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Introduction

�ese notes serve as a review of the major topics covered in the multivariable di�erential
calculus class taught at UCLA.�ey are intended to o�er a condensed summary of the basic
de�nitions and results we saw throughout the course. Emphasis is given to example prob-
lems. �is review is not meant to be comprehensive, but gives an outline of a substantial
portion of the material covered during the course.

�e material is broken into three sections—geometry of R3, vector valued functions,
and functions of several variables—which correspond to the three major themes of the
course. �e �rst section deals with notions of distance, vectors, angles, lines and planes, as
well as quadric surfaces. �ese concepts give us the algebraic and geometric tools required
to do calculus inR3 in the sequel.

�e second section introduces vector valued functions (of a single variable) and parametrized
curves. Classically, these concepts correspond to the trajectories of physical particles. We
generalize the notion of the derivative to vector valued functions. �is allows us to connect
the algebraic aspects of these functions to geometry, which also lends a physical interpreta-
tion to a function and its derivatives.

Finally, the third section considers functions of several variables. Again, we are able to
generalize the notion of derivative to this context in the form of partial derivatives and the
gradient. Partial derivatives and gradients give us information about the local behavior of
functions. In particular, partial derivatives give a criterion for when a function can achieve
maximal and minimal values. �is allows us to introduce optimization—an enormous and
rich �eld in its own right. �e material culminates with the method of Lagrange multipliers
for optimization with constraints.
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1 Geometry ofR3

1.1 de�nitions and results �e set R3 represents three dimensional space. �ere is a distin-
guished point which we called the origin (denoted O) and all points are de�ned relative
to the origin. We represent a point P in R3 by a triple of real numbers P = (x, y, z)
called the coordinates of P . �e origin has coordinates O = (0, 0, 0). Given two points
P = (x1, y1, z1) and Q = (x2, y2, z2) inR3, the distance from P1 to P2 is de�ned by

Dist(P,Q) =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2. (1)

We also consider vectors in R3, which we think of as arrows—quantities with magnitude
and direction. Vectors are also de�ned by three coordinates, but to distinguish them from
points, we use angle brackets: v = 〈v1, v2, v3〉. Given points P andQ as before, the vector
pointing from P toQ has coordinates

−−→
PQ = 〈x2 − x1, y2 − y1, z2 − z1〉 . (2)

Given a vector v = 〈v1, v2, v3〉, we de�ne its length ormagnitude to be

‖v‖ =
√

v21 + v22 + v23 . (3)

We call a vector u a unit vector if ‖u‖ = 1.
�ere are two operations on vectors: addition and scalar multiplication. Let v =

〈v1, v2, v3〉 andw = 〈w1, w2, w3〉 be vectors and c ∈ R a scalar. �en we de�ne

v +w = 〈v1 + w1, v2 + w2, v3 + w3〉 and cv = 〈cv1, cv2, cv3〉 . (4)

Let u = 〈u1, u2, u3〉 with v,u and c as before. �en vector addition and scalar multiplica-
tion obey the following properties:

u+ v = v + u

(u+ v) +w = u+ (v +w)
c(u+ v) = cu+ cv

(5)

Additionally, we de�ne the dot product and cross product of two vectors by

u · v = u1v1 + u2v2 + u3v3 (6)

and

u× v =

∣

∣

∣

∣

∣

∣

i j k

u1 u2 u3

v1 v2 v3

∣

∣

∣

∣

∣

∣

= 〈u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1〉 (7)

respectively. Notice that the dot product is a scalar while the cross product is a vector. We
can interpret the dot product geometrically via the equation

u · v = ‖u‖ ‖v‖ cos θ (8)

where θ is the angle betweenu andv. We say thatu andv are orthogonal (or perpendicular)
if u ·v = 0; that is, the angle between u and v is π/2. �e cross product is characterized by
the following properties:
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1. u× v is orthogonal to u and v,

2. ‖u× v‖ = ‖u‖ ‖v‖ sin θ,

3. the direction of u× v is determined by the right-hand rule.

A line inR3 is a set of the form

L = {r0 + tv | t ∈ R} . (9)

�e equation r(t) = r0 + tv is the vector equation of the line L. Equivalently, we can
consider the parametric equation of L

x(t) = at+ x0

y(t) = bt+ y0
z(t) = ct+ z0

(10)

where r0 = 〈x0, y0, z0〉 and v = 〈a, b, c〉. Notice that a line is de�ned by a point on the line
(r0) and a direction (v).

