
A NASTY PARTIAL-FRACTIONS/TRIG INTEGRAL

ZACH NORWOOD

Exercise 44 of §8.5 in your book asks to compute the following integral:∫
x2 + 3

(x2 + 2x+ 3)2
dx.

To do this, we first want to notice that the integrand is a proper rational function; that is,

the degree of the denominator (4, in this case), is greater than the degree of the numerator

(2, in this case). Also notice that the polynomial x2 +2x+3 is an irreducible quadratic, since

its discriminant

b2 − 4ac = 22 − 4(1)(3) = 4− 12

is negative. So partial fractions should work here: there are constants A, B, C, and D such

that

(1)
x2 + 3

(x2 + 2x+ 3)2
=

Ax+B

x2 + 2x+ 3
+

Cx+D

(x2 + 2x+ 3)2
.

Multiplying both sides by (x2 + 2x+ 3)2 to clear denominators and then distributing gives

x2 + 3 = (Ax+B)(x2 + 2x+ 3) + Cx+D

= Ax(x2 + 2x+ 3) +B(x2 + 2x+ 3) + Cx+D

= Ax3 + 2Ax2 + 3Ax+Bx2 + 2Bx+ 3B + Cx+D

= Ax3 + (2A+B)x2 + (3A+ 2B + C)x+ 3B +D.

We have an equation with a polynomial on each side. The only way this can happen is that

corresponding coefficients are equal; that is, the coefficient of x2 on the left should equal the

coefficient of x2 on the right, and the coefficient of x on the left should equal the coefficient

of x on the right, etc. We apply this fact to get the following equations:

0 = A(2)

1 = 2A+B(3)

0 = 3A+ 2B + C(4)

3 = 3B +D.(5)
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Apply equation (2) to eliminate all of the A terms, so 1 = B and 0 = 2B +C = 2 +C. That

is, −2 = C. Plugging 1 in for B in equation (5) gives D = 0.

Now we go back to equation (1) and plug in the values for A, B, C, and D:

x2 + 3

(x2 + 2x+ 3)2
=

0x+ 1

x2 + 2x+ 3
+

−2x+ 0

(x2 + 2x+ 3)2

=
1

x2 + 2x+ 3
− 2x

(x2 + 2x+ 3)2
.

Our original integral becomes:∫
x2 + 3

(x2 + 2x+ 3)2
dx =

∫
1

x2 + 2x+ 3
− 2x

(x2 + 2x+ 3)2
dx

Hopefully the fact that x2+2x+3 has derivative 2x+2 (which is almost 2x, the numerator of

the second fraction) suggests to you that u-substitution might be a good idea for the second

term. The problem is that we have only a 2x, not a 2x + 2. So we add and subtract 2 and

split up the fraction as follows:∫
x2 + 3

(x2 + 2x+ 3)2
dx =

∫
1

x2 + 2x+ 3
− 2x

(x2 + 2x+ 3)2
dx

=

∫
1

x2 + 2x+ 3
− 2x+ 2− 2

(x2 + 2x+ 3)2
dx

=

∫
1

x2 + 2x+ 3
− 2x+ 2

(x2 + 2x+ 3)2
+

2

(x2 + 2x+ 3)2
dx

=

∫
1

x2 + 2x+ 3
+

2

(x2 + 2x+ 3)2
dx−

∫
2x+ 2

(x2 + 2x+ 3)2
dx.(6)

The second integral should be no problem, since we arranged for it to be a straightforward

u-substitution. Letting u = x2 + 2x+ 3, we get du = (2x+ 2)dx and

(7) −
∫

2x+ 2

(x2 + 2x+ 3)2
dx = −

∫
du

u2
=

1

u
+ C =

1

x2 + 2x+ 3
+ C.

Unfortunately the first integral isn’t so easy. We’ll need to complete the square and use

trig substitution. Notice that x2 + 2x+ 1 = (x+ 1)2, so x2 + 2x+ 3 = (x+ 1)2 + 2. Use this

fact to rewrite the integral we’re trying to evaluate:∫
1

x2 + 2x+ 3
+

2

(x2 + 2x+ 3)2
dx =

∫
1

(x+ 1)2 + 2
+

2

((x+ 1)2 + 2)2
dx.

