MATH 131A: SOME QUIZ SOLUTIONS

ZACH NORWOOD

Problem 3. Let L be a real number. Show that a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ in \mathbb{R} converges to L if and only if every subsequence $\left(a_{k_{n}}\right)_{n \in \mathbb{N}}$ has itself a subsequence converging to L.

Solution. (only if) A theorem (page ??) in your textbook says that a sequence converges to L iff every one of its subsequences converges to L. So if $\left(a_{n}\right)_{n \in \mathbb{N}}$ converges to L and $\left(a_{k_{n}}\right)_{n \in \mathbb{N}}$ is a subsequence, then $\left(a_{k_{n}}\right)_{n \in \mathbb{N}}$ has a subsequence (itself!) that converges to L.
(if) We prove the contrapositive. Suppose that $a_{n} \nrightarrow L$. We must produce a subsequence $\left(a_{k_{n}}\right)_{n \in \mathbb{N}}$ of $\left(a_{n}\right)_{n \in \mathbb{N}}$ such that none of its subsequences converge to L. Consider what it means (by definition) for $a_{n} \nrightarrow L$: there is a "bad" $\epsilon>0$ such that

$$
(\forall N \in \mathbb{N})(\exists m>N)\left|a_{m}-L\right| \geq \epsilon
$$

Now just enumerate the terms of the sequence that are $\geq \epsilon$ away from L. More precisely, define the subsequence $\left(a_{k_{n}}\right)_{n \in \mathbb{N}}$ as follows. Let k_{0} be least such that $\left|a_{k_{0}}-L\right| \geq \epsilon$. Inductively assume that k_{0}, \ldots, k_{n} are defined such that
(1) $k_{0}<k_{1}<\cdots<k_{n}$, and
(2) $\left|a_{k_{m}}-L\right| \geq \epsilon$ for all $m=0,1, \ldots, n$.

Apply ((\star) with $N=k_{n}$ to get $m>k_{n}$ such that $\left|a_{k_{m}}-L\right| \geq \epsilon$. Define $k_{n+1}=m$. This satisfies conditions (1) \& (2) above, so the induction is complete. We have a subsequence $\left(a_{k_{n}}\right)_{n \in \mathbb{N}}$ such that $\left|a_{k_{n}}-L\right| \geq \epsilon$ for every $n \in \mathbb{N}$. Every term of $\left(a_{k_{n}}\right)_{n \in \mathbb{N}}$ is $\geq \epsilon$ away from L, so in particular every term of every subsequence of $\left(a_{k_{n}}\right)_{n \in \mathbb{N}}$ is $\geq \epsilon$ away from L. (That is, since $\left(a_{k_{n}}\right)_{n \in \mathbb{N}}$ is bounded away from L, every subsequence of $\left(a_{k_{n}}\right)_{n \in \mathbb{N}}$ is bounded away from L.) This reduces the problem to the following.

Claim. Let $\epsilon>0$ and let $\left(b_{n}\right)_{n \in \mathbb{N}}$ be a sequence. Suppose that $\left|b_{n}-L\right| \geq \epsilon$ for every $n \in \mathbb{N}$. Then $\left(b_{n}\right)_{n \in \mathbb{N}}$ does not converge to L.

Proof of claim. We have to show that there is some $\epsilon>0$ such that $\left|b_{n}-L\right| \geq \epsilon$ for infinitely many $n \in \mathbb{N}$. This is immediate from the assumption of the claim. Indeed, for every $N \in \mathbb{N}$, it's clear that $m=N+1$ satisfies $m>N$ and $\left|a_{m}-L\right| \geq \epsilon$, since $\left|a_{n}-N\right| \geq \epsilon$ for every $n \in \mathbb{N}$ (not just those n that are greater than N).

I'll reiterate why the claim finishes the proof: Apply the claim to any subsequence of $\left(a_{k_{n}}\right)_{n \in \mathbb{N}}$ to see that no subsequence of $\left(a_{k_{n}}\right)_{n \in \mathbb{N}}$ converges to L.

Problem 4. Suppose that A is a nonempty subset of \mathbb{R} and that $\sup (A) \notin A$. Show that there is a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ in A that is convergent to $\sup (A)$.

Solution. Since the problem is asking us to prove something about $\sup (A)$, it's fair to assume A is bounded above (so that $\sup (A)$ actually exists!). The point is to define the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$, which we'll do by repeatedly using the definition of supremum for various values of ϵ.

Since $\sup (A)-1$ is not an upper bound for A (it's less than the least upper bound!), we can choose $a_{0} \in A \cap(\sup (A)-1, \sup (A)]$. Now assume inductively that a_{0}, \ldots, a_{n} are defined so that for all $k \in\{0,1, \ldots, n\}$:

- $a_{k} \in A$, and
- $\sup (A)-\frac{1}{k+1}<a_{k}$.

Since $\sup (A)-\frac{1}{n+2}$ is not an upper bound for A, there is $a_{n+1} \in A$ such that $a_{n+1}>\sup (A)-\frac{1}{n+2}$. This completes the inductive construction, giving a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ with terms in A such that for every $n \in \mathbb{N}$

$$
\sup (A)-\frac{1}{n+1}<a_{n} \leq \sup (A)
$$

(The first inequality comes from our construction, and the second is just from the definition of supremum.) Since $\sup (A)-\frac{1}{n+1} \rightarrow \sup (A)$, we can apply the sandwich theorem to conclude that $a_{n} \rightarrow \sup (A)$, as required.

Remarks.

- The hypothesis $\sup (A) \notin A$ is unnecessary, and this proof doesn't use it.
- With a little extra care, we could have ensured that the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ was increasing, which (together with the fact that $\left(a_{n}\right)_{n \in \mathbb{N}}$ is bounded) would guarantee that $\left(a_{n}\right)_{n \in \mathbb{N}}$ converges. This is fine, but it isn't necessary. It's important to realize that our proof as it is doesn't necessarily give an increasing sequence.

