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Definition. A filter on a set S is a nonempty family F of subsets of S such
that (i)–(iv) hold:

(i) ∅ /∈ F ;
(ii) if A ∈ F and B ⊇ A, then B ∈ F ;
(iii) if A,B ∈ F then A ∩ B ∈ F (so by induction F is closed under all

finite intersections);
(iv) S ∈ F (this follows from (i) and (ii), but it’s worth mentioning anyway).

If F also satisfies
(v) for all A ⊆ S, either A ∈ F or S r A ∈ F (but not both, by (iii) and

(iv)),
then F is an ultrafilter.

A filter defines a notion of largeness for subsets of S: the large sets are the
members of S, and the small sets are the sets whose complements are large.
An ultrafilter demands that every set be either large or small. It is not difficult
to show that a filter F is maximal (meaning no filter properly contains it) iff
F is an ultrafilter.

Perhaps the most important examples of filters are the following:
(1) If a is any member of S, then the family {A ⊆ S : a ∈ A} is a filter on

S. In fact it is an ultrafilter, since every subset A of S satisfies either
a ∈ A or a /∈ A. When an ultrafilter is generated by a single element
like this, we say the ultrafilter is principal.

(2) More generally, let A be a nonempty subset of S, and let F be the
family of all supersets of A. Then F is a filter, but an ultrafilter only
if A is a singleton {a}.

(3) Let S be infinite, and let F be the family of all cofinite subsets of S.
The empty set is not cofinite (since S is infinite), a superset of a cofinite
set is still cofinite, the intersection of two cofinite sets is cofinite, and
S ∈ F , so F satisfies conditions (i)–(iv) and is therefore a filter. We call
F the Fréchet filter or the cofinite filter. The cofinite filter is never
an ultrafilter: if S = N, for instance, then the set of even numbers is
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neither finite nor cofinite, so neither it nor its complement is a member
of F .

(4) The family of neighborhoods of a point x in a space X is a filter. Recall
that N is a neighborhood of x if N contains an open set U such that
x ∈ U , i.e., x ∈ U ⊆ N .

We have so far seen only one example of an ultrafilter. Are there more?
An ultrafilter that is not principal is called nonprincipal or free, and such
an ultrafilter must contain the cofinite filter. (More generally, a filter on S is
free if there is no element of S that belongs to every set in the filter.) To see
this, suppose that F is a nonprincipal ultrafilter, so that {a}c ∈ F for every
a ∈ S. Suppose that some finite set A ⊆ S belongs to F . Since F is closed
under finite intersection, it follows that

A ∩
⋂
a∈A

{a}c = ∅ ∈ F,

a contradiction. So no finite set belongs to F . But F is an ultrafilter, so the
complements of all of the finite sets must belong to F . That is, F contains
the cofinite filter. But are there any such ultrafilters? Yes, but their existence
depends on the Axiom of Choice.

Theorem (Ultrafilter Lemma). Every filter is contained in an ultrafilter. That
is, if F is a filter on S, then there is an ultrafilter G on S such that F ⊆ G.

One proves the Ultrafilter Lemma by a standard Zorn’s Lemma argument.
(Think of the proof that every linearly independent subset of a vector space is
contained in a basis, i.e., a maximal linearly independent set.) The Ultrafilter
Lemma is not provable without some form of the Axiom of Choice, though it
is strictly weaker than AC. In fact, the Ultrafilter Lemma is equivalent to Ty-
chonoff’s theorem for Hausdorff spaces, while AC is equivalent to Tychonoff’s
theorem for all spaces.

On that note, a quick reminder: for our purposes, the Axiom of Choice
(AC) is the following statement:

A product of nonempty sets is nonempty. That is, if {Sα : α ∈ A}
is a set of nonempty sets, then the product

∏
α∈A Sα is nonempty.

If a family of sets contains, say, two disjoint sets, then it can’t possibly
extend to a filter, since the filter would have to contain the intersection of
those two sets, i.e., ∅. What conditions on a family guarantee that the family
extends to a filter? We need the family to satisfy the FIP.

Definition. Let F be a family of subsets of S. We say that F has the finite
intersection property (FIP) if all finite subfamilies of F have nonempty
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intersection; that is, if for all A1, . . . , An ∈ F ,
A1 ∩ · · · ∩ An 6= ∅.

A family F with the FIP extends to a filter in the following way. Take all
finite intersections of members of F , and then take all supersets of those. This
is a filter, as you should check.

In our analysis of filters on topological spaces, we will need to consider
the pushforward of a filter F along a function f : S → T . We define the
pushforward f∗F to be the family {B ⊆ T : f−1[B] ∈ F}.

The proof that the pushforward (along f : X → Y ) of a filter (onX) is a filter
(on Y ) is routine and short. We should also verify that if F is an ultrafilter,
then the pushforward f∗F is too. Let B ⊆ Y . Since F is an ultrafilter, either
f−1[B] ∈ F or (f−1[B])c ∈ F . Notice that (f−1[B])c = f−1[Bc], so either
f−1[B] ∈ F or f−1[Bc] ∈ F . This says exactly that B ∈ f∗F or Bc ∈ f∗F , so
f∗F is an ultrafilter.

The first hint of a connection between filters and compactness is the fol-
lowing version of compactness. A space X is compact iff it has the following
property: if F is a family of subsets of X with the FIP, then

⋂
A∈F A 6= ∅;

that is, there is a point x ∈ X that belongs to the closure of every member of
F .

Now we are ready to connect filters to topology.

Definition. Let F be a filter on X, a topological space. We say that F con-
verges to the point x ∈ X, and we write F → x, if every open neighborhood
of x is a member of F .

