A NASTY PARTIAL-FRACTIONS/TRIG INTEGRAL

ZACH NORWOOD

Exercise 44 of $\S 8.5$ in your book asks to compute the following integral:

$$
\int \frac{x^{2}+3}{\left(x^{2}+2 x+3\right)^{2}} d x
$$

To do this, we first want to notice that the integrand is a proper rational function; that is, the degree of the denominator (4, in this case), is greater than the degree of the numerator (2 , in this case). Also notice that the polynomial $x^{2}+2 x+3$ is an irreducible quadratic, since its discriminant

$$
b^{2}-4 a c=2^{2}-4(1)(3)=4-12
$$

is negative. So partial fractions should work here: there are constants A, B, C, and D such that

$$
\begin{equation*}
\frac{x^{2}+3}{\left(x^{2}+2 x+3\right)^{2}}=\frac{A x+B}{x^{2}+2 x+3}+\frac{C x+D}{\left(x^{2}+2 x+3\right)^{2}} . \tag{1}
\end{equation*}
$$

Multiplying both sides by $\left(x^{2}+2 x+3\right)^{2}$ to clear denominators and then distributing gives

$$
\begin{aligned}
x^{2}+3 & =(A x+B)\left(x^{2}+2 x+3\right)+C x+D \\
& =A x\left(x^{2}+2 x+3\right)+B\left(x^{2}+2 x+3\right)+C x+D \\
& =A x^{3}+2 A x^{2}+3 A x+B x^{2}+2 B x+3 B+C x+D \\
& =A x^{3}+(2 A+B) x^{2}+(3 A+2 B+C) x+3 B+D .
\end{aligned}
$$

We have an equation with a polynomial on each side. The only way this can happen is that corresponding coefficients are equal; that is, the coefficient of x^{2} on the left should equal the coefficient of x^{2} on the right, and the coefficient of x on the left should equal the coefficient of x on the right, etc. We apply this fact to get the following equations:

$$
\begin{align*}
& 0=A \tag{2}\\
& 1=2 A+B \tag{3}\\
& 0=3 A+2 B+C \tag{4}\\
& 3=3 B+D . \tag{5}
\end{align*}
$$

Apply equation (2) to eliminate all of the A terms, so $1=B$ and $0=2 B+C=2+C$. That is, $-2=C$. Plugging 1 in for B in equation (5) gives $D=0$.

Now we go back to equation (1) and plug in the values for A, B, C, and D :

$$
\begin{aligned}
\frac{x^{2}+3}{\left(x^{2}+2 x+3\right)^{2}} & =\frac{0 x+1}{x^{2}+2 x+3}+\frac{-2 x+0}{\left(x^{2}+2 x+3\right)^{2}} \\
& =\frac{1}{x^{2}+2 x+3}-\frac{2 x}{\left(x^{2}+2 x+3\right)^{2}}
\end{aligned}
$$

Our original integral becomes:

$$
\int \frac{x^{2}+3}{\left(x^{2}+2 x+3\right)^{2}} d x=\int \frac{1}{x^{2}+2 x+3}-\frac{2 x}{\left(x^{2}+2 x+3\right)^{2}} d x
$$

Hopefully the fact that $x^{2}+2 x+3$ has derivative $2 x+2$ (which is almost $2 x$, the numerator of the second fraction) suggests to you that u-substitution might be a good idea for the second term. The problem is that we have only a $2 x$, not a $2 x+2$. So we add and subtract 2 and split up the fraction as follows:

$$
\begin{align*}
\int \frac{x^{2}+3}{\left(x^{2}+2 x+3\right)^{2}} d x & =\int \frac{1}{x^{2}+2 x+3}-\frac{2 x}{\left(x^{2}+2 x+3\right)^{2}} d x \\
& =\int \frac{1}{x^{2}+2 x+3}-\frac{2 x+2-2}{\left(x^{2}+2 x+3\right)^{2}} d x \\
& =\int \frac{1}{x^{2}+2 x+3}-\frac{2 x+2}{\left(x^{2}+2 x+3\right)^{2}}+\frac{2}{\left(x^{2}+2 x+3\right)^{2}} d x \\
& =\int \frac{1}{x^{2}+2 x+3}+\frac{2}{\left(x^{2}+2 x+3\right)^{2}} d x-\int \frac{2 x+2}{\left(x^{2}+2 x+3\right)^{2}} d x \tag{6}
\end{align*}
$$