A plane inR3 can be expressed in the form

n · (x− x0) = 0 where x = 〈x, y, z〉 (11)

�e vector n is a normal vector for the plane. Similar to lines, a plane is de�ned by two
vectors: a normal vector (n) and a point on the plane (x0). Equivalently, a plane can be
de�ned by the equation

ax+ by + cz = d where n = 〈a, b, c〉 and n · x0 = d. (12)

Finally we recall the standard quadric surfaces inR3:

• Ellipsoid:
(

x
a

)2
+
(

y
b

)2
+
(

z
c

)2
= 1

• Hyperboloid of 1 sheet:
(

x
a

)2
+
(

y
b

)2
=

(

z
c

)2
+ 1

• Hyperboloid of 2 sheets:
(

x
a

)2
+
(

y
b

)2
=

(

z
c

)2 − 1

• Elliptic Paraboloid: z =
(

x
a

)2
+
(

y
b

)2

• Hyperbolic Paraboloid: z =
(

x
a

)2 −
(

y
b

)2

• Elliptic Cone:
(

x
a

)2
+
(

y
b

)2
=

(

z
c

)2

1.2 problems

Example 1 (Intersection of planes). Consider the planes given by

x+ 2y + 3z = 6 and 2x− y − z = 0.

(a) Find the angle between the two planes

(b) Find the parametric equation of the line representing the intersection of the two planes
(Hint: (1, 1, 1) lies in both planes)
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(c) Find the equation of plane perpendicular to both planes going through the point (1, 1, 1).

Solution. For part (a), recall that the angle between the two planes is the same as the angle
between their normal vectors. In this case, the normal vectors of the two planes are

n1 = 〈1, 2, 3〉 and n2 = 〈2,−1,−1〉

respectively. We compute the angle between the vectors n1 and n2 using the formula

n1 · n2 = ‖n1‖ ‖n2‖ cos θ

where θ is the angle between the normal vectors. We �nd

n1 · n2 = (1)(2) + (2)(−1) + (3)(−1) = −3

while

‖n1‖ =
√

12 + 22 + 32 =
√
14 and ‖n2‖ =

√

22 + (−1)2 + (−1)2 =
√
6.

�erefore,

θ = cos−1

( −3√
6
√
14

)

= cos−1

( −3

2
√
21

)

.

For part (b), we must �nd the equation of the line of intersection of the two planes. Recall
that in order to de�ne a line, we must �nd a point on the line and the direction vector v in
which the line points. In the hint, we are given that the point (1, 1, 1) lies on both planes,
hence lies on the line representing their intersection. Further, the line of intersection is
perpendicular to both normal vectors n1 and n2, as it lies lies in both planes. �erefore, we
can take the direction vector v to be v = n1 × n2. We compute

v = n1 × n2

= 〈1, 2, 3〉 × 〈2,−1,−1〉

=

∣

∣

∣

∣

∣

∣

i j k

1 2 3
2 −1 −1

∣

∣

∣

∣

∣

∣

= i(−2 + 3)− j(−1− 6) + k(−1− 4)

= 〈1, 7− 5〉 .

�en the equation of the line is

r(t) = r0 + tv = 〈1, 1, 1〉+ t 〈1, 7,−5〉 = 〈1 + t, 1 + 7t, 1− 5t〉 .

Finally, for part (c), we recall that the equation of a planewith normal vectorn going through
the point r0 is given by

n · (r− r0) = 0.

As in part (b), r0 = 〈1, 1, 1〉. Further, the normal vector n of the new plane is perpendicular
to the normal vectors n1 and n2 of the �rst two planes. �erefore, we may take n = n1 ×
n2 = 〈1, 7,−5〉, as calculated for part (b). �erefore, the equation of the plane is

n · (r− r0) = 0 =⇒ 〈1, 7,−5〉 · 〈x− 1, y − 1, z − 1〉 = 0 =⇒ x+ 7y − 5z = 3.
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Example 2 (Quadric surfaces). Classify the quadric surface given by

x2 − y2 − z2 − 2x− 4y + 6z = 12

and classify its horizontal traces (z = const).