Intuitively, every open neighborhood of x is large, according to the filter.
Notice that, as is the case with sequences, we have no reason to think that
the limit of a filter is unique, if it has one. As a special case of this notion of
convergence, we recover the usual convergence of sequences. A sequence is just
a function f : N→ X, and it converges to a iff every open neighborhood of a
contains cofinitely many terms of the sequence. This is exactly the assertion
that the pushforward of the cofinite filter along the function f converges to a.

Where sequences fail to describe the topology1, ultrafilters succeed. It would
be unfair to mention generalized convergence in topological spaces without
also mentioning nets, which rival filters in providing a satisfactory theory of
convergence in general spaces.

Filter convergence was originally formulated by Henri Cartan around 1937
and explored by Bourbaki in the 1940s.

1Sequential continuity doesn’t imply continuity, the closure of a set isn’t always just the set
of limits of sequences with terms from the set, sequential compactness is not compactness,
etc.

http://en.wikipedia.org/wiki/Net_%28math%29
http://en.wikipedia.org/wiki/Bourbaki
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Exercise. Let X be a topological space.
(1) Let B be a nonempty subset of X. Then x ∈ B iff there is a filter F

on X such that B ∈ F and F → x.
(2) A function f : X → Y is continuous iff the following condition holds:

for every filter F on X, if F → x, then f∗F → f(x).

The results of this exercise are just what we hoped would work—but didn’t—
for sequences in general spaces. Remarkably, we also have a characterization
of compactness in terms of filters.

Theorem. A topological space X is compact iff every ultrafilter on X con-
verges to at least one point.

Proof. Suppose first that X is compact, and let F be an ultrafilter on X.
Then F has the FIP, since it is closed under finite intersections, and ∅ /∈ F .
Compactness then guarantees that there is some point x ∈

⋂
B∈F B. This

means that every open neighborhood of x meets every B ∈ F . Let U be an
open neighborhood of x. Since no member of F is disjoint from U , we see that
in particular U c /∈ F . Since F is an ultrafilter, it must be that U ∈ F . This
proves that F converges to x.

For the converse, suppose that every ultrafilter converges and let F be a
family of subsets of X that has the FIP. Then F generates a filter, which can
then be extended to an ultrafilter G. By assumption, G converges to some
point x. Consider B ∈ F . Since G → x, every neighborhood of x meets B.
This says exactly that x ∈ B, so, since this is true of every B ∈ F , we have
x ∈

⋂
B∈F B. This proves that X is compact.

There is a similar nice characterization of Hausdorff spaces in terms of (ul-
tra)filters. I leave it as an exercise, since it won’t be necessary for our proof
of Tychonoff’s theorem.

Exercise. A topological space X is Hausdorff iff every ultrafilter on X con-
verges to at most one point.

So in a compact Hausdorff space, every ultrafilter has a unique limit.
Now we can prove Tychonoff’s Theorem.

Theorem (Tychonoff). A product of compact spaces is compact.

Proof. Let Xα, α ∈ A, be compact topological spaces, and set X =
∏

α∈AXα,
with projection maps πα : X � Xα. We need to show that every ultrafilter F
on X converges to at least one point. The heart of the matter is the following
observation:
Claim. If F is a filter on X, then F → x in X if and only if (πα)∗F → xα for
every α ∈ A.
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Suppose first that F → x, and fix α ∈ A. (This implication follows from
an exercise above and the fact that the projections πα are continuous, but
let’s just prove it anyway.) If U is an open neighborhood of xα in Xα, then
π−1α [U ] is an open neighborhood of x, and it belongs to F by assumption.
Therefore U belongs to the pushforward (πα)∗F , by definition of ‘pushforward’.
So (πα)∗F → xα.

For the converse, suppose that (πα)∗F → xα for every α ∈ A, and let U ⊆ X
be a basic open neighborhood of x. There is a basic open neighborhood B of
x such that

B = π−1α1
[Vα1 ] ∩ · · · ∩ π−1αn

[Vαn ] ⊆ U.

We need to prove that U ∈ F , and it suffices to prove that B ∈ F , since filters
are closed under taking supersets. Observe that Vαk

is an open neighborhood of
xαk

for all k ∈ {1, . . . , n}, so Vαk
∈ (παk

)∗F by our assumption that (πα)∗F →
xα for every α. This means that π−1αk

[Vαk
] ∈ F for all k ∈ {1, . . . , n}, and it

follows that B ∈ F , since F is closed under finite intersections. So U ∈ F ,
and F → x. This completes the proof of the claim. X

To prove the theorem, we need to show that every ultrafilter F on X con-
verges to at least one point. For each α, the pushforward (πα)∗F converges to
some points in Xα, since Xα is compact. Let Lα be the set of points in Xα

to which (πα)∗F converges. Then Lα is nonempty for each α ∈ A, so by the
Axiom of Choice the product

∏
α∈A Lα is nonempty. And the claim guaran-

tees that F converges to any member of
∏

α∈A Lα. We have proved that every
ultrafilter on X converges to at least one point, so X is compact.

If we assume that each Xα is compact Hausdorff, then an ultrafilter in
Xα will converge to exactly one point. That is, each Lα will have exactly
one member, so we don’t need to appeal to AC to conclude that

∏
α∈A Lα

is nonempty.2 But the equivalence between compactness and convergence of
ultrafilters depends on the ultrafilter lemma, as you’ll see if you review our
proof. So our proof specializes to a proof of Tychonoff’s theorem for Hausdorff
spaces from the ultrafilter lemma. (The ultrafilter lemma is strictly weaker
than AC. You’ll have to take my word for it.)

2This is worth meditating on, if you haven’t thought much about AC before. When there
is a ‘canonical’ choice given for each Xα, then there is a choice function that makes the
canonical choice for each α, so no appeal to AC is necessary.


