −→ M ⊗R I −→ M ⊗R I −→ ·· · .

But TorR
1 (M ,R) is zero since R is R-flat, and the map M ⊗R I → M ⊗R I

is an injection by assumption. Therefore TorR
1 (M ,R/I ) = 0 for all ideals

I ⊆ R.
Next let N be any finitely generated R-module. Say

N = Rx1 +·· ·+Rxn

for some elements x1, . . . , xn ∈ N . Then we can consider the submodules
Ni := Rx1 +·· ·Rxi ⊆ N for 1 ≤ i ≤ n. We have containments

0 ⊆ N1 ⊆ ·· · ⊆ Nm = N ,

and each Ni /Ni−1 is generated by one element so is isomorphic to R/I
for some I ⊆ R . By (induction and) the long exact sequence for Tor in the
second variable, TorR

1 (M , N ) = 0 for every finitely generated module N .
Finally, let N be any R-module. Then N is the direct limit of its finitely

generated R-submodules (which always form a directed set). But Tor
commutes with direct limits in each variable (cf. Example Sheet 2). So
TorR

1 (M , N ) = 0 for any R-module N .
Let A → B be any injection of R-modules. Then we have a short exact

sequence
0 −→ A −→ B −→ B/A −→ 0

and hence a long exact sequence

· · · −→ 0 = TorR
1 (M ,B/A) −→ M ⊗R A −→ M ⊗R B −→ ·· · .

That is, the map M ⊗R A → M ⊗R B is injective, so M is flat.

Back to integral extensions:
Recall that we proved (Lemma 10.7) that the integral closure can be

computed locally. Therefore normality is a local property:

Theorem 10.10. Let R be a domain. The following are equivalent:

(1) R is normal;

(2) Rp is normal for every prime ideal p⊂ R;

(3) Rm is normal for every maximal ideal m⊂ R.

Proof. Note that the rings Rp, Rm, and R are all domains with the same
fraction field: R ⊂ Rp ⊆ Frac(R) = K . Let C be the integral closure of R
in K . Let f : R ,→ C be the inclusion; then R is normal if and only if f
is surjective. By the locality of the integral closure (Lemma 10.7), Rp is
normal if and only if the induced map fp : Rp →Cp is surjective. But the
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surjectivity of an R-linear map is a local property (at prime or maximal
ideals). So f is surjective if and only if fp is surjective, if and only if m is
surjective.

Geometrically, a ring is normal if and only if Spec(R) is ‘not too singu-
lar’. In particular, a normal affine variety has a singular set of codimen-
sion ≥ 2.

insert pictures here

Let f be the function that maps the affine line A1
k onto the cusp {x2 =

y3} ⊂ A2
k . Here f is a finite morphism, and Frac(R) ∼= k(t), so Spec(R) is

not normal. (Note that {x2 = y3} is not normal.) We have R = k[x, y]/(x2−
y3) ,→ k[t ], x 7→ t 3, y 7→ t 2. Indeed the image of R in k[t ] is the subring
k{1, t 2, t 3, . . . }. Clearly k[t ] is generated by 1 and t as an R-module, so
k[t ] is finite over R.

Example. For any field k, the map A1
k

f−→ A1
k , x 7→ x2 is finite. Indeed,

this map induces the map k[y] → k[x], y 7→ x2. Here k[x] is generated by
1 and x as a module over the subring k[y] = k{1, x2, x4, x6, . . . } ⊂ k[x]. So
f is a finite morphism.

Lemma 10.11. Suppose the ring B is integral over its subring A and that
A is a domain. Let q⊂ B be prime, and put p= qc = q∩ A. (Notice that p
is a prime ideal in A.) Then q is maximal in B if and only if p is maximal
in A.

For affine varieties X and Y over a field k, a morphism X → Y has
O (Y ) →O (X ) injective if and only if f is dominant: f (X ) is dense in Y .
So the lemma has the following geometric consequence: if f : X → Y is a
finite dominant morphism of f -varieties5, then a point p in X is closed
if and only if f (p) in Y is closed.

Proof. By the exercise following Corollary 10.6, B/q is integral over A/p⊆
B/q. Replace A and B by A/p and B/q, respectively. Thus we have to
show that if A ⊆ B are domains with B integral over A, then A is a field if
and only if B is a field.

5Surely he meant k-varieties here. . .

Suppose A is a field. Let y ∈ B be nonzero. Then we can write

0 = yn +an−1 yn−1 +·· ·+a0 ∈ B

for some elements ai ∈ A. Choose such an equation with n minimal.
Then a0 6= 0 in A, since B is a domain. We have

y(yn−1 +an−1 yn−2 +·· ·+a1) =−a0 6= 0,

so y is a unit (as A is a field).
Conversely, suppose B is a field. Let u be a nonzero element of A.

Then 1
u ∈ B , so 1

u is integral over A. That is, there are elements ai ∈ A
such that

0 = ( 1
u )n +an−1( 1

u )n−1 +·· ·+a0 = 0

in B . Multiply by un−1 to get the equation

0 = 1
u +an−1 +an−2u +·· ·+a0un−1

in B . But the sum an−1 + an−2u + ·· · + a0un−1 belongs to A, so 1
u ∈ A.

Therefore A is a field.

14/11

Corollary 10.12. Suppose B is integral over the subring A ⊆ B . Let q and
q′ be prime ideals in B such that q ⊆ q ′ and their contractions in A are
equal:

q∩ A = qc = (q′)c = q′∩ A.

Then q= q′.

Geometrically, this corollary says that, if some irreducible closed
subset of Spec(B) is contained in another irreducible closed subset of
Spec(B), then a finite morphism doesn’t map the two irreducible closed
subsets onto the same irreducible closed subset of Spec(A).

Proof. Let p= qc (= (q′)c ). By Lemma 10.7, the localisation Bp is integral
over the localisation Ap. (Here Bp = B [(A à p)−1] need not be a local
ring.) Notice that Ap ⊆ Bp, since localisation (an exact functor) preserves
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injections (Theorem 7.6). Let m = pAp, the (unique) maximal ideal in
Ap. And set n= qBp ⊆ Bp and n′ = q′Bp ⊆ Bp. We will show that n⊆ n′ and
nc = (n′)c =m⊂ Ap.

We want to show that qBp∩ Ap = pAp, that is that the map

Ap/pAp −→ Bp/qBp

is injective. We know that the map A/p ,→ B/q is an injection. Since
localisation is an exact functor on A-modules, it follows that the map
(A/p)p ,→ (B/q)p is an A-linear injection. But also, localising commutes
with taking quotient rings (Exercise! (R/I )[S−1] = R[S−1]/I ·R[S−1] for
a multiplicatively closed subset S ⊆ R.), so we’ve proved that the map
Ap/pAp → Bp/qBp is injective.

We know that n and n′ are prime ideals in Bp, so since nc =m in Ap and
the ring Bp is integral over Ap, we’ve shown that n and n′ are maximal
ideals in Bp. Since n ⊆ n′, it must be that n = n′. Using the one-to-one
correspondence between prime ideals in Bp and primes in B which do
not meet Aàp, we see that q= q′ in B .

Theorem 10.13. Let A be a subring of a ring B , and suppose B is integral
over A. Suppose also that p is a prime ideal in A. Then there is a prime
ideal q⊆ B with q∩ A = p.