The second integral should be no problem, since we arranged for it to be a straightforward u-substitution. Letting $u=x^{2}+2 x+3$, we get $d u=(2 x+2) d x$ and

$$
\begin{equation*}
-\int \frac{2 x+2}{\left(x^{2}+2 x+3\right)^{2}} d x=-\int \frac{d u}{u^{2}}=\frac{1}{u}+C=\frac{1}{x^{2}+2 x+3}+C . \tag{7}
\end{equation*}
$$

Unfortunately the first integral isn't so easy. We'll need to complete the square and use trig substitution. Notice that $x^{2}+2 x+1=(x+1)^{2}$, so $x^{2}+2 x+3=(x+1)^{2}+2$. Use this fact to rewrite the integral we're trying to evaluate:

$$
\int \frac{1}{x^{2}+2 x+3}+\frac{2}{\left(x^{2}+2 x+3\right)^{2}} d x=\int \frac{1}{(x+1)^{2}+2}+\frac{2}{\left((x+1)^{2}+2\right)^{2}} d x
$$

The expression $(x+1)^{2}+2$ is of the form $u^{2}+a^{2}$, so we should think of using trig substitution with a substitution

$$
\begin{equation*}
x+1=\sqrt{2} \tan \theta . \tag{8}
\end{equation*}
$$

(You can think of this as a u-substitution $u=x+1$ followed by the trig substitution $u=$ $\sqrt{2} \tan \theta$, but this isn't necessary.) Now draw a picture:

We need to express $\frac{1}{(x+1)^{2}+2}$ and $\frac{2}{\left((x+1)^{2}+2\right)^{2}}$ in terms of θ. Notice first that (look at the picture!)

$$
\begin{equation*}
\cos \theta=\frac{\sqrt{2}}{\sqrt{(x+1)^{2}+2}} \tag{9}
\end{equation*}
$$

so

$$
\frac{1}{(x+1)^{2}+2}=\frac{1}{2} \cos ^{2} \theta \quad \text { and } \quad \frac{2}{\left((x+1)^{2}+2\right)^{2}}=\frac{1}{2} \cos ^{4} \theta .
$$

Take the derivative of each side of equation (8) to get

$$
d x=\sqrt{2} \sec ^{2} \theta d \theta
$$

Now we can carry out the substitution:

$$
\begin{aligned}
\int \frac{1}{(x+1)^{2}+2}+\frac{2}{\left((x+1)^{2}+2\right)^{2}} d x & =\int\left(\frac{1}{2} \cos ^{2} \theta+\frac{1}{2} \cos ^{4} \theta\right) \sqrt{2} \sec ^{2} \theta d \theta \\
& =\frac{\sqrt{2}}{2} \int\left(\cos ^{2} \theta+\cos ^{4} \theta\right) \sec ^{2} \theta d \theta \\
& =\frac{\sqrt{2}}{2} \int\left(1+\frac{\cos ^{4} \theta}{\cos ^{2} \theta}\right) d \theta \\
& =\frac{\sqrt{2}}{2} \int\left(1+\cos ^{2} \theta\right) d \theta
\end{aligned}
$$