The expression (x+1)2+2 is of the form u2+a2, so we should think of using trig substitution

with a substitution

(8) x+ 1 =
√

2 tan θ.

(You can think of this as a u-substitution u = x + 1 followed by the trig substitution u =
√

2 tan θ, but this isn’t necessary.) Now draw a picture:



A NASTY PARTIAL-FRACTIONS/TRIG INTEGRAL 3

x+ 1

√
2

√
(x+ 1)2 + 2

θ

We need to express 1
(x+1)2+2

and 2
((x+1)2+2)2

in terms of θ. Notice first that (look at the

picture!)

(9) cos θ =

√
2√

(x+ 1)2 + 2
,

so
1

(x+ 1)2 + 2
=

1

2
cos2 θ and

2

((x+ 1)2 + 2)2
=

1

2
cos4 θ.

Take the derivative of each side of equation (8) to get

dx =
√

2 sec2 θ dθ.

Now we can carry out the substitution:∫
1

(x+ 1)2 + 2
+

2

((x+ 1)2 + 2)2
dx =

∫ (1

2
cos2 θ +

1

2
cos4 θ

)√
2 sec2 θ dθ

=

√
2

2

∫
(cos2 θ + cos4 θ) sec2 θ dθ

=

√
2

2

∫ (
1 +

cos4 θ

cos2 θ

)
dθ

=

√
2

2

∫
(1 + cos2 θ) dθ.

Finish the computation by using the trig identities cos2 θ = 1
2(1 + cos(2θ)) and sin(2θ) =

2 sin θ cos θ:
√

2

2

∫
(1 + cos2 θ) dθ =

√
2

2

(∫
1 dθ +

∫
cos2 θ dθ

)
=

√
2

2

(
θ +

1

2

∫
(1 + cos(2θ))

)
dθ

=

√
2

2

(
θ +

1

2
θ +

sin(2θ)

4

)
+ C

=
3
√

2

4
θ +

√
2

8
sin(2θ) + C

=
3
√

2

4
θ +

√
2

4
sin θ cos θ + C(10)
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Now we need to plug x-things back in for the θ-things. Go back and solve equation (8) for θ

to get

θ = arctan
(x+ 1√

2

)
Recall (look at the picture!) that

sin θ =
x+ 1√

(x+ 1)2 + 2
.

Multiply this by the right side of equation (9) to get

sin θ cos θ =

(
x+ 1√

(x+ 1)2 + 2

)( √
2√

(x+ 1)2 + 2

)
=

√
2(x+ 1)

(x+ 1)2 + 2
.

This is the last ingredient we need to replace the θ-things in equation (10) with x-things:
√

2

2

∫
(1 + cos2 θ) dθ =

3
√

2

4
θ +

√
2

4
sin θ cos θ + C

=
3
√

2

4
arctan

(x+ 1√
2

)
+

√
2

4
·
√

2(x+ 1)

(x+ 1)2 + 2
+ C

=
3
√

2

4
arctan

(x+ 1√
2

)
+

1

2
· x+ 1

(x+ 1)2 + 2
+ C.

In summary, ∫
1

(x+ 1)2 + 2
+

2

((x+ 1)2 + 2)2
dx =

√
2

2

∫
(1 + cos2 θ) dθ

=
3
√

2

4
arctan

(x+ 1√
2

)
+

1

2
· x+ 1

(x+ 1)2 + 2
+ C.(11)

Combining our answer in equation (7) with our answer in (11) gives the final answer:∫
x2 + 3

(x2 + 2x+ 3)2
dx =

∫
1

x2 + 2x+ 3
− 2x

(x2 + 2x+ 3)2
dx

=

∫
1

(x+ 1)2 + 2
+

2

((x+ 1)2 + 2)2
dx−

∫
2x+ 2

(x2 + 2x+ 3)2
dx

=
3
√

2

4
arctan

(x+ 1√
2

)
+

1

2
· x+ 1

(x+ 1)2 + 2
+

1

x2 + 2x+ 3
+ C.

=
3
√

2

4
arctan

(x+ 1√
2

)
+

1

2
· x+ 1

x2 + 2x+ 3
+

1

x2 + 2x+ 3
+ C.

=
3
√

2

4
arctan

(x+ 1√
2

)
+

1

2
· x+ 3

x2 + 2x+ 3
+ C.