Geometrically, this theorem claims that a finite dominant (the image
is dense in the target) morphism of varieties over k is surjective. As
a non-example, consider the (non-surjective) inclusion A1

k à {0} ,→ A1
k

induced by the inclusion k[x] ,→ k[x, x−1]. The map of rings is not finite,
and the morphism A1

k à {0} ,→ A1
k is not a finite morphism.

Proof. We know that the localisation Bp is integral over Ap. Since local-
isation preserves injections, the following diagram commutes, and its
rows are injections:

A B

Ap Bp

α β

(∗)

Here Ap is local, so nonzero. Therefore Bp is nonzero, and so there is
a maximal ideal n in Bp. Then m := n∩ Ap is maximal in Ap by Lemma
10.11. Thereforem is the unique maximal ideal in Ap, som= pAp. Letting
q = β−1(n), we see that q is a prime ideal in B , and we conclude that
q∩ A = p by the commutativity of the diagram (∗).

11 Noether normalisation and Hilbert’s Nullstellen-
satz

Lemma 11.1 (Preparation lemma). Let k be a field and f a nonzero ele-
ment of the polynomial ring k[x1, . . . , xn]. Then there is an isomorphism

k[x1, . . . , xn]
∼−→ k[y1, . . . , yn]

that sends f to the product of a nonzero constant in k and a polynomial
which is monic in yn . That is,

f = ayn
d +

d−1∑
i=0

ai (y1, . . . , yn−1)yn
i

for some a ∈ k.

Proof. Let f = ∑
aI x I , where I = (i1, . . . , in) ∈ Nn and x I := x1

i1 · · ·xn
in .

Let (i1, . . . , in) ∈ Nn be the element with aI 6= 0 and with i1 maximal,
and i2 maximal among terms with that value of x1, and so on. Choose
integers m1 À m2 À···À mn−1 > 1. Then

f (y1 + yn
m1 , . . . , yn−1 + yn

mn−1 , yn) =
ai1...in yn

m1i1+···+mn−1in−1+in + terms of lower total degree in y1, . . . , yn
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This polynomial is the product of the nonzero constant ai1 · · ·ain ∈ k∗

and a polynomial monic in yn . So the problem is solved by the isomor-
phism

x1 7→ (y1 + yn
m1 ), . . . , xn−1 7→ (yn−1 + yn

mn−1 ), xn 7→ yn .

This defines an isomorphism of k-algebras; indeed, its inverse is given
by

y1 7→ (x1 −xn
m1 ), . . . , yn−1 7→ (xn−1 −xn

mn−1 ), yn 7→ xn .

Lemma 11.2 (Noether normalisation lemma). Let k be a field and let
R be a nonzero k-algebra of finite type. Then there is n ∈ N and an
inclusion k[x1, . . . , xn] ,→ R such that R is finite over k[x1, . . . , xn].

A geometric example: Consider the variety {x y = 1} in the affine plane
A2

k , and think of the picture for k =R.

insert picture here

The morphism given by projecting the variety {x y = 1} straight down
onto the affine line A1

k cannot be finite, since it isn’t surjective (nothing is
mapped to 0). But there are finite morphisms of {x y = 1} onto the affine
line A1

k ; you just need to ‘rotate a bit’ for the projection to be finite.

Proof. Let k[x1, . . . , xn] → R be a surjective homomorphism of k-
algebras with kernel I . If I = 0, we’re done. Otherwise we can pick a
nonzero element f ∈ I . By the Preparation Lemma 11.1, after changing
(if necessary) our choice of algebra generators for R, we can assume
that f is the product of an element of k∗ and a yn-monic polynomial.
Multiplying f by an element of k∗, we can assume that f ∈ I is yn-monic.
So we have a relation

xN
d +

d−1∑
i=0

fi (x1, . . . , xN−1)xN
i = 0

in R which shows that xN is integral over the subring S :=
im(k[x1, . . . , xn] → R). In fact, R is finite over S. By induction on N , S is

finite over some polynomial subring. So R is finite over that polynomial
subring.

Corollary 11.3 (Hilbert’s Nullstellensatz, first weak version). Let R be an
algebra of finite type over a field k. If R is a field, then R is finite over k.

Proof. We know by Noether normalisation 11.2 that R is finite over some
subalgebra k[x1, . . . , xn] ⊆ R.6 If n = 0, we’re done, so suppose n ≥ 1.
Then since R is a field and x1 6= 0 in R , there is an inverse 1/x1 in R for x1.
So 1/x1 is integral over k[x1, . . . , xn], but R contains the rational function
field k(x1, . . . , xn), and 1/x1 ∈ k(x1, . . . , xn) is not integral over k[x1, . . . , xn]
(as you can easily check). This is a contradiction, so n = 0.

Theorem 11.4 (Hilbert Nullstellensatz, second weak version). Let
f1, . . . , fr be polynomials in k[x1, . . . , xn] over an algebraicly closed field
k. Then either there are polynomials g1, . . . , gr such that

f1g1 +·· ·+ fr gr = 1,

or there is a point (a1, . . . , an) ∈ kn at which all the fi are 0.

Remark. Notice first that both possibilities in the theorem cannot simul-
taneously hold.

Also, the theorem is totally false for k not algebraicly closed: e.g., the
polynomial x2 +1 in R[x] has no roots in R, but there is no g (x) with
g (x)(x2 +1) = 1.

Proof. Let R be the quotient ring k[x1, . . . , xn]/( f1, . . . , fr ). If the first con-
clusion is false, then ( f1, . . . , fr ) 6= k[x1, . . . , xn], so R 6= 0 and R contains
a maximal ideal m. Then R/m is a field of finite type over k, so by the
previous result 11.3, R/m is finite over k. Since k is algebraicly closed
and the only finite extension of an algebraicly closed field is the field
itself, it must be that R/m= k. We have a homomorphism of k-algebras

k[x1, . . . , xn]�R�R/m= k.

6Note that here k[x1, . . . , xn ] means the polynomial ring, not the smallest subring con-
taining k and some elements xi .
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Let a1, . . . , an ∈ k be the images of the elements x1, . . . , xn . Clearly
f1, . . . , fr map to 0 in k; that is, fi (a1, . . . , an) = 0 for every i .

16/11

Definition. The Jacobson radical of a ring R is the intersection of all
maximal ideals in R.

Recall that, in any ring, the nilradical is the intersection of all prime
ideals (Theorem 1.6). In general, the nilradical won’t be the Jacobson
radical, but that does turn out to be the case for one class of rings.

Lemma 11.5. The Jacobson radical of an algebra of finite type over a
field is the nilradical.

In particular, a local ring typically won’t be of finite type over a field.

Proof. Let R be an algebra of finite type over a field k. We have to show
that if an element f ∈ R belongs to all maximal ideals of R then f belongs
to all prime ideals. We can just replace R by R/p for any prime ideal p⊂ R ,
so it suffices to show that, if R is a domain of finite type over a field, k
and f ∈ R belongs to all maximal ideals, then f = 0. Suppose this is the
case, but f 6= 0. Then R[1/ f ] is also a domain of finite type over k, so
R[1/ f ] has a maximal ideal m. Notice that R[1/ f ]/m is a field of finite
type over k, so R[1/ f ]/m is finite over k by the first weak version of the
Nullstellensatz (Theorem 11.3). Put

n= ker(R ,→ R[1/ f ]�R[1/ f ]/m).