Finish the computation by using the trig identities $\cos ^{2} \theta=\frac{1}{2}(1+\cos (2 \theta))$ and $\sin (2 \theta)=$ $2 \sin \theta \cos \theta$:

$$
\begin{align*}
\frac{\sqrt{2}}{2} \int\left(1+\cos ^{2} \theta\right) d \theta & =\frac{\sqrt{2}}{2}\left(\int 1 d \theta+\int \cos ^{2} \theta d \theta\right) \\
& =\frac{\sqrt{2}}{2}\left(\theta+\frac{1}{2} \int(1+\cos (2 \theta))\right) d \theta \\
& =\frac{\sqrt{2}}{2}\left(\theta+\frac{1}{2} \theta+\frac{\sin (2 \theta)}{4}\right)+C \\
& =\frac{3 \sqrt{2}}{4} \theta+\frac{\sqrt{2}}{8} \sin (2 \theta)+C \\
& =\frac{3 \sqrt{2}}{4} \theta+\frac{\sqrt{2}}{4} \sin \theta \cos \theta+C \tag{10}
\end{align*}
$$

Now we need to plug x-things back in for the θ-things. Go back and solve equation (8) for θ to get

$$
\theta=\arctan \left(\frac{x+1}{\sqrt{2}}\right)
$$

Recall (look at the picture!) that

$$
\sin \theta=\frac{x+1}{\sqrt{(x+1)^{2}+2}}
$$

Multiply this by the right side of equation (9) to get

$$
\sin \theta \cos \theta=\left(\frac{x+1}{\sqrt{(x+1)^{2}+2}}\right)\left(\frac{\sqrt{2}}{\sqrt{(x+1)^{2}+2}}\right)=\frac{\sqrt{2}(x+1)}{(x+1)^{2}+2} .
$$

This is the last ingredient we need to replace the θ-things in equation (10) with x-things:

$$
\begin{aligned}
\frac{\sqrt{2}}{2} \int\left(1+\cos ^{2} \theta\right) d \theta & =\frac{3 \sqrt{2}}{4} \theta+\frac{\sqrt{2}}{4} \sin \theta \cos \theta+C \\
& =\frac{3 \sqrt{2}}{4} \arctan \left(\frac{x+1}{\sqrt{2}}\right)+\frac{\sqrt{2}}{4} \cdot \frac{\sqrt{2}(x+1)}{(x+1)^{2}+2}+C \\
& =\frac{3 \sqrt{2}}{4} \arctan \left(\frac{x+1}{\sqrt{2}}\right)+\frac{1}{2} \cdot \frac{x+1}{(x+1)^{2}+2}+C
\end{aligned}
$$

In summary,

$$
\begin{array}{r}
\int \frac{1}{(x+1)^{2}+2}+\frac{2}{\left((x+1)^{2}+2\right)^{2}} d x=\frac{\sqrt{2}}{2} \int\left(1+\cos ^{2} \theta\right) d \theta \\
=\frac{3 \sqrt{2}}{4} \arctan \left(\frac{x+1}{\sqrt{2}}\right)+\frac{1}{2} \cdot \frac{x+1}{(x+1)^{2}+2}+C . \tag{11}
\end{array}
$$

Combining our answer in equation (7) with our answer in (11) gives the final answer:

$$
\begin{aligned}
\int \frac{x^{2}+3}{\left(x^{2}+2 x+3\right)^{2}} d x & =\int \frac{1}{x^{2}+2 x+3}-\frac{2 x}{\left(x^{2}+2 x+3\right)^{2}} d x \\
& =\int \frac{1}{(x+1)^{2}+2}+\frac{2}{\left((x+1)^{2}+2\right)^{2}} d x-\int \frac{2 x+2}{\left(x^{2}+2 x+3\right)^{2}} d x \\
& =\frac{3 \sqrt{2}}{4} \arctan \left(\frac{x+1}{\sqrt{2}}\right)+\frac{1}{2} \cdot \frac{x+1}{(x+1)^{2}+2}+\frac{1}{x^{2}+2 x+3}+C . \\
& =\frac{3 \sqrt{2}}{4} \arctan \left(\frac{x+1}{\sqrt{2}}\right)+\frac{1}{2} \cdot \frac{x+1}{x^{2}+2 x+3}+\frac{1}{x^{2}+2 x+3}+C . \\
& =\frac{3 \sqrt{2}}{4} \arctan \left(\frac{x+1}{\sqrt{2}}\right)+\frac{1}{2} \cdot \frac{x+3}{x^{2}+2 x+3}+C .
\end{aligned}
$$

