
PROBLEM SETS 5–7: COMMENTS & SOLUTIONS

ZACH NORWOOD

Problem (PS 5 #3). Consider the unit sphere S2 in R3, meaning the set
S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} with the subspace topology. Let ∼ be
an equivalence relation on S2 given by (x1, y1, z1) ∼ (x2, y2, z2) if and only if
(x1, y1, z1) = (−x2,−y2,−z2). Show that the space S2/∼ is a manifold.

Solution. Let π : S2 → S2/∼ be the quotient map. We will to show that
S2/∼ is Hausdorff and that every point in S2/∼ has an open neighborhood
homeomorphic to R2.

Consider distinct points [x], [y] in S2/∼. This means that x and y aren’t
antipodal, so the four points x,−x, y,−y ∈ S2 are distinct.

In general: suppose that we have finitely many points x1, . . . , xn in a sub-
space of Rn. By taking ε < inf {‖xi − xj‖ : i 6= j}, we get an ε > 0 such that
the open balls Bε(xi) are all disjoint.

So there is ε > 0 such that (in particular) U := Bε(x) ∪ Bε(−x) and V :=
Bε(y) ∪Bε(−y) are disjoint subsets of S2. Put

U =
{
[u] ∈ S2/∼ : ‖u− x‖ < ε or ‖u− (−x)‖ < ε

}
= π(U)

and
V =

{
[v] ∈ S2/∼ : ‖v − y‖ < ε or ‖v − (−y)‖ < ε

}
= π(V ),

and notice that U = π−1(U) and V = π−1(V ). Since U and V are open in
S2, it follows (from the definition of the topology on S2/∼) that U and V
are open in S2/∼. Suppose for a contradiction that [w] ∈ U ∩ V . Then,
replacing w by −w if necessary, we conclude that w ∈ U and −w ∈ V . But
‖−w − y‖ = ‖w − (−y)‖, so −w ∈ V if and only if w ∈ V . Since U and V
are disjoint, such a w cannot exist. So U and V are disjoint open subsets of
S2/∼, and [x] ∈ U and [y] ∈ V . That is, S2/∼ is Hausdorff.

To prove that S2/∼ is ‘locally Euclidean’ we will split S2 into three (defi-
nitely not disjoint) open sets, according to whether x 6= 0, y 6= 0, or z 6= 0.
This will give a decomposition of S2/∼ into three open sets, and we will show
that each of these sets is homeomorphic to R2.

Set U = {(x, y, z) ∈ S2 : z 6= 0}. Since (x, y, z) ∈ U iff −(x, y, z) ∈ U , we
have U = π−1[π[U ]] (U is the preimage of its image under U). Since U is an
open subset of S2, it follows that its image π[U ] is an open subset of S2/∼.
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Define a map h : U → R2 by h(x, y, z) = (x
z
, y
z
). (Geometrically, h does

the following: for any point p on the sphere, there is a unique line through p
and the origin, and, if the third coordinate of p is nonzero, that line intersects
the plane z = 1 in a unique point. The map h sends p to the unique point
on the plane z = 1 in this way.) This map h is continuous, by standard
closure properties of the continuous functions Rm → Rn. (It’s continuous
in each coordinate, since its coordinate functions are products of continuous
functions.) The important observation is that h(x, y, z) = h(−x,−y,−z), so
the (well-defined) map

h : π[U ]→ R2, h([(x, y, z)]) = h(x, y, z) = (x
z
, y
z
),

is continuous. (See the theorem below.) The inverse of h is given by

h
−1
(x, y) = [ 1√

x2+y2+1
(x, y, 1)].

This inverse is also continuous, since it is the composite of the continuous
functions

(x, y) 7→ 1√
x2+y2+1

(x, y, 1)

(which is continuous by standard closure properties of the continuous func-
tions R2 → R3) and the quotient map π : S2 → S2/∼. Therefore h is a
homeomorphism π[U ]→ R2.

There was nothing special about the choice of the third coordinate in that
proof, so we could do the same thing for the set of [(x, y, z)] ∈ S2/∼ such that
y 6= 0, or for the set of points such that x 6= 0. Since every point on S2 has
some nonzero coordinate (the origin is not on S2!), every point in S2/∼ has
an open neighborhood homeomorphic to R2. That is, S2/∼ is a manifold.