The map R/n→ R[1/ f ]/m is an injection, so R/n is a k-subspace of the
finite-dimensional k-vector-space R[1/ f ]/m. Therefore R/n is finite over
k. Since R/n is a domain of finite type over a field (clearly n is prime in
R), it must be a field (see Example Sheet 1). So n is a maximal ideal in R;
but f ∉ n since f maps to a unit in R[1/ f ], so not to 0 in R[1/ f ]/m.

Theorem 11.6 (Hilbert Nullstellensatz, strong form). For an ideal I in a
polynomial ring k[x1, . . . , xn] with k algebraicly closed, define

Z (I ) := {
(a1, . . . , an) ∈ kn : f (a1, . . . , an) = 0 ∀ f ∈ I

}
.

Then the ideal of polynomials that vanish on Z (I ) ⊆ kn is the ideal rad(I ).

This fails badly for k not algebraicly closed; e.g., I = (x2 +1) in R[x].

Proof. Let J be the ideal of polynomials that vanish on Z (I ). Clearly
I ⊆ J , so rad(I ) ⊆ J . (If f ∈ k[x1, . . . , xn] has, for some r ≥ 1, f r vanishes
on Z (I ) ⊆ kn , then f vanishes on Z (I ).) We want to show that rad(I ) = J .
Let R = k[x1, . . . , xn]/rad(I ). Then R is a k-algebra of finite type, so by
Lemma 11.5 its Jacobson radical is its nilradical, which is 0. Let f be a
polynomial not in rad(I ); we want to show that f ∉ J . Then f is a nonzero
element of R, so there is some maximal ideal m ⊂ R with f ∉ m. The
weak Nullstellensatz 11.4 implies that the maximal ideals in k[x1, . . . , xn]
(with k algebraicly closed) correspond to the elements of kn : the point
(a1, . . . , an) ∈ kn corresponds to the maximal ideal (x1 −a1, . . . , xn −an).
So m corresponds to a point (a1, . . . , an) ∈ kn with f (a1, . . . , an) 6= 0 and
(a1, . . . , an) ∈ Z (I ).

Summary of Nullstellensatz.

(1) For k algebraicly closed, the set of closed points in An
k is kn .

(2) For any field k, all points in An
k are in one-to-one correspondence

with irreducible closed subsets of Maxk[x1, . . . , xn].

12 Artinian rings

Recall that a ring is artinian if it satisfies the descending chain condition
on ideals. Artinian rings are generally uncomplicated, so here we can
give a fairly complete description of them.

Lemma 12.1. In any artinian ring, every prime ideal is maximal.

Proof. Let p be a prime ideal in an artinian ring R. Then R/p is an
artinian domain. Let x be a nonzero element in R/p. The sequence

(x) ⊇ (x2) ⊇ (x3) ⊇ ·· ·
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terminates; i.e., there is n > 0 such that (xn) = (xn+1). So there is an
element a ∈ R/p such that xn+1a = xn . Here xn 6= 0 since x 6= 0 and R/p
is a domain, so xa = 1, as R/p is a domain. Therefore x is a unit in R/p.
We conclude that R/p is a field.

The geometric interpretation of this lemma is that in the spectrum of
an artinian ring, points are closed.

Lemma 12.2. An artinian ring has only finitely many maximal ideals.

Proof. Let R be an artinian ring, and suppose there are infinitely many
maximal ideals. Choose a sequence m1,m2, . . . of distinct maximal ideals.
The sequence

m1 ⊇m1 ∩m2 ⊇m1 ∩m2 ∩m3 ⊇ ·· ·
terminates: there is n > 0 such that m1 ∩·· ·∩mn =m1 ∩·· ·∩mn+1. That
is,

m1 ∩·· ·∩mn ⊆mn+1.

Recall that if I ∩ J ⊆ p with p prime, then I ⊆ p or J ⊆ p. (See the proof
of Theorem 1.5, item (3).) Since mn+1 is prime, mn+1 must contain one
of m1, m2, . . . , mn . This is a contradiction, as we assumed the mi were
distinct.

Lemma 12.3. In an artinian ring R, the nilradical is nilpotent. That is,
rad(0)N = 0 for some N .

Proof. The sequence
rad(0) ⊇ rad(0)2 ⊇ ·· ·

must terminate, so there is a positive integer N with rad(0)N =
rad(0)N+1 = ·· · . Let I = rad(0)N and suppose that I 6= 0. Consider the set
Σ of all ideals J such that I J = 0, partially ordered by ⊆. Clearly Σ 6=∅, be-
cause (1) ∈Σ. Since R is artinian, the set Σ must have a minimal element
J . (In fact, every nonempty set of ideals in an artinian ring must have
a minimal element.) Since I J 6= 0, there is x ∈ J such that xI 6= 0. Then
(x) ∈Σ, and (x) ⊆ J , so the minimality of J guarantees (x) = J . We have
(xI )I = xI 2 = xI 6= 0, so the ideal xI also belongs to Σ. Since xI ⊆ (x), the

minimality of (x) = J guarantees xI = (x). That is, we can write x = x y
for some element y ∈ I . So we have equations

x = x y = x y2 = ·· · .

But y belongs to I = rad(0)N , so y is nilpotent. But then x = 0, a contra-
diction.

Definition. In any ring a chain of prime ideals of length r is a chain of
the form

p0 ( p1 ( · · ·( pr

for prime ideals pi . The (Krull) dimension of a ring is the supremum of
the lengths of all chains of prime ideals.7 (Thus dim(R) for R 6= 0 is a
natural number or ∞.)

Geometrically, we say the dimension of the affine scheme X is the
supremum of the lengths of all chains of irreducible closed subsets.

Example. A field has dimension 0.
The ring Z has dimension 1: 0 ⊆ (2) or 0 ⊆ (3), etc., are the longest

chains.

Example. Clearly dim(A2
k ) ≥ 2, since a point, the affine line A1

k , and the
plane form a chain of length 2.

Exercise. If R is nonzero, then dim(R) = 0 if and only if all prime ideals
in R are maximal.

Theorem 12.4. A nonzero ring is artinian if and only if it is noetherian
of dimension 0.

Proof. First suppose that R is artinian. Clearly dim(R) = 0 by the exercise
above. To show R is noetherian, let m1, . . . ,mn be maximal ideals in R.
In any ring, the nilradical is the intersection of the prime ideals, so
rad(0) =m1 ∩·· ·∩mn in R. So by Lemma 12.3, there is b > 0 such that

7After Wolfgang Krull, 1899–1971.
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(m1 ∩ ·· ·∩mn)b = 0. The containment m1 · · ·mn ⊆m1 ∩ ·· ·∩mn always
holds, so we have

m1
b · · ·mn

b = 0.

18/11
Consider the chain of ideals

R ⊇m1
1 ⊇m1

2 ⊇ ·· · ⊇m1
b ⊇m1

bm2 ⊇ ·· · ⊇m1
b · · ·mn

b = 0.

Here each quotient has the form I /mI for some maximal ideal m. This
I /mI is a (R/m)-vector space which satisfies DCC on (R/m)-linear sub-
spaces. But every vector space is free (i.e., has a basis), so I /mI is finite-
dimensional as an (R/m)-vector space. Therefore I /mI also satisfies ACC
on (R/m)-linear subspaces, so R satisfies ACC on submodules. That is, R
is noetherian.

