INTEGRATION BY PARTS AND TRIG SUBSTITUTION

ZACH NORWOOD

1. Standard by-parts integrals

These are the integrals that will be automatic once you have mastered integration by parts. In a typical integral of this type, you have a power of x multiplied by some other function (often $e^{x}, \sin x$, or $\cos x$). Let u be the power of x and v^{\prime} be the other function so that integrating by parts decreases the power of x.

Example 1. Compute $\int x \sin x d x$.
We use the substitution

$$
\begin{array}{cc}
u=x & v=-\cos x \\
u^{\prime}=1 & v^{\prime}=\sin x .
\end{array}
$$

Then integrate by parts:

$$
\int x \sin x d x=-x \cos x-\int(-\cos x) d x=-x \cos x+\sin x+C
$$

Other examples of integrals of this type:

- $\int x^{2} e^{x} d x$
- $\int(2 x)^{2} \cos x d x$
- $\int x \sin (2 x) d x$

Don't be frightened by the constants. They don't affect the method at all: you integrate $\int x^{2} \cos x d x$ and $\int(3 x / 2)^{2} \cos (3 x) d x$ using the same method; the constants are just different.

2. Tricky by-parts integrals

What makes these integrals strange is that setting $v^{\prime}=1$ is often a good idea. Also, the integrand is often not a product, as you will see in these examples.

Example 2. Compute $\int \ln (x) d x$.
We use the substitution

$$
\begin{array}{cc}
u=\ln (x) & v=x \\
u^{\prime}=\frac{1}{x} & v^{\prime}=1
\end{array}
$$

Then integrate by parts:

$$
\int \ln (x) d x=x \ln (x)-\int x \frac{1}{x} d x=x \ln (x)-\int 1 d x=x \ln (x)-x+C
$$

In that example, somehow the extra factor x you get by integrating $v^{\prime}=1$ cancels out with $u^{\prime}=\frac{1}{x}$ nicely.

Example 3. Compute $\int \arcsin (x) d x$.
We use the substitution

$$
\begin{array}{rlrl}
u & =\arcsin x & v & =x \\
u^{\prime} & =\frac{1}{\sqrt{1-x^{2}}} & v^{\prime} & =1
\end{array}
$$

Then integrate by parts:

$$
\begin{equation*}
\int \arcsin x d x=x \arcsin x-\int \frac{x}{\sqrt{1-x^{2}}} d x . \tag{1}
\end{equation*}
$$

The integral on the right is a typical u-substitution integral. Set $u=1-x^{2}$ to get $d u=-2 x d x$ and

$$
\int \frac{x}{\sqrt{1-x^{2}}} d x=-\frac{1}{2} \int \frac{d u}{\sqrt{u}}=-\frac{1}{2} \int u^{-1 / 2}=-\sqrt{u}+C=-\sqrt{1-x^{2}}+C .
$$

Plug this result back into equation (1) to get

$$
\int \arcsin x d x=x \arcsin x-\left(-\sqrt{1-x^{2}}\right)+C=x \arcsin x+\sqrt{1-x^{2}}+C .
$$

This didn't work out quite as nicely as Example 2 did, but the x we got by integrating $v^{\prime}=1$ served as (part of) the $d u$ in our substitution.

For another tricky by-parts integral, try $\int(\ln x)^{2} d x$.

3. Sneaky by-parts integrals

The main example of this type of integral is the following:
Example 4. Compute $\int e^{x} \cos x d x$.
We use the substitution

$$
\begin{array}{rcc}
u=e^{x} & v=\sin x \\
u^{\prime}=e^{x} & v^{\prime}=\cos x .
\end{array}
$$

Then integrate by parts:

$$
\int e^{x} \cos x d x=e^{x} \sin x-\int e^{x} \sin x d x
$$

Someone who's paying attention to what (s)he is doing at this point might say, 'Well, we haven't gotten anywhere, since $\int e^{x} \sin x d x$ is no easier than the integral we started with!'. That's a reasonable response, but let's charge ahead anyway. Use another substitution for the integral on the right:

$$
\begin{array}{cc}
u=e^{x} & v=-\cos x \\
u^{\prime}=e^{x} & v^{\prime}=\sin x .
\end{array}
$$

Integrating by parts a second time gives

$$
\int e^{x} \cos x d x=e^{x} \sin x-\left(-e^{x} \cos x+\int e^{x} \cos x d x\right)=e^{x} \sin x+e^{x} \cos x-\int e^{x} \cos x d x
$$

Here's where the sneakiness comes in. The integral on the far right is now our original integral, so we can add it to both sides and divide by 2 to get a formula for the original integral!

$$
2 \int e^{x} \cos x d x=e^{x} \sin x+e^{x} \cos x+C
$$

and dividing by 2 gives

$$
\int e^{x} \cos x d x=\frac{1}{2}\left(e^{x} \sin x+e^{x} \cos x\right)+C .
$$

This phenomenon is difficult to replicate (other than in obvious variants of the example, like $\int e^{x} \sin x d x$ or $\left.\int e^{(2 x)} \sin (3 x) d x\right)$. As a result, most problems that require this sneaky trick will look like $\int e^{x} \cos x d x$ or $\int e^{x} \sin x d x$ (possibly with extra constants, of course). (One important exception is $\int \sec ^{3} x d x$, though; see below.)

4. Trig integrals

Before we do some nastier by-parts integrals, we need to learn some trig integrals. First, an example that you've known how to do for a while:
Example 5. Compute $\int \sin ^{3} x \cos x d x$.
We notice that the substitution $u=\sin x, d u=\cos x d x$ simplifies the integral considerably:

$$
\int \sin ^{3} x \cos x d x=\int u^{3} d u=\frac{u^{4}}{4}+C=\frac{\sin ^{4} x}{4}+C
$$

Example 6. Compute $\int \sec x d x$.

5. EXtra tricky (and sneaky) By-Parts integrals

Example 7. Compute $\int \sec ^{3} x d x$.

6. EXERCISES

When you've mastered the examples in the previous few sections, try these:
(1) $\int \sin \sqrt{x} d x$.
(2) $\int x \ln x d x$.
(3) $\int \frac{1}{t-\sqrt{1-t^{2}}} d t$.
(4) $\int \arcsin \sqrt{x} d x$.
(5) $\int \frac{1}{x^{4}+4} d x$.
(6) $\int \sin (\ln x) d x$.
(7) $\int \cos x \ln (\sin x) d x$.
(8) $\int \sin x \ln (\sin x) d x$.

