RECURRENCE RELATION EXAMPLE

ZACH NORWOOD

This is a detailed explanation of a recurrence relation example I started working out in discussion on Thursday, 6 Feb.

Here is the recurrence:

$$
\begin{align*}
t_{0} & =0, \quad t_{1}=1 \tag{*}\\
t_{n+2} & =2 t_{n}+t_{n+1} . \tag{**}
\end{align*}
$$

First we solve by guessing that $t_{n}=r^{n}$:

$$
r^{n+2}=2 r^{n}+r^{n+1}
$$

Divide each side by r^{n} and rearrange to get $r^{2}-r-2=0$, which has solutions $r=2$ and $r=-1$. The solution should be of the form

$$
a 2^{n}+b(-1)^{n}
$$

so now we need to use the initial conditions to solve for a and b.

$$
\begin{aligned}
& 0=a 2^{0}+b(-1)^{0}=a+b \\
& 1=a 2^{1}+b(-1)^{1}=2 a-b
\end{aligned}
$$

Add these two equations to get $3 a=1$ and $b=-a$, so $a=\frac{1}{3}$ and $b=-\frac{1}{3}$. Our solution should be

$$
\frac{1}{3} 2^{n}-\frac{1}{3}(-1)^{n}
$$

Let's prove by induction that this is the solution. That is, let's prove that if s_{n} solves the recurrence $(* *)$ and the initial conditions $(*)$, then for every $n \in \mathbb{N}, s_{n}=\frac{1}{3} 2^{n}-\frac{1}{3}(-1)^{n}$.

Base case:

$$
\begin{aligned}
& \frac{1}{3} 2^{0}-\frac{1}{3}(-1)^{0}=\frac{1}{3}-\frac{1}{3}=0=s_{0} . \\
& \frac{1}{3} 2^{1}-\frac{1}{3}(-1)^{1}=\frac{2}{3}+\frac{1}{3}=1=s_{1} \cdot \checkmark
\end{aligned}
$$

Inductive step:
Suppose inductively that $s_{m}=\frac{1}{3} 2^{m}-\frac{1}{3}(-1)^{m}$ for all $m<n$. (This is what's sometimes called 'strong induction'.)

In particular,

$$
\begin{aligned}
& s_{n-2}=\frac{1}{3} 2^{n-2}-\frac{1}{3}(-1)^{n-2} \\
& s_{n-1}=\frac{1}{3} 2^{n-1}-\frac{1}{3}(-1)^{n-1} .
\end{aligned}
$$

We use these two facts and the recurrence and then do some algebraic manipulation to prove that $s_{n}=\frac{1}{3} 2^{n}-\frac{1}{3}(-1)^{n}$.

$$
\begin{aligned}
s_{n} & =2 s_{n-2}+s_{n-1} \\
& =2\left(\frac{1}{3} 2^{n-2}-\frac{1}{3}(-1)^{n-2}\right)+\left(\frac{1}{3} 2^{n-1}-\frac{1}{3}(-1)^{n-1}\right) \\
& =\frac{2}{3} 2^{n-2}+\frac{1}{3} 2^{n-1}-\frac{2}{3}(-1)^{n-2}-\frac{1}{3}(-1)^{n-1} \\
& =\frac{1}{3} 2^{n-1}+\frac{1}{3} 2^{n-1}-\frac{2}{3}(-1)^{n-2}+\frac{1}{3}(-1)^{n-2} \\
& =\frac{2}{3} 2^{n-1}-\frac{1}{3}(-1)^{n-2} \\
& =\frac{1}{3} 2^{n}-\frac{1}{3}(-1)^{n},
\end{aligned}
$$

as desired. \checkmark