For the converse, the proof is very similar. Let R be a noetherian ring
of dimension 0. That is, every prime ideal in R is maximal. Since R is
noetherian (recall Corollary 8.9), we can write rad(0) =m1 ∩·· ·∩mn for
some prime (hence maximal) ideals mi . By Lemma 8.10, (rad(0))b = 0 for
some b, since R is noetherian. Then we have m1

b · · ·mn
b = 0. Consider

some filtration of R as in our proof of the ‘only if’ direction. Then each
subquotient of such a filtration satisfies ACC, hence DCC, so R is artinian.

13 Discrete valuation rings and Dedekind domains

Definition. A discrete valuation on a field k is a surjective function
v : k →Z∪ {∞} satisfying each of the following:

(1) v(x) =∞ if and only if x = 0;

(2) v(x y) = v(x)+ v(y) for all x, y ∈ k;

(3) v(x + y) ≥ min{v(x), v(y)}.

Exercise. If (k, v) is a field with a discrete valuation, then the set R =
{x ∈ k : v(x) ≥ 0} is a subring of k, called the valuation ring of v . (In
particular, you’ll have to show that v(1) = 0 and v(−x) = v(x).)

Examples. (1) For each prime p one can define a valuation on Q by
v(p i a

b ) = i , where a and b are coprime to p (and v(0) =∞).

(2) Let k be a field. Let f be an irreducible polynomial in k[x1, . . . , xn].
Then the function v f defined on the field k(x1, . . . , xn) of rational
functions by

v f ( f i a
b ) = i ,

where a,b ∈ k[x1, . . . , xn]à ( f ), is a valuation on k(x1, . . . , xn).
The valuation ring in (1) is the localisation Z(p), and the valuation ring

in (2) is the localisation k[x1, . . . , xn]( f ).

A domain R is a discrete valuation ring (dvr) if there is a valuation v
on K = Frac(R) for which R is the valuation ring {x ∈ K : v(x) ≥ 0}.

Let m = {x ∈ R : v(x) ≥ 0}. Then m is an ideal in R. Moreover, if x ∈
R àm, then v(x) = 0, so 1

x ∈ K has valuation v( 1
x ) =−v(x) = 0. So 1

x ∈ R;
that is, R àm consists of unites, so R is a local ring with maximal ideal m.

Next let x be any element of R of valuation n. (Think of a function
that vanishes to order n.) Then v( y

x ) ≥ 0, so y
x ∈ R, so y ∈ (x) ⊆ R. In fact,

(x) = {
y ∈ R : v(y) ≥ n

}
.

Now let I be any ideal in a dvr R. If I = 0, then we can choose
n to be the least valuation of elements of I . Then it follows that
I = {

y ∈ R : v(y) ≥ n
}
. Thus if we choose an element t ∈ R of v(t) = 1

(which exists by the surjectivity of v) then (t) = {
y ∈ R : v(y) ≥ 1

}
, so all

the ideals in R are 0 and the ideals

(1 = t 0)) (t )) (t 2)) · · · .

These ideals are distinct, since v(t n) = nv(t ) = n.
Therefore a dvr R is a PID, in particular is noetherian. The prime ideals

in R are 0 and (t ) (check!). So the maximal ideal in R is (t ). We conclude
that a dvr is a noetherian local domain of dimension 1.

Theorem 13.1. Let R be a noetherian local domain of dimension 1, with
maximal ideal m. Then the following are equivalent:

(1) R is a dvr;
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(2) R is a regular local ring, that is dimR/m(m/m2) = 1;

(3) R is normal.

(Note that (2) is equivalent to the assertion that m is principal, by
Nakayama (Lemma 7.12).)

Proof. Let R be a noetherian local domain of dimension 1. Since R is a
domain, 0 is a prime ideal. Since dim(R) = 1 and R is local, the only two
prime ideals in R are 0 and the maximal ideal m. (Otherwise we get a
chain of length 2.)

insert picture here

Let I be any nonzero, proper ideal in R: I 6= 0,R. Then rad(I ) must be
equal to m, since rad(I ) is an intersection of prime ideals (Corollary 8.9).
Since R is noetherian, we have

mn ⊆ I ⊆m

for some n > 0.
First we show the implication (1)⇒(3): Let R be a dvr with valuation v .

To show that a ring is normal, we must show that (R is a domain and) for
every element x ∈ K = Frac(R), if we can write

xn +an−1xn−1 +·· ·+a0 = 0 (†)

for some elements ai ∈ R, then x ∈ R (i.e., R is integrally closed in
Frac(R)). Here R = {

y ∈ K : v(y) ≥ 0
}
. Suppose x ∈ K is integral over

R and satisfies (†). If v(x) < 0, then v(xn) = nv(x), whereas

v(−an−1xn −·· ·−a0) ≥ (n −1)v(x),

a contradiction. So v(x) ≥ 0, and R is normal.
For a proof of the implication (3)⇒(2), see Atiyah–MacDonald, Propo-

sition 9.2.
Finally, suppose that R is a regular local ring. That is, the (R/m)-

vector space m/m2 is 1-dimensional. Let x ∈màm2. Nakayama’s lemma
(7.12) guarantees that m= (x). (Since R and noetherian, m is a finitely

generated R-module.) It follows that mn = (xn) for every n ≥ 0. We have
mn 6= mn+1 for all n; indeed, if not, there would be an element a ∈ R
such that xn = xn+1a, but R is a domain (as x 6= 0 since R is not a field).
We deduce from this that 1 = xa, whence x is a unit, contradicting our
assumption that x ∈m.

Let y be any nonzero element of R. Is
⋂

n m
n = 0? No, because the

ideal (y) satisfies
mn ⊆ (y) ⊆m

for some n > 0. So y ∉mn+1 for such an n. Therefore there is a maximal
number j such that y ∈m j ; we define v(y) = j . Then y has a nonzero im-
age in m j /m j+1, which is a 1-dimensional (R/m)-vector space spanned
by x j . By Nakayama we have (x j ) =m j = (y). So (since R is a domain),
y is the product of x j and a unit. That is, every nonzero element y of
Frac(R) is also the product of x j and a unit for some integer j ∈Z; define
v(y) = j in this case. Clearly v(ab) = v(a)+ v(b). The other condition
v(a+b) ≥ min{v(a), v(b)} follows from the fact that R = {

y ∈ K : v(y) ≥ 0
}

is closed under addition.

21/11

Definition. A Dedekind domain is a normal noetherian domain of di-
mension 1. (That is, in a Dedekind domain, the ideal 0 is prime, and
there are some maximal ideals, but no other primes.)

For R a Dedekind domain, every local ring of R at a maximal ideal is a
dvr. So we have one valuation of K = Frac(R) for each maximal ideal in
R. E.g., R =C[x, y]/(x2 + y2 −1).

Examples. (1) Any PID which is not a field is a Dedekind domain. (Re-
call PID ⇒ UFD ⇒ normal.) So Z and k[x] are Dedekind domains.

(2) For K a number field, that is a field that is finite as a Q-vector
space, the ring of integers OK in K is the integral closure of Z in
K . (Frac(OK ) = K , so OK is normal.) Here OK is finite over Z, hence
noetherian. You can check that dim(OK ) = 1 using results on finite
morphisms.
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Such a ring need not be a PID or factorial. The failure of this is
measured by the Picard group Pic(OK ), the “ideal class group of
K ", which is the group of line bundles on SpecK under the tensor
product ⊗.

(3) Let X be a smooth affine algebraic curve over a field k. (We haven’t
defined smooth in general, but a ring of dimension 1 is smooth if
dim(m/m2) = 1 for every maximal ideal m⊆O (X ).) Then O (X ) is a
Dedekind domain. It is a PID (or a UFD) if and only if Pic(X ) = 0,
which is the case for k algebraicly closed if and only if the smooth
compactification of X has genus 0.