Solution. Completing the square gives

(x− 1)2 − (y + 2)2 − (z − 3)2 = 0

which is the equation of an elliptic cone opening in the x direction with center (1,−2, 3).
�e horizontal traces are given by

(x− 1)2 − (y + 2)2 = (k − 3)2,

which for k 6= 3 is the equation of a hyperbola with center (1,−2). For k = 3, the trace is
a pair of intersecting lines.
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2 Vector Valued Functions

2.1 de�nitions and results A vector-valued function is a function r : I → R3 where I ⊂ R

is an interval. We can write such a function in terms of its coordinates as

r(t) = 〈x(t), y(t), z(t)〉 . (13)

We de�ne limits, derivatives and integrals component-wise:

limt→t0 r(t) = 〈limt→t0 x(t), limt→t0 y(t), limt→t0 z(t)〉

r′(t) = 〈x′(t), y′(t), z′(t)〉

∫ t

t0
r(u) du =

〈

∫ t

t0
x(u) du,

∫ t

t0
y(u) du,

∫ t

t0
z(u) du

〉

(14)

�e derivative r′(t0) (if it exists) is the tangent vector to r(t) at t = t0. �e arc-length of
r(t) for a ≤ t ≤ b is given by

s(t) =

∫ t

a

‖r(u)‖ du =

∫ t

a

√

(x′(u))2 + (y′(u))2 + (z′(u))2 du. (15)

�e function r(t) is said to be an arc-length parametrization if

s(t) = t or equivalently ‖r(t)‖ = 1 for all t. (16)

We de�ne the unit tangent, normal and binormal vectors by

T(t) =
r′(t)

‖r′(t)‖ , N(t) =
T′(t)

‖T′(t)‖ , B(t) = T(t)×N(t) (17)

respectively. �e plane containing r(t0) which is parallel toT(t0) andN(t0) is the osculat-
ing plane; the plane containing r(t0) which is perpendicular toT(t0) is the normal plane.
�e curvature of r(t) is given by

κ(t) =

∥

∥

∥

∥

dT

ds

∥

∥

∥

∥

=
‖r′(t)× r′′(t)‖

‖r′(t)‖3
. (18)

Finally, we o�er a physical interpretation of r(t) and its derivatives. Suppose the trajectory
of a particle is given by r(t). �en v(t) = r′(t) is the velocity of the particle, v(t) = ‖v(t)‖
is its speed, and a(t) = r′′(t) is its acceleration.

2.2 problems

Example 3 (Angle of intersection). Consider the two curves inR3 given by

r1(t) = 〈cos t, sin t, t〉 and r2(t) =
〈

t, (t− 1)2, (t− 1)3
〉

.

Notice that the two curves intersect at the point (1, 0, 0). Find the angle of intersection of
the two curves at that point.
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Solution. �e angle of intersection of the two curves at the point (1, 0, 0) is the angle be-
tween their tangent vectors at that point. First notice that

〈1, 0, 0〉 = r1(0) = r2(1)

so we must evaluate r′1 at 0 and r′2 at 1 to �nd the tangent vectors at the point (1, 0, 0). We
compute

r′1(0) = 〈− sin t, cos t, 1〉
∣

∣

∣
t = 0 = 〈0, 1, 1〉

and
r′2(1) =

〈

1, 2(t− 1), 3(t− 1)2
〉

∣

∣

∣
t = 1 = 〈1, 0, 0〉 .

Recall that in general, the angle θ between two vectorsu andv satis�esu·v = ‖u‖ ‖v‖ cos θ.
�erefore, we compute the dot product

r′1(0) · r′2(1) = 〈0, 1, 1〉 · 〈1, 0, 0〉 = 0

implying that the angle of intersection, θ is θ = π/2.

Example 4 (Motion on a sphere). Suppose r1(t) and r2(t) are curves inR3.

(a) Prove the product formula

d

dt
(r1(t) · r2(t)) = r′1(t) · r2(t) + r1(t) · r′2(t).

(b) Suppose r(t) lies on a sphere of radius k centered at the origin (that is ‖r(t)‖ = k for
all t). Use part (a) to prove that r(t) · r′(t) = 0 for all t.

Solution. For part (a), write r1 and r2 in terms of their components

r1(t) = 〈x1(t), y1(t), z1(t)〉 , and r2(t) = 〈x2(t), y2(t), z2(t)〉 .

�en we can write

d

dt
(r1(t) · r2(t)) =

d

dt
(x1(t)x2(t) + y1(t)y2(t) + z1(t)z2(t))

= x′

1(t)x2(t) + x1(t)x
′

2(t) + y′1(t)y2(t) + y1(t)y
′

2(t)

+ z′1(t)z2(t) + z1(t)z
′

2(t)

= 〈x′

1(t), y
′

1(t), z
′

1(t)〉 · 〈x2(t), y2(t), z2(t)〉
+ 〈x1(t), y1(t), z1(t)〉 · 〈x′

2(t), y
′

2(t), z
′

2(t)〉
= r′1(t) · r2(t) + r1(t) · r′2(t)

which is what we wanted to show.
For part (b), we can can write the condition that r(t) is constrained to the sphere of

radius k centered at the origin as

r(t) · r(t) = k2.

