RECURRENCE RELATION EXAMPLE

ZACH NORWOOD

This is a detailed explanation of a recurrence relation example I started working out in discussion on Thursday, 6 Feb.

Here is the recurrence:

$$t_0 = 0, \quad t_1 = 1 \tag{*}$$

$$t_{n+2} = 2t_n + t_{n+1}. (**)$$

First we solve by guessing that $t_n = r^n$:

$$r^{n+2} = 2r^n + r^{n+1}.$$

Divide each side by r^n and rearrange to get $r^2 - r - 2 = 0$, which has solutions r = 2 and r = -1. The solution should be of the form

$$a2^n + b(-1)^n,$$

so now we need to use the initial conditions to solve for a and b.

$$0 = a2^{0} + b(-1)^{0} = a + b,$$

$$1 = a2^{1} + b(-1)^{1} = 2a - b.$$

Add these two equations to get 3a = 1 and b = -a, so $a = \frac{1}{3}$ and $b = -\frac{1}{3}$. Our solution should be

$$\frac{1}{3}2^n - \frac{1}{3}(-1)^n.$$

Let's prove by induction that this is the solution. That is, let's prove that if s_n solves the recurrence (**) and the initial conditions (*), then for every $n \in \mathbb{N}$, $s_n = \frac{1}{3}2^n - \frac{1}{3}(-1)^n$.

Base case:

$$\frac{1}{3}2^{0} - \frac{1}{3}(-1)^{0} = \frac{1}{3} - \frac{1}{3} = 0 = s_{0}. \checkmark$$
$$\frac{1}{3}2^{1} - \frac{1}{3}(-1)^{1} = \frac{2}{3} + \frac{1}{3} = 1 = s_{1}. \checkmark$$

Inductive step:

Suppose inductively that $s_m = \frac{1}{3}2^m - \frac{1}{3}(-1)^m$ for all m < n. (This is what's sometimes called 'strong induction'.)

Date: 8 Feb 2014.

In particular,

$$s_{n-2} = \frac{1}{3}2^{n-2} - \frac{1}{3}(-1)^{n-2}$$

$$s_{n-1} = \frac{1}{3}2^{n-1} - \frac{1}{3}(-1)^{n-1}.$$

We use these two facts and the recurrence and then do some algebraic manipulation to prove that $s_n = \frac{1}{3}2^n - \frac{1}{3}(-1)^n$.

$$s_{n} = 2s_{n-2} + s_{n-1}$$

$$= 2(\frac{1}{3}2^{n-2} - \frac{1}{3}(-1)^{n-2}) + (\frac{1}{3}2^{n-1} - \frac{1}{3}(-1)^{n-1})$$

$$= \frac{2}{3}2^{n-2} + \frac{1}{3}2^{n-1} - \frac{2}{3}(-1)^{n-2} - \frac{1}{3}(-1)^{n-1}$$

$$= \frac{1}{3}2^{n-1} + \frac{1}{3}2^{n-1} - \frac{2}{3}(-1)^{n-2} + \frac{1}{3}(-1)^{n-2}$$

$$= \frac{2}{3}2^{n-1} - \frac{1}{3}(-1)^{n-2}$$

$$= \frac{1}{3}2^{n} - \frac{1}{3}(-1)^{n},$$

as desired. \checkmark