13.1 Krull’s Principal Ideal Theorem

Atiyah–MacDonald uses the notion of completeness for a ring and
Hilbert polynomials to approach dimension theory. Our approach is
more efficient, but the notions discussed in Atiyah–MacDonald are im-
portant.

Definition. Let p be a prime ideal in a ring R . The codimension codim(p)
of p is the supremum of lengths of all chains of prime ideals contained
in p.

Geometrically, think of the codimension as the supremum of lengths
of chains of irreducible closed subsets V (q) containing V (p) in Spec(R).
Thus codimension measures how far V (p) is from all of Spec(R). Re-
call that prime ideals in Rp correspond bijectively to prime ideals in R
contained in p, so codim(p) = dim(Rp).

Theorem 13.2 (Krull’s Principal Ideal Theorem). Let R be a noetherian
ring and (a) 6= R a principal ideal. Then every minimal prime containing
(a) has codimension ≤ 1.

Recall that minimal primes containing (a) correspond to irreducible
components of the variety {a = 0} in Spec(R), so this theorem disallows
irreducible components of {a = 0} of large codimension. (A closed point
would be a likely candidate for such an irreducible component (and so
would be unlikely to occur).)

Proof. Let p be a minimal prime ideal containing (a). We want to show
that dimRp ≤ 1. We’re given that the ideal (a) ⊆ Rp has pRp as a minimal
prime over (a), but pRp is the only maximal ideal in the local ring Rp.
This means that pRp is the only prime in Rp that contains (a). Write R
for Rp from now on.

We now have the following situation: R is a noetherian local ring with
maximal ideal m, a ∈ R, and {a = 0} ⊆ Spec(R) is the closed point in
Spec(R). We want to show that dimR ≤ 1. Equivalently, we can show that
any prime q 6=m has codimension 0. (That is, there is no prime strictly
smaller than q.) In particular, a ∉ q. Let q(i ) be the inverse image of qi Rq

in R , called the i th symbolic power of q. Consider the following sequence
of ideals in R:

(a)+q(1) ⊇ (a)+q(2) ⊇ ·· · (?)

Since m is the only prime ideal in R that contains (a), the quotient ring
R/(a) has only one prime ideal. So R/(a) has dimension 0, so is artinian.
Therefore the sequence (?) must terminate: there is a positive integer
n such that (a)+q(n) = (a)+q(n+1); i.e., any element q ∈ (a)+q(n) can be
written as q = r a + q ′ for some elements r ∈ R and q ′ ∈ q(n+1). By the
definition of q(n), since q−q ′ = r a ∈ q(n) and a ∉ q, we have r ∈ q(n). Thus
we have

q(n) = aq(n) +q(n+1).

By Nakayama’s lemma (7.12) the finitely generated R-module q(n)/q(n+1)

is 0 (since a ∈m⊆ R). Consequently qnRq = qn+1Rq ⊆ Rq. By Nakayama’
lemma again, it must be that qnRq = 0. That is, the maximal ideal in Rq

is nilpotent. So dim(Rq) = 0, and q has codimension 0, as we wanted.

Corollary 13.3. Let R be a noetherian ring and let x1, . . . , xc be elements
of R. Every minimal prime over (x1, . . . , xc ) has codimension ≤ c.

Proof. Let p be a minimal prime over (x1, . . . , xc ). Localising at p, we
reduce to showing the following: Let R be a noetherian local ring with
maximal ideal m, and let x1, . . . , xc ∈m. Suppose m is the only prime in
R containing (x1, . . . , xc ). We want to show that dimR ≤ c. Clearly the
quotient ring R/(x1, . . . , xc ) has only one prime ideal, so it is artinian. So
the ideal m⊂ R is nilpotent modulo (x1, . . . , xc ).
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Let
p0 ( · · ·( pr

be a chain of prime ideals in R . We want to show that r ≤ c . Without loss
of generality we can assume that pr =m⊂ R. Since R is noetherian we
can also assume that pr−1 is maximal among primes not equal to pr =m.
We claim that pr−1 is a minimal prime ideal over some ideal generated by
c −1 elements. Then we’re done by induction on c : we have r −1 ≤ c −1,
so r ≤ c as we want.

Let us prove that claim. Since pr−1 6=m, the ideal pr−1 cannot con-
tain all of x1, . . . , xc . Say x1 ∉ pr−1. Then the maximal ideal m is a min-
imal prime over pr−1 + (x1). And so R/(pr−1 + (x1)) is noetherian of di-
mension 0, hence artinian. So there is a positive integer n such that
xi

n = ai x1 + yi for some ai ∈ R, yi ∈ pr−1, for i = 2, . . . ,c. Therefore the
ideal (x1, y2, . . . , yc ) contains a power of m, and we have arranged that
y2, . . . , yc ∈ pr−1.

We know that m is a minimal prime over (x1, y2, . . . , yc ), so the image23/11
of m in the quotient R/(y2, . . . , yc ) is a minimal prime over (x1). By Krull’s
Principal Ideal Theorem 13.2, the image of m in R/(y2, . . . , yc ) has codi-
mension 1, since (y2, . . . , yc ) ⊆ pr−1 ⊆ pr . Therefore the image of pr−1 in
R/(y2, . . . , yc ) has codimension 0. Equivalently, pr−1 is a minimal prime
over the ideal (y2, . . . , yc ). By induction on c for this corollary, it follows
that codimpr−1 ≤ c −1. Therefore r ≤ c.

Corollary 13.4. Every noetherian local ring R has finite dimension.

Proof. Since R is noetherian, its unique maximal ideal m is finitely
generated as an ideal: say m = (x1, . . . , xc ). By Corollary 13.3 we have
codimm≤ c. So R has dimension ≤ c.

Remark.

(1) By Nakayama’s lemma (7.12) this proof shows that for R noetherian
and local,

dimR ≤ dimR/m(m/m2).

(2) This implies that any prime ideal in any (not necessarily local)
noetherian ring has finite codimension.

(3) In 1962 Masayoshi Nagata constructed a noetherian ring of infinite
dimension. In such a ring R, there is no upper bound for dimRm at
maximal ideals m⊂ R. (See Examples Sheet 3.)

14 Dimension theory for finitely generated alge-
bras over a field

Lemma 14.1. Let k be a field, n ∈N= {0,1, . . . }. Then every maximal ideal
in the polynomial ring k[x1, . . . , xn] can be generated by n elements.

Proof. If k is algebraicly closed, then the Nullstellensatz (11.6) says that
every maximal ideal m⊂ k[x1, . . . , xn] is of the form (x1 −a1, . . . , xn −an)
for some element (a1, . . . , an) ∈ kn .

In general, let m be a maximal ideal in k[x1, . . . , xn]. Then the field
F := k[x1, . . . , xn]/m is finite over k by the Nullstellensatz (11.3). For
0 ≤ i ≤ n define

Fi := im(k[x1, . . . , xn] → F ).

So we have a chain

k = F0 ⊆ F1 ⊆ ·· · ⊆ Fn = F.