Di�erentiating both sides of the equationwith respect to t (wherek is constant) and applying
the conclusion of part (a) gives

r′(t) · r(t) + r(t) · r′(t) = 0.

7



Math 32A Final Review (Fall 2012)

Since the dot product is commutative, this implies

2r′(t) · r(t) = 0

hence r′(t) · r(t) = 0, as desired.

Example 5 (Computing curvature). Consider the curve given by

r(t) =

〈

1

3
t3,

1√
2
t2, t

〉

.

Find the unit tangent vector T(t) of r(t) and compute the curvature κ(t) of r.

Solution. Recall that the unit tangent vector is given by

T(t) =
r′(t)

‖r′(t)‖ .

So we compute

r′(t) =
〈

t2,
√
2t, 1

〉

.

�erefore
‖r′(t)‖ =

√

(t2)2 + 2t2 + 1 =
√

(t2 + 1)2 = t2 + 1.

Hence

T(t) =
r′(t)

‖r′(t)‖ =

〈

t2

t2 + 1
,
t
√
2

t2 + 1
,

1

t2 + 1

〉

.

We compute the curvature (as we usually do) using the formula

κ(t) =
‖r′(t)× r′′(t)‖

‖r′(t)‖3
.

We’ve already computed r′(t) =
〈

t2, t
√
2, 1

〉

, so

r′′(t) =
〈

2t,
√
2, 0

〉

.

We compute the cross product

r′(t)× r′′(t) =

∣

∣

∣

∣

∣

∣

i j k

t2 t
√
2 1

2t
√
2 0

∣

∣

∣

∣

∣

∣

=
〈

−
√
2, 2t,−

√
2t2

〉

.

�en

‖r′(t)× r′′(t)‖ =

√

(−
√
2)2 + (2t)2 + (t2

√
2)2 =

√
2(1 + t2).

�erefore,

κ(t) =
‖r′(t)× r′′(t)‖

‖r′(t)‖3
=

√
2

(1 + t2)2
.

Example 6 (Acceleration and curvature). Suppose r(t) describes the motion of a particle in
R3.
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(a) Show that the acceleration a(t) = r′′(t) can be written as

a(t) = v′(t)T(t) + (v(t))2κ(t)N(t)

where v(t) = ‖r′(t)‖ and κ(t) =
∥

∥

dT
ds

∥

∥ is the curvature of the trajectory. (Hint: write
v(t) = v(t)T(t) and di�erentiate with respect to t.)

(b) �e motion of particle a particle accelerator is approximated by the equation

r(t) =

〈

R cos

(

1

2
at2

)

, R sin

(

1

2
at2

)

, 0

〉

.

Use part (a) to �nd the tangential and normal components of the particles acceleration
as a function of t.

Solution. For part (a), we apply the hint writing v(t) = v(t)T(t). �en we can write the
acceleration as

a(t) =
d

dt
v(t)

=
d

dt
(v(t)T(t))

= v′(t)T(t) + v(t)
d

dt
T(t) (product rule)

= v′(t)T(t) + v(t)
dT

ds

ds

dt
(chain rule)

= v′(t)T(t) + (v(t))2
dT

ds
(ds/dt = v(t))

= v′(t)T(t) + (v(t))2
∥

∥

∥

∥

dT

ds

∥

∥

∥

∥

N(t) (def. ofN)

= v′(t)T(t) + (v(t))2κ(t)N(t). (def. of κ)

which is the desired result.
For part (b), compute

v(t) = r′(t) = Rat

〈

− sin

(

1

2
at2

)

, cos

(

1

2
at2

)

, 0

〉

so that
v(t) = ‖v(t)‖ = Rat.

�erefore, the tangential component of acceleration is

v′(t) = Ra.