We used the following important property of quotient spaces. If you didn’t
prove it in lecture, write down a proof yourself. It follows directly from the
definition of the topology on the quotient space X/∼.

Theorem. If ∼ is an equivalence relation on a space X, and f : X → Y is a
continuous function constant on each equivalence class (meaning that for all
x, y ∈ X, x ∼ y implies f(x) = f(y)), then there is a unique continuous map
f̃ : X/∼ → Y such that f = f̃ ◦ π. (Here π : X → X/∼ is the quotient map.)

Problem (PS 6 #6). Consider the space RP2 = S2/∼ described in Problem
Set 5, Problem 3. Define a path γ in RP2 from [(1, 0, 0)] to itself by taking
γ(t) = [(cos(πt), sin(πt), 0)] for each t ∈ [0, 1]. Show that the path γγ is
homotopic to the constant path.
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I’m disappointed that more people didn’t give this problem a chance. I
think it’s a fun problem, and the main technical difficulty (parametrizing the
ellipses to get the homotopy) is basically a 32A problem.

Solution. Let π : S2 → S2/∼ be the quotient map. The first thing to do is
get a path γ̃ in S2 such that π ◦ γ̃ = γγ. (Caution: This is not possible for
every path in RP2, but it happens to be for γγ.) If you meditate on this for a
minute, you will conclude that γγ is just the image of the map that traverses
the equator of S2 once in the counterclockwise direction. That is, we can
define γ̃ by

γ̃(t) = (cos(2πt), sin(2πt), 0).

Let’s prove carefully that π ◦ γ̃ = γγ. (These paths are actually equal, not
just homotopic.) This boils down to the trig equalities

cos(2πt− π) = cos(2πt) = − cos(2πt)

and
sin(2πt− π) = − sin(2πt).

From these it follows that

γ(2t− 1) = [(cos(π(2t− 1)), sin(π(2t− 1)), 0)]

= [(− cos(2πt),− sin(2πt), 0)]

= [(cos(2πt), sin(2πt), 0)]

= γ(2t).

With this in hand, we’re ready to do the final calculation:

πγ̃(t) = γ(2t)

=

{
γ(2t) if t ∈ [0, 1

2
]

γ(2t− 1) if t ∈ [1
2
, 1]

= γγ(t),

by definition of the concatenation of two paths. The point is that πγ̃(t) = γ(2t)
by definition of γ̃, and γγ(t) = γ(2t) by the trig identities above.

Now we need to define a homotopy h from γ̃ to the constant loop at (1, 0, 0) ∈
S2, so then π ◦ h will be a homotopy from πγ̃ = γγ to the constant loop at
π(1, 0, 0) = [(1, 0, 0)]. This technique can be used to show that any loop in S2

is homotopic to the constant loop at its basepoint.
The idea is to pull the loop γ̃, which loops around the equator, up over

the sphere to the constant loop. Imagine stretching a rubber band around a
soccer ball while holding one end of the rubber band. Then slowly bring the
other end of the rubber band over the top of the ball until it meets the end
you’re holding in place. At time s of the homotopy, the loop should traverse
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an ellipse on the sphere whose shadow in the xy plane is a circle of radius 1−s
centered at (s, 0). How do you parametrize a circle of radius 1− s and center
(s, 0)? Remember 32A! You want (x−s

1−s )
2 + ( y

1−s)
2 = 1, so put cos(2πt) = x−s

1−s
and sin(2πt) = y

1−s and solve for x and y. Then z should be
√

1− (x2 + y2),
so we get

h(s, t) = (x, y,
√

1− (x2 + y2)),

where
x = (1− s) cos(2πt) + s and y = (1− s) sin(2πt).

Then h : [0, 1] × [0, 1] → S2 is continuous, as usual by standard closure prop-
erties of functions between subspaces of Rn. We calculate to see that

h(0, t) = (cos(2πt), sin(2πt), 0) = γ̃(t),

h(1, t) = (1, 0, 0),

h(s, 0) = (1, 0, 0),

h(s, 1) = (1, 0, 0)

for all s, t ∈ [0, 1]. The first two equations show that h is a homotopy from
h(0,−) = γ̃(t) to the constant loop to (1, 0, 0), and the last two equations
show that h is a basepoint-fixing homotopy. We conclude that γγ = π ◦ γ̃ is
homotopic (by π ◦ h) to the constant loop at [(1, 0, 0)] = π(1, 0, 0).