Each Fi is a domain finite over k, so is a field (ES 1, Question 4). And
each Fi+1 is a quotient of Fi by some maximal ideal, so each Fi+1 is
isomorphic to Fi [xi+1]/( fi+1(xi+1)) for some fi+1 ∈ Fi [xi+1]. (Recall that
a polynomial ring in one variable over a field is a PID.) We can think of
fi+1 as a k-polynomial in the variables x1, . . . , xi , xi+1. Then we have

F = k[x1, . . . , xn]/( f1(x1) = 0, f2(x1, x2) = 0, . . . , fn(x1, . . . , xn) = 0).

Therefore m is generated by n elements.

Corollary 14.2. dimk[x1, . . . , xn] = n.

Proof. The chain of prime ideals

0 ⊂ (x1) ⊂ (x1, x2) ⊂ ·· · ⊂ (x1, . . . , xn)
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shows that dimk[x1, . . . , xn] ≥ n.
Conversely, we showed that every maximal ideal in R := k[x1, . . . , xn]

is generated by n elements (14.1), so dimRm ≤ n for every maximal
ideal m⊂ R. (Notice that the maximal ideal in Rm is mRm.) But dimR =
supmdimRm ≤ n (where the supremum is taken over all maximal ideals
m⊂ R).

Fact from field theory: for any fields F ⊆ E , there is some set I ⊆ E such
that the subfield F (x : x ∈ I ) of E generated by I and F is isomorphic to
the field F (x : x ∈ I ) of F -rational functions in variables from I , and E is
algebraic over F (x : x ∈ I ). One shows that |I | is independent of choice of
I . In light of this, |I | is defined to be the transcendence degree of the field
extension E/F and is denoted trdeg(E/F ).

Lemma 14.3. Let R be a domain of finite type over a field k. Then dimR
is at most the transcendence degree of Frac(R) over k.

In fact, dimR = trdeg(Frac(R)/k), and we will prove this later.

Proof. By Noether’s normalisation lemma 11.2 R is finite over a sub-
ring isomorphic to the polynomial ring k[x1, . . . , xn] for some n ∈N, so
Frac(R) is a finite extension of Frac(k[x1, . . . , xn]) = k(x1, . . . , xn). It’s an
easy fact of field theory that finite extensions of fields are algebraic, so
trdeg(Frac(R)/k) = n.

Let

p0 ( p1 ( · · ·( pr

be a chain of prime ideals in R. We want to show that r ≤ n. Restricting
to the subring gives a chain of primes in k[x1, . . . , xn]:

q0 ( q1 ( · · ·( · · ·qn .

(The containments are strict by 10.12.) Therefore r ≤ n since
dimk[x1, . . . , xn] = n.

Lemma 14.4. Let X be an affine variety over a field k (that is, X is Spec
of a ring of finite type over k.) Let n be the transcendence degree of the
function field

k(X ) := Frac(O (X ))

over k. Let g ∈O (X ) and suppose g 6= 0. Then any irreducible component
Y of {g = 0} ⊂ X satisfies trdeg(k(Y )/k) = n −1.

Proof. After replacing X by a standard open subset {h 6= 0} =
Spec(O (X )[1/h]), we can assume that {g = 0} is irreducible: set Y =
{g = 0}. Write X for that open subset {h = 0}. We want to show that
trdeg(k(Y )/k) = n −1.

We first prove this for X = An
k . Use the Preparation Lemma 11.1: our

function g ∈ k[x1, . . . , xn] can be written (after some k-algebra automor-
phism of k[x1, . . . , xn]) as

g = cxn
e +

e−1∑
i=0

ai (x1, . . . , xn−1)xn
i

with c ∈ k∗. So the map Y → An−1 is finite and surjective. Therefore
O (Y ) is finite over k[x1, . . . , xn−1], so trdeg(k(Y ),k) = n −1.

For the general case, we use Noether’s normalisation lemma 11.2 to 25/11
find a finite surjective morphism f : X → An

k . Consider the morphism
H = ( f , g ) : X → An+1. The morphism H is finite, since f is finite. Also,
because f : X → An

k is finite, the element g ∈O (X ) satisfies some monic
polynomial equation

g e +ae−1g e−1 +·· ·+a0 = 0,

where ai ∈ k[x1, . . . , xn]. That is, H maps X onto a hypersurface
(codimension-1 subvariety) in An+1 defined by

Z = {Φ(xn+1) := (xn+1)n +ae−1(xn+1)e−1 +·· ·+a0 = 0}.

Since O (X ) is a domain, we can assume that the polynomial Φ is irre-
ducible. (Φ is still monic in xn+1.) That is, H maps X to an irreducible
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hypersurface Z ⊆ An+1 and Z is finite over An (because Φ is monic).
Since the maps X → Z and Z → An are finite morphisms and their
composite X → An is dominant (equivalently, surjective), it follows that
H : X → Z is dominant. (Recall 10.12, which describes the behaviour of
prime ideals in the integral extension O (An) ⊆O (Z ).) The hypersurface
Y = {g = 0} ⊆ X is the inverse image of S = {xn+1 = 0} ⊆ Z , which by the
equation for Z can be described as

S = {Φ(x1, . . . , xn+1) = 0 and xn+1 = 0}

= {a0(x1, . . . , xn) = 0 and xn+1 = 0} ⊆ An+1.

Here a0 6= 0 ∈ k[x1, . . . , xn] since Φ is irreducible. So S is isomorphic to an
irreducible hypersurface in An+1, so (as we showed in the case X = An)
trdeg(k(S)/k) = n+1. But we have a finite surjective morphism Y → S (a
restriction of the finite surjective morphism X � Z ), so O (Y ) is a finite
extension of O (S). Hence trdeg(k(Y )/k) = n −1, as desired.

We can now prove the main results on dimension for algebras of finite
type over a field.

Theorem 14.5. Let X be an (irreducible) affine variety over the field k.
The following numbers are equal:

(1) the Krull dimension dim(X );

(2) trdeg(k(X )/k);

(3) the Krull dimension dim(O (X )m) of the localisation at any maximal
ideal m⊂O (X ).

Recall that, by definition of affine variety, O (X ) is a domain of finite
type over k.

Proof. It suffices to show that, for an affine variety X over k we have
dim(O (X )m) = trdeg(k(X )/k) for every maximal ideal m ⊂ O (X ), for
dimO (X ) = supmdim(O (X )m).

We’ve shown (cf. 14.3) that

dim(O (X )m) ≤ dimO (X ) ≤ trdeg(k(X )/k).

To prove the inequality trdeg(k(X )/k) ≤ dim(O (X )m) fix a maximal ideal
m⊂O (X ), that is, a fixed point (corresponding to m) p ∈ X . We want to
produce one chain of subvarieties

p = Y0 ( Y1 ( · · ·( Yn = X ,

where n = trdeg(k(X )/k). There is nothing to do if n = 0, so suppose
n > 0. We will show that the closed point p is not all of X ; suppose, for a
contradiction, that X = {p}. Then O (X ) has only one prime ideal, which
must be 0 since O (X ) is a domain. So the ideal 0 is maximal in O (X );
that is, every proper ideal in O (X ) is a domain, so O (X ) is a field. By the
Nullstellensatz (Corollary 11.3), O (X ) is finite over k, so we have

n = trdeg(k(X )/k) = trdeg(O (X )/k) = 0,

a contradiction. Thus if n > 0 the closed point p is not all of X , so there is
a nonzero regular function g ∈O (X ) that vanishes at p. The lemma above
(14.4) shows that every irreducible component Y of {g = 0} ⊂ X satisfies
trdeg(k(Y )/k) = n −1. Pick a component Y containing p. By induction
on n, there is a chain of subvarieties of length n −1 in Y through p:

{p}( Y1 ( · · ·( Yn−1 ⊆ X .