To obtain the the normal component of acceleration, notice that r(t) is a parametrization
of a circle of radius R. Since κ is the reciprocal of the radius of the osculating circle, we get
(without any computation) that κ(t) = 1/R for all t (you should con�rm this with direct
computation). �erefore, the normal component of acceleration is

(v(t))2κ(t) = (Rat)2/R = Ra2t2.
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3 Functions of Several Variables

3.1 de�nitions and results In this section, we consider functions f : Rn → R for n = 2 and
3. Suppose f is a function of 2 variables de�ned on a domainD containing points arbitrarily
close to a point (a, b). �en

lim
(x,y)→(a,b)

f(x, y) = L (19)

if for every ε > 0, there exists a corresponding δ > 0 such that if (x, y) ∈ D and

0 <
√

(x− a)2 + (y − b)2 < δ (20)

then
|f(x, y)− L| < ε. (21)

�e function f is said to be continuous at (a, b) if

lim
(x,y)→(a,b)

f(x, y) = f(a, b). (22)

An important tool for computing limits is the squeeze theorem: Suppose f, g and h are
functions of two variables and that

g(x, y) ≤ f(x, y) ≤ h(x, y) (23)

for all (x, y) in some disk containing (a, b) and that

lim
(x,y)→(a,b)

g(x, y) = lim
(x,y)→(a,b)

g(x, y) = L. (24)

�en
lim

(x,y)→(a,b)
f(x, y) = L. (25)

To show that lim(x,y)→(a,b) f(x, y) does not exist it su�ces to �nd two continuous curves
r1(t) = 〈x1(t), y1(t)〉 and r2(t) = 〈x2(t), y2(t)〉 such that r1(0) = r2(0) = 〈a, b〉, but for
which

lim
t→0

f(x1(t), y1(t)) 6= lim
t→0

f(x2(t), y2(t)). (26)

Let f be a function of 2 variables. �en we de�ne the partial derivatives of f at (a, b)
(if they exist) to be

∂f

∂x
(a, b) = fx(a, b) = lim

h→0

f(a+ h, b)− f(a, b)

h
(27)

and
∂f

∂y
(a, b) = fy(a, b) = lim

h→0

f(a, b+ h)− f(a, b)

h
. (28)

We can take higher-order derivatives. A useful result is Clairaut’s theorem: if fxy and fyx
are both de�ned and continuous on a disk containing the point (a, b), then

fxy(a, b) = fyx(a, b). (29)

If u = 〈u, v〉 is a unit vector, then we de�ne the directional derivative in the direction of u

to be

Duf(x, y) = lim
h→0

f(x+ uh, y + vh)− f(x, y)

h
. (30)
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�e gradient of f at (a, b) is de�ned by

∇f(a, b) = 〈fx(a, b), fy(a, b)〉 . (31)

�e gradient has the following geometric interpretation: ∇f points in the direction of great-
est increase of f and ‖∇f‖ is the slope of f in that direction. Assuming that f is di�eren-
tiable at the point (a, b) (see below) we can compute

Duf(a, b) = (∇f(a, b)) · u. (32)

Given a level set of a function, that is set S of the form f(x, y, z) = k for some constant k,
and a point (a, b, c) satisfying f(a, b, c) = k, the gradient∇f(a, b, c) is a normal vector to
S at (a, b, c).

Given a point (a, b) we de�ne the linearization of f at (a, b) to be

L(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b). (33)

We say that f is di�erentiable at (a, b) if we can write

f(x, y) = L(x, y) + e(x, y) where lim
(x,y)→(a,b)

e(x, y)
√

(x − a)2 + (y − b)2
= 0. (34)

In order to check that f is di�erentiable at (a, b), it su�ces to check that fx and fy are both
de�ned and continuous on some diskD containing (a, b).

If f(x1, x2, . . . , xn) is a function of n variables, and each xi is a function ofm variables,
xi = xi(t1, t2, . . . , tm), then we can apply the chain rule to compute partial derivatives of
f with respect to tk :

∂f

∂tk
=

∂f

∂x1

∂x1

∂tk
+

∂f

∂x2

∂x2

∂tk
+ · · ·+ ∂f

∂xn

∂xn

∂tk
(35)

A function f of two variables has a local maximum (respectively local minimum) at
(a, b) if f(x, y) ≤ f(a, b) (respectively f(a, b) ≤ f(x, y)) for all (x, y) in a su�ciently
small disk with center (a, b). We say that (a, b) is a critical point for f if the following two
conditions hold:

1. fx(a, b) = 0 or fx(a, b) does not exist

2. fy(a, b) = 0 or fy(a, b) does not exist.