Problem (PS 7 #1). Let X, U , and E be path-connected topological spaces,
and suppose that pu : U → X and pe : E → X are both covering maps. Sup-
pose that U is simply connected, meaning that for any a ∈ U the group π1(U, a)
only has one element. Suppose also that U is locally path-connected, meaning
that for every point x ∈ U , every open nbhd V of x contains an open nbhd
W of x (so x ∈ W ⊆ V ) such that W is path-connected. Show that there is a
covering map p : U → E with pe ◦ p = pu.

In discussion section and in an email, I gave (more or less) the following
outline for a solution to this problem.

(1) Pick special points x0 ∈ U and e0 ∈ p−1e (pu(x0)). We show how to
define p(x) for x ∈ U . Since U is path-connected, there is a path γ
in U such that γ(0) = x0 and γ(1) = x. By the Path Lifting Lemma,
there is a unique lift of the path pu ◦γ to a path in E with initial point
e0. That is, there is a unique path α : [0, 1] → E such that α(0) = e0
and pe ◦ α = pu ◦ γ. Define p(u) = α(1).

Remark: p is already well-defined! We made a global choice (‘choice’,
as in ‘axiom of choice’) of path γ (depending on x—maybe γx would’ve
been more suggestive) from x0 to x, and used that choice to define p(x).
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The uniqueness of the lift α guarantees that p(x) is uniquely determined
from x (and the choice of all of the paths γ).

(2) It is already easy to show that pe ◦ p = pu: with the setup as in the
definition of p, we have

pe(p(x)) = pe(α(1)) = pu(γ(1)) = pu(x).

(3) Prove using the Homotopy Lifting Lemma that the definition of p(x)
does not depend on the choice of the path γ from x0 to x.

(4) Prove that p is continuous. This is a bit tricky. To do it, prove the
following claim:

Claim. Every point x ∈ U has an open nbhd V such that pu(V ) is
contained in some open subset W of X that is evenly covered by pe,
and p(V ) is contained entirely in one connected component of p−1e (W ).

You will need (3) and the assumption that U is locally path-connected.
To deduce from the claim that p is continuous, show that p � V is con-
tinuous, for V as in the claim. It is generally true that a function
f : X → Y is continuous iff every point in X has an open nbhd O such
that the restriction f � O is continuous.

(5) Prove that p is a covering map. That is, prove that every point a ∈ E
has an open neighborhood that is evenly covered by p. To do this, you
should need to use that both pe and pu are covering maps.

Problems 2 & 3 on this problem set aren’t too bad, but let’s take a look at
problem 4.

Problem (PS 7 #4). Suppose that p : U → X is a covering map, X and U are
both path-connected, and U is simply-connected and locally path-connected.
Let b be a point in X, and b̃ a point in U with p(̃b) = b. Given a loop γ
in X from b to b, show that there is a deck transformation φγ : U → U with
φγ (̃b) = γ̃(1), where γ̃ is the unique lift of γ with γ̃(0) = b̃.

Notice that the proof of problem 1 actually gives the following stronger
version:

Problem (Problem 1′). Setup is as in problem 1, but suppose we have chosen
specific points x0 ∈ U and e0 ∈ E satisfying pu(x0) = pe(e0). Then p can be
chosen so that p(x0) = e0.

Prove the following lemma and combine it with problem 1′ to get a solution
to problem 4.

Lemma. Suppose that E is path-connected, p : E → X is a covering map,
and e0, e1 ∈ E. Suppose also that φ, ψ : E → E are continuous maps satisfying
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φ(e0) = e1, ψ(e1) = e0, and p = p ◦ φ = p ◦ ψ. Then ψ ◦ φ = φ ◦ ψ = idE, so φ
and ψ are deck transformations.

To prove the lemma, pick a path α in E from e0 to a typical point x ∈ E
and show that ψ ◦ φ ◦ α is also a lift of the path p ◦ α with the same initial
point. Then appeal to uniqueness of lifts. (The argument is symmetric in φ
and ψ.)


