MATH 131A: SOME QUIZ SOLUTIONS

ZACH NORWOOD

Problem 3. Let L be a real number. Show that a sequence (a,,)nen in R converges
to L if and only if every subsequence (ay, )nen has itself a subsequence converging
to L.

Solution. (only if) A theorem (page 77) in your textbook says that a sequence con-
verges to L iff every one of its subsequences converges to L. So if (a,)nen converges
to L and (ag, )nen is a subsequence, then (ay, )neny has a subsequence (itself!) that
converges to L.

(if) We prove the contrapositive. Suppose that a, 4 L. We must produce a
subsequence (a, )nen Of (ay)nen such that none of its subsequences converge to L.
Consider what it means (by definition) for a, /4 L: there is a “bad” € > 0 such that

(%) (VN € N)(Im > N) |a, — L| > €.

Now just enumerate the terms of the sequence that are > € away from L. More
precisely, define the subsequence (ag,)nen as follows. Let kg be least such that
lag, — L| > €. Inductively assume that ko, ..., k, are defined such that

(1) ko < ky <+ <k, and

(2) lax,, — L| > eforallm=0,1,...,n.
Apply (x) with N = k, to get m > k, such that |ay, — L| > €. Define k,; = m.
This satisfies conditions (1) & (2) above, so the induction is complete. We have
a subsequence (ag, )nen such that |ay, — L| > € for every n € N. Every term of
(ak, )nen 18 > € away from L, so in particular every term of every subsequence of
(ak, )nen is > € away from L. (That is, since (ay,, Jnen is bounded away from L, every
subsequence of (ag, )nen is bounded away from L.) This reduces the problem to the
following.

Claim. Let ¢ > 0 and let (b,)nen be a sequence. Suppose that |b, — L| > € for
every n € N. Then (b,),en does not converge to L.

Proof of claim. We have to show that there is some ¢ > 0 such that |b, — L| > ¢ for
infinitely many n € N. This is immediate from the assumption of the claim. Indeed,
for every N € N, it’s clear that m = N + 1 satisfies m > N and |a,, — L| > ¢, since
la, — N| > € for every n € N (not just those n that are greater than N). |

I'll reiterate why the claim finishes the proof: Apply the claim to any subsequence
of (ag, )nen to see that no subsequence of (ag, )nen converges to L. [
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Problem 4. Suppose that A is a nonempty subset of R and that sup(A) ¢ A. Show
that there is a sequence (a,),en in A that is convergent to sup(A).

Solution. Since the problem is asking us to prove something about sup(A), it’s fair
to assume A is bounded above (so that sup(A) actually exists!). The point is to
define the sequence (a,)nen, which we’ll do by repeatedly using the definition of
supremum for various values of e.

Since sup(A) — 1 is not an upper bound for A (it’s less than the least upper
bound!), we can choose ay € AN (sup(A) —1,sup(A)]. Now assume inductively that
ao, . . ., a, are defined so that for all k € {0,1,...,n}:

e a, € A and
o sup(A) — = < ay.

Tk
Since sup(A) — n+r2 is not an upper bound for A, there is a,y; € A such that
a1 > sup(A) — #2 This completes the inductive construction, giving a sequence

(an)nen With terms in A such that for every n € N

sup(A) — =5 < a, < sup(A).

(The first inequality comes from our construction, and the second is just from the
definition of supremum.) Since sup(A) — HLH — sup(A), we can apply the sandwich
theorem to conclude that a,, — sup(A), as required. [

Remarks.

e The hypothesis sup(A) ¢ A is unnecessary, and this proof doesn’t use it.

e With a little extra care, we could have ensured that the sequence (a,)nen
was increasing, which (together with the fact that (a,,)nen is bounded) would
guarantee that (a,)nen converges. This is fine, but it isn’t necessary. It’s im-
portant to realize that our proof as it is doesn’t necessarily give an increasing
sequence.