An important result is that all (interior) local maxima and minima occur at critical points.
�e second derivative test allows us to classify some critical points of f : let (a, b) be a critical
point of f , and de�ne

D(x, y) = fxx(x, y)fyy(x, y)− (fxy(x, y))
2. (36)

�e we can draw the following conclusions:

• ifD(a, b) > 0 and fxx(a, b) < 0 then f(a, b) is a local maximum

• ifD(a, b) > 0 and fxx(a, b) > 0 then f(a, b) is a local minimum

• ifD(a, b) < 0 then (a, b) is a saddle point for f .

11
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IfD(a, b) = 0 we cannot draw any conclusions about the behavior of f at (a, b).
O�en, we would like to �nd maxima and minima of a function f(x, y, z) subject to

a constraint of the form g(x, y, z) = k1 for some constant k. To this end, we apply the
method of Lagrange Multipliers. In this context, we have a di�erent criterion for when a
point (a, b, c) satisfying g(a, b, c) = k can be a maximum or minimum value for f :

∇f(a, b, c) = λ∇g(a, b, c) (37)

for some scalar λ ∈ R. If we have the additional constraint that h(a, b, c) = k2, then we
seek points (a, b, c) satisfying

∇f(a, b, c) = λ∇g(a, b, c) + µ∇h(a, b, c) (38)

for some scalars λ and µ.

3.2 problems

Example 7 (Limits). Determine whether or not the following limits exist and prove your
answer:

(a) lim(x,y)→(0,0)
xy

x2+y2 ;

(b) lim(x,y)→(0,0)
2x2y
x2+y2 .

Solution. (a) First, consider f = xy/(x2 + y2) restricted to the x-axis, i.e., y = 0. �en

f(x, 0) =
x · 0

x2 + 02
= 0.

�erefore, limx→0 f(x, 0) = 0, so if the limit in (a) exists, it must be equal to 0. To
show that the limit doesn’t exist, it su�ces to �nd another curve in the plane where the
limit of f as (x, y) → (0, 0) along the curve is not equal to 0. Consider the curve given
by x = y. �en we can write

f(x, x) =
xx

x2 + x2
=

x2

2x2
.

�en limx→0 f(x, x) = 1/2 6= 0, so the limit does not exist.

(b) Let g(x, y) = 2x2y/(x2 + y2). As in part (a), if the limit of g as (x, y) approaches
(0, 0) exists, then it must be 0 (again, just consider the values of g on the x axis, i.e.,
with y = 0). Notice that for any choice of y = xa or x = yb we have

lim
x→0

g(x, xa) = 0 and lim
y→0

g(yb, y) = 0.

Sowe suspect that the limitmight exist, inwhich casewemust haveL = lim(x,y)→(0,0) g(x, y) =
0. Let us prove it. We appeal to the squeeze theorem. First, split up the fraction as the
product

2x2y

x2 + y2
=

2x2

x2 + y2
y.

Notice that the �rst term in the product is non-negative and in fact we have

0 ≤ 2x2

x2 + y2
≤ 2x2

x2
= 2

12
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because x2 + y2 ≥ x2 for all x and y. �erefore, we have

0 ≤ 2x2

x2 + y2
y ≤ 2y.

Since the limits of the right and le� hand sides of this expression are zero as (x, y) →
(0, 0), the squeeze theorem implies that

lim
(x,y)→(0,0)

2x2

x2 + y2
y = 0

as desired.

Example 8 (Equation of tangent plane). Show that the equation of the tangent plane to the
ellipsoid given by

x2

a2
+

y2

b2
+

z2

c2
= 1

at the point (x0, y0, z0) can be written as

xx0

a2
+

yy0
b2

+
zz0
c2

= 1.

Solution. In order to �nd the equation of a plane, we must �rst �nd a normal vector to the
plane. Recall that the normal vector to a level surface f(x, y, z) = k at a point (x0, y0, z0)
is given by the gradient∇f(x0, y0, z0). In this case, we have f(x, y, z) = x2/a2+ y2/b2+
z2/c2. �erefore, we compute

n = ∇f(x0, y0, z0) =
〈

2
x0

a2
, 2

y0
b2

, 2
z0
c2

〉

.

�e equation of a plane going through the point (x0, y0, z0) with normal vector n is

n · 〈x− x0, y − y0, z − z0〉 = 0.

In this case, we have
〈

2
x0

a2
, 2

y0
b2

, 2
z0
c2

〉

· 〈x− x0, y − y0, z − z0〉 = 0

=⇒ 2
x0

a2
(x − x0) + 2

y0
b2

(y − y0) + 2
z0
c2

(y − y0) = 0

=⇒ x0x

a2
+

y0y

b2
+

z0z

c2
=

x2
0

a2
+

y20
b2

+
z20
c2

=⇒ x0x

a2
+

y0y

b2
+

z0z

c2
= 1.