This completes the proof.

Definition. A noetherian ring R is catenary8if for any pair of prime ideals
p⊆ q in R, any two maximal chains of primes from p to q have the same
length.

Example. If R is a catenary local ring and p⊂ R is prime, then it’s easy
to check that

dim(R) = dim(R/p)+codim(p).

This is a nice property of dimension to have, since we think of dim(R/p)
as measuring the chains from p to R and of codim(p) as measuring chains
from 0 to p.

8In Latin “catena” means “chain".
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We’ve shown that every noetherian local ring has finite dimension
(Corollary 13.4), but not every noetherian local ring is catenary. (Nagata
provided an example in 1956 — see Reid’s book for an outline of the
construction.)

Theorem 14.6. All algebras of finite type over a field, and also all locali-
sations of such rings, are catenary.

Notice the localisation of a ring of finite type over a field need not be a
ring of finite type over a field. For example, the localisation

C[x](x) =C[x][ 1
(x−a) : a ∈C , a 6= 0]

is not finitely generated as a C-algebra.

Proof. Prime ideals in a localisation R[S−1] are in one-to-one correspon-
dence with primes in R àS. So if R is catenary, then so is R[S−1].

Let R be an algebra of finite type over a field k. Suppose we’re given
closed subvarieties X ⊆ Y ( SpecR; we want to show that any two maxi-
mal chains

X = X0 ( X1 ( · · ·( Xr = Y

of subvarieties have the same length. In fact, we’ll show that any such
maximal chain of subvarieties has length r = dimY −dim X . For any
such chain it’s clear by the definition of Krull dimension that

dim X0 < dim X1 < ·· · < dim Xr .

So such a chain has length ≤ dimY − dim X . We need to show that
every maximal chain has length dimY −dim X . It suffices to show the
following: if S ( T are subvarieties of Spec(R) with dimT −dimS ≥ 2,
then there is an intermediate subvariety V : S ( V ( T . To show this
notice there is a regular function g on T that vanishes on S but is not
identically 0 on T . We know that every irreducible component V of
{g = 0} satisfies trdeg(k(V )/k) = n −1 (Lemma 14.4), so dimV = n −1.
We have S ⊆ {g = 0}, so S is contained in some irreducible component V
of {g = 0}. Then dimS 6= dimV 6= dimT , so S (V ( T , as desired.
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15 Regular local rings

We’ve seen that the dimension of a noetherian local ring (R,m) is at most
dimR/m(m/m2). We will argue that this value, dimR/m(m/m2), is easy to
compute. (In algebraic geometry, the quotient module m/m2 is called
the Zariski cotangent space.)

Definition. Say a noetherian local ring R is regular if equality holds:

dimR/m(m/m2) = dimR.

Example. Let R = k[x1, . . . , xn](x1,...,xn ), the polynomial ring over k lo-
calised at the origin. Then the maximal ideal in R is m= (x1, . . . , xn) ⊂ R.
So f ∈m is a rational function on An

k that is defined and takes the value
0 at the origin. What is the class of a function f in the quotient m/m2?

Answer: it’s given by the first derivatives of f at 0: ( ∂ f
∂x1

|0, . . . , ∂ f
∂xn

|0) ∈ kn .

Definition. For f ∈ k[x1, . . . , xn] over a field k, we define the partial
derivatives of f on monomials as follows:

∂

∂x1
(x1

a1 · · ·xn
an ) = a1x1

a1−1x2
a2 · · ·xn

an

(and similarly for xi , i 6= 1) and extending linearly.

Thus defined, ∂
∂xi

: k[x1, . . . , xn] → k[x1, . . . , xn] is a k-linear function,
as you can check. Note that a1 ∈N gives an element of k:

a1 = 1k +·· ·+1k︸ ︷︷ ︸
a1 summands

.

The partial derivative has the usual properties:

∂

∂xi
(α f + g ) =α ∂ f

∂xi
+ ∂g

∂xi
,

∂

∂xi
( f g ) = f

∂g

∂xi
+ ∂ f

∂xi
g ,
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etc. These facts are easy to show. Exercise!
One can also define the partial derivatives of a rational function, by

the usual formulas for ∂
∂xi

( f
g ).

Next let X be an affine scheme of finite type over a field k. We can
embed X as a closed subscheme of An

k , X ,→ An
k . (This corresponds

to a map φ : k[x1, . . . , xn]� O (X ).) Here X will be defined by some
equations, X = { f1 = 0, . . . , fr = 0} ⊆ An

k . That is, in algebraic terms,
kerφ= ( f1, . . . , fr ).

Definition. A k-rational point of a k-scheme X is a closed point p ∈ X
whose residue field is k.

(Notice that the residue field of a point in X of finite type over k is
always a finite extension of k. (?))

Write X (k) for the set of k-rational points of X . Then for X ,→ An ,

X (k) = {
(a1, . . . , an) ∈ kn : f1(a1, . . . , an) = 0, . . . , fr (a1, . . . , an) = 0

}
(with the situation as in the previous paragraph).

When is the local ring of X at a k-rational point regular? Answer: when
X is smooth.

Definition. Let X be an affine scheme of finite type over a field k. Choose
an embedding X ,→ Am+n

k as a closed subscheme. We say X is smooth of
dimension n over k if all irreducible components of X have dimension n,
and the matrix of partial derivatives(

∂ fi

∂x j

)
r×(m+n)

has rank exactly m everywhere on X . (Here the fi are the defining poly-
nomials for X .)

It is a fact that smoothness of X is independent of the choice of em-
bedding and defining equations.

Remark. Given that dim X = n, we can (equivalently) weaken the re-
quirement to rank ≥ m.

To be more explicit, an n ×n matrix over a field k has rank at least m
if and only if there is some m ×m minor in A that is nonzero. Notice

that each m×m minor of the matrix ( ∂ fi

∂x j
) is a polynomial in k[x1, . . . , xn].

The zeroset of each such minor is a closed subset of An , hence a closed
subset of X . So X is smooth of dimension n if and only if the intersection
of these closed subsets of X is empty.

Example. Let k be a field and put X = {x y = 0} ⊂ A2. Then all irreducible
components of X have dimension 1, so the matrix of derivatives is(

∂ f1

∂x
∂ f1

∂y

)
= (

y x
)

.

So X is smooth if and only if this matrix has rank ≥ 1 everywhere on
X , so X is non-smooth over k where x = y = 0 and (x, y) ∈ X . (Note the
non-smooth locus is a set of points where a bunch of polynomials are 0,
so is closed in X .)

Lemma 15.1. Let X be an affine scheme of finite type over a field k.
Let p ∈ X (k) be a k-rational point in X . Then the local ring of X at p is
regular if and only if the smooth locus of X (which is an open subset of
X ) contains p.

Proof. Choose a closed embedding of X into Am+n over k.