�e �nal implication holds because (x0, y0, z0) is a point on the ellipsoid, hence its coordi-
nates satisfy

x2
0

a2
+

y20
b2

+
z20
c2

= 1.

Example 9 (Chain rule). If z = f(x, y) has continuous second-order partial derivatives and
x = r2 + s2 and y = 2rs �nd:

13
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(a) ∂z
∂r

(b) ∂2z
∂r2

.

Solution. We apply the chain rule to compute

∂z

∂r
=

∂z

∂x

∂x

∂r
+

∂z

∂y

∂y

∂r

=
∂z

∂x
(2r) +

∂z

∂y
(2s)

= 2
∂z

∂x
r + 2

∂z

∂y
s.

Similarly, we employ the chain rule to compute

∂2z

∂r2
=

∂

∂r

(

∂z

∂r

)

=
∂

∂r

(

2
∂z

∂x
r + 2

∂z

∂y
s

)

= 2

(

∂

∂r

∂z

∂x

)

r + 2
∂z

∂x

(

∂

∂r
r

)

+ 2

(

∂

∂r

∂z

∂y

)

s+ 2
∂z

∂y

(

∂

∂r
s

)

= 2

(

∂2z

∂x2

∂x

∂r
+

∂2z

∂y∂x

∂y

∂r

)

r + 2
∂z

∂x
· 1 + 2

(

∂2z

∂x∂y

∂x

∂r
+

∂2z

∂y2
∂y

∂r

)

s+ 2
∂z

∂y
· 0

= 2

(

∂2z

∂x2
(2r) +

∂2z

∂y∂x
(2s)

)

r + 2
∂z

∂x
+ 2

(

∂2z

∂x∂y
(2r) +

∂2z

∂y2
(2s)

)

s

= 4r2
∂2z

∂x2
+ 4s2

∂2z

∂y2
+ 8rs

∂2z

∂x∂y
+ 2

∂z

∂x
.

For the �nal equality, we applied Clairaut’s theorem to the mixed partial derivatives.

Example 10 (Wave equation). Show that if f and g are twice di�erentiable functions of 1
variable and a is a constant, then

u(x, t) = f(x+ at) + g(x− at)

is a solution to the wave equation utt = a2uxx.

Solution. By the chain rule, we compute

∂u

∂x
= f ′(x+ at)

∂

∂x
(x+ at) + g′(x− at)

∂

∂x
(x − at) = f ′(x+ at) + g′(x− at).

Similarly,

∂2u

∂x2
= f ′′(x+ at) + g′′(x− at).

Meanwhile,

∂u

∂t
= f ′(x+ at)

∂

∂t
(x+ at) + g′(x− at)

∂

∂t
(x− at) = af ′(x + at)− ag′(x− at)
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and

∂2u

∂t2
= af ′′(x + at)

∂

∂t
(x + at)− ag′′(x− at)

∂

∂t
(x− at)

= a2f ′′(x+ at) + a2g′′(x− at)

= a2(f ′′(x+ at) + g′′(x− at))

= a2
∂2u

∂x2

which is what we wanted to show.

Example 11 (Second derivative test). Consider the function f(x, y) = 3x− x3 − 2y2 + y4.
Find all critical points and identify them as local minima, maximal or saddle points.

Solution. To �nd critical points, we must solve fx = 0 and fy = 0. We compute

fx(x, y) = −3x2 + 3, fy(x, y) = 4y3 − 4y.

�erefore

fx(x, y) = 0 =⇒ −3x2 + 3 = 0 =⇒ x = ±1

and

fy(x, y) = 0 =⇒ 4y3 − y = 0 =⇒ y(y + 1)(y − 1) = 0 =⇒ y = −1, 0, 1.

So the critical points are

{(−1,−1), (−1, 0), (−1, 1), (1,−1), (1, 0), (1, 1)} .

To identify these critical points, we employ the second derivative test. Recall that

D(x, y) = fxx(x, y)fyy(x, y)− (fxy(x, y))
2.

We compute the second derivatives as

fxx(x, y) = −6x, fyy(x, y) = 12y2 − 4, fxy(x, y) = 0

so that

D(x, y) = (−6x)(12y2 − 4).

�en we evaluate D(x, y) and fxx(x, y) at the critical points to identify min/max/saddle
points:

(x, y) D(x, y) fxx(x, y) identi�cation

(1,−1) −48 −6 saddle

(1, 0) 24 −6 local max

(1, 1) −48 −6 saddle

(−1,−1) 48 6 local min

(−1, 0) −24 6 saddle

(−1, 1) 48 6 local min
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Example 12 (Optimization on a bounded region). Find the absolute maximum and mini-
mum of the function f(x, y) = x2y on the region de�ned by x2 + 2y2 ≤ 6. (Hint: use
Lagrange multipliers to identify max/min on the boundary.)

Solution. First, we identify critical points (if any) in the interior of the region, i.e., (x, y)
with x2 + 2y2 < 6. We compute

fx(x, y) = 2xy, fy(x, y) = x2.

�ese are both zero if and only if x = 0. If x = 0, we evaluate f(0, y) = 0, so all critical
points on the interior of the region are of the form (0, y) in which case f(0, y) = 0.

Now we turn our attention to the boundary of the region given by x2 + 2y2 = 6. We
use the method of Lagrange multipliers with f(x, y) = x2y and g(x, y) = x2 + 2y2 = 6.
We compute

∇f(x, y) =
〈

2xy, x2
〉

, and ∇g(x, y) = 〈2x, 4y〉 .

We can solve∇f = λ∇g for λ:

∇f = λ∇g, g(x, y) = 6 =⇒











2xy = 2λx

x2 = 4λy

x2 + 2y2 = 6.

Multiplying the �rst equation by x, the second equation by y and adding the resulting equa-
tions gives

2x2y + x2y = 2λx2 + 4λy2 = 2λ(x2 + 2y2) = 12λ.

�erefore, we must have

λ =
1

4
x2y.

�erefore, we have

2xy =
1

2
x3y, x2 = x2y2, x2 + 2y2 = 6.

All three equations are satis�ed for

(x, y) = (0,±
√
3), (±

√
6, 0), (±2,±1),

so these are our boundary critical points. Plugging in all these points for f (including the
interior critical points) we �nd that f(±2, 1) = 4 and f(±2,−1) = −4 are the absolute
maximum and minimum for f on the region.

Example 13 (Lagrange with two constraints). LetC be the intersection of the surfaces given
by

z = xy and x2 + y2 = 8.

Find the points on C which are closest and furtherest from the origin.

Solution. We can view this problem as optimizing the function

f(x, y, z) =
√

x2 + y2 + z2
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(i.e., the distance from (x, y, z) to the origin) subject to the constraints

xy − z = 0 and x2 + y2 = 8.

Since the square-root in the de�nition of f is cumbersome, so we can do without it: �nding
the points (a, b, c) that minimize and maximize the square distance will also give minimum
and maximum values for the distance. So we instead consider the function

f(x, y, z) = x2 + y2 + z2

and just take the square-root at the end. Let g(x, y, z) = xy − z and h(x, y, z) = x2 + y2.
�en we must solve the equations

∇f = λ∇g + µ∇h. (∗)

We compute the gradients

∇f(x, y, z) = 〈2x, 2y, 2z〉
∇g(x, y, z) = 〈y, x,−1〉
∇h(x, y, z) = 〈2x, 2y, 0〉 .

�erefore, we must solve the simultaneous system of equations

2x = λy + 2µx

2y = λx+ 2µy

2z = −λ

z = xy

x2 + y2 = 8.

Using the third equation, we can get rid of λ by replacing it with λ = −2z. Plugging this
into the �rst equations and dividing through by 2 gives

x+ zy = µx and y + zx = µy.

Multiplying the �rst of these equations by y and the second by x gives

xy + zy2 = xy + zx2 =⇒ zx2 = zy2.

�is equation gives two possibilities: either z = 0 or x2 = y2. If z = 0, then the �rst
constraint equation gives that x = 0 or y = 0, hence

(x, y, z) =
(

±2
√
2, 0, 0

)

or (0,±2
√
2, 0).

�e other possibility that x2 = y2 gives the points

(x, y, z) = (±2,±2,±4)

(with all 8 possibilities of± for the three coordinates). �ese are the only points that satisfy
the equation

∇f = λ∇g + µ∇h
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so the maximum and minimum of
√
f must be attained at one of these points. Plugging in

these points, we �nd that
√
f attains its minimum value of 2

√
2 at

(x, y, z) =
(

±2
√
2, 0, 0

)

and (0,±2
√
2, 0)

and its maximum value of 4
√
2 at

(x, y, z) = (±2,±2,±8).
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