X Am+n

Speck

Let n = dim X . What is mp /mp
2, where mp = O (X )p ? (This is equal

to the quotient m/m2 in O (X )p , where m is the maximal ideal corre-
sponding to p.) We claim m ⊂ O (X ) is the image of the maximal ideal
n= k[x1, . . . , xm+n] corresponding to p. Let I = kerφ(= ( f1, . . . , fr )) in the
following diagram:

k[x1, . . . , xm+n] O (X ) k
φ evaln at p
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We have a map R�R/I , where R = k[x1, . . . , xm+n]. Next m2 ⊂ R/I is the
image of n2 ⊂ R. (“This is obvious if you think about it.”) So the inverse
image of m2 ⊂ R/I in R is the ideal n2 + I . (Think abelian groups: imC
under the map A� A/B is (B +C )/B ∩C .) So m/m2 ∼= n/n2 + I . Here
n/n2 is a k-vector space of dimension m+n (given by the first derivatives
of a function that vanishes at p). So m/m2 is km+n modulo the k-linear
subspace spanned by(

∂ f1

∂x1

∣∣∣∣
p

, . . . ,
∂ f1

∂xm+n

∣∣∣∣
p

)
∈ km+n ,

...(
∂ fr

∂x1

∣∣∣∣
p

, . . . ,
∂ fr

∂xm+n

∣∣∣∣
p

)
∈ km+n ,

So the local ring O (X )p is regular if and only if the matrix of derivatives

( ∂ fi

∂x j
) has rank exactly m, because dimk (m/m2) = m+n. But this is true if

and only if X is smooth of dimension n at p.9
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15.1 Miscellaneous questions answered

What is the affine line A1
k for a field k that’s not algebraicly closed?

Speck[x] is the generic point (0) and the closed points ( f ) for f ∈ k[x]
irreducible (monic, say).

Definition. A polynomial f ∈ k[x] is separable iff it is coprime to its
derivative: gcd( f , f ′) = 1. (Recall that this is equivalent to the condi-
tion that f factors as a product of distinct linear terms (x −a) over the
algebraic closure k.)

Definition. A field k is perfect if either chark = 0 or chark = p > 0 and
every element of k is a pth power in k.

9Recall we set n = dim X .

For example, Fp is perfect, Fp is perfect, but Fp (x) is not perfect.

Remark. If k is perfect, then every irreducible polynomial in k[x] is
separable.

Let k be a perfect field, and let f ∈ k[x] be irreducible (so f is separa-
ble). Then in k[x] we have

f = (x −a1) · · · (x −an)

for some distinct a1, . . . , an ∈ k. Then a1, . . . , an form a Gal(k/k)-orbit in
k. Recall the Galois group Gal(k/k) is the group of automorphisms of the
field k that fix k pointwise (that is, are the identity on k). Conclusion: if
k is perfect, the set of closed points in the affine line A1

k can be identified

with k/Gal(k/k), the set of orbits of Gal(k/k) on k.

Example. The closed points in A1
R

are C/Gal(C/R) = C/(Z/2), which
can be identified with the closed upper half-plane in C. The monic
irreducible polynomials in R are x − a for a ∈ R and x2 + bx + c with
b2 −4c < 0.

What is the geometric meaning of M ⊗A C or A⊗B C ?

A finitely generated projective A-module M corresponds geometrically
to a vector bundle on Spec(A), and elements of M are sections of the
vector bundle over Spec(A).

A ring homomorphism A → B corresponds to a morphism
f : SpecB → Spec A of affine schemes, and f ∗M corresponds to M ⊗A B
(“pullback of vector bundles”). Under this correspondence, M ⊗A A/m is
the fibre of M at m.

For rings and homomorphisms B → A and B →C , we have morphisms
of affine schemes

X Z

Y
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Then Spec(A ⊗B C ) = X ×Y Z , where ×Y is fibre product of affine
schemes. For example, Spec(k[x]⊗k k[y]) = A1

k ×Speck A1
k = A2

k . (Recall
k[x]⊗k k[y] ∼= k[x, y].)

What is the geometric meaning of normality?

Let R be a domain. Recall that, by definition, R is normal iff R is integrally
closed in Frac(R). Equivalently: for any finite extension R ⊆ S of domains
such that Frac(R) = Frac(S), it must be that R = S. Assume now that R
is a domain of finite type over a field. Then X = Spec(R) is normal
iff every finite birational morphism f : Y → X of affine varieties is an
isomorphism. (Geometrically, a morphism of varieties over a field k is
birational iff it restricts to an isomorphism from some dense open subset
of X to some dense open subset of Y .)

Example. The variety X = {x2 = y3} ⊂ k2 is not normal (is “abnormal"?)
since we can write down a finite birational morphism to X which is not
an isomorphism, namely A1

k → X , t 7→ (t 3, t 2).

But, for instance, A1
k is normal. There are finite morphisms to A1

k
that are not isomorphisms, but they cannot be birational (e.g., the map
A1

k → A1
k , t 7→ t 2 is finite, but not birational).

15.2 Regular local rings, concluded

Examples. (1) The local ring Z(p) is a regular local ring of dimension 1
(equivalently, a dvr: Recall Theorem 13.1).

(2) k[x1, . . . , xn](x1,...,xn ) is a regular local ring of dimension n.

(3) The power series ring k�x1, . . . , xn� is a regular local ring of dimen-
sion n with maximal ideal m= (x1, . . . , xn).

(4) The ring Zp of p-adic integers (i.e., the inverse limit lim←−−n
Z/pn) is a

regular local ring of dimension 1, with maximal ideal m= (p).

Theorem 15.2. Let X be a smooth affine scheme of dimension n??? over
a field k. Then every local ring of X (not just at closed points!) is regular.

Notice that for R =O (X ) and p⊂ R prime, we have dimRp = codim(p).

Insert picture of cone & stuff here

Geometrically this theorem means that if X is smooth of dimension n,
Y ⊂ X is a subvariety of codimension r , then Y is defined over a dense
open subset by only r equations (“complete intersection”).

Theorem 15.3 (Auslander–Buchsbaum 1959). Every regular local ring is
a factorial domain (UFD).

In light of this theorem, we have a string of implications

regular local ring ⇒ factorial domain ⇒ normal domain ⇒ domain.

The proof of Theorem 15.3 uses homological algebra (Ext & Tor). If
you’re interested, see Eisenbud’s book or Kaplansky’s Fields and rings.

Corollary 15.4. Let X be a smooth affine variety of dimension n over a
field k. Then let Y ⊂ X be a codimension-1 subvariety. The local ring
OX ,Y =O (X )p (where p corresponds to Y ) is a dvr.

So we get a valuation v : k(X ) →Z∪ {∞} that measures the order of ze-
ros along Y of a rational function on X . (Here FracO (X )p = FracO (X ) =
k(X ).)

Lemma 15.5. Let R be a factorial domain. Every codimension-1 prime
ideal in R is principal.

Proof. Let p⊂ R be a codimension-1 prime ideal. Here 0 is prime in R,
so p 6= 0 and there is no prime q such that 0 ( q( p. Since p 6= 0 there
is a nonzero element f ∈ p. And f is not a unit, so (since R is factorial)
we can write f as a product of irreducible elements: f = f1 · · · fr . Since
p is prime, at least one fi , say f1, belongs to p. Then ( f1) is prime and
nonzero, so p= ( f1).

Geometrically, this means a codimension-1 subvariety Y of X =
Spec(R) is defined by one equation: Y = { f = 0}.
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Corollary 15.6. Let X be a smooth affine variety over a field k, and
suppose Y ⊂ X is a codimension-1 subvariety. The ideal I = ker(O (X ) →
O (Y )) is locally generated by 1 element, so I is a locally free O (X )-module
of rank 1. Geometrically, that means I corresponds to a line bundle,
called O (−Y ), on X .

This correspondence between line bundles and codimension-1 sub-
varieties is fundamental to algebraic geometry.
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