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Abstract. Let A be a non-zero abelian variety defined over a number field K and let K be a
fixed algebraic closure of K. For each element σ of the absolute Galois group Gal(K/K), let K(σ)

be the fixed field in K of σ. We show that the torsion subgroup of A(K(σ)) is infinite for all

σ ∈ Gal(K/K) outside of some set of Haar measure zero. This proves the number field case of a
conjecture of W.-D. Geyer and M. Jarden.

1. Introduction

Let A be a non-zero abelian variety defined over a number field K. The Mordell-Weil group
A(K) is finitely generated while the group A(K), with K a fixed algebraic closure of K, has infinite
rank and infinitely many torsion points. It is interesting to bridge this gap and study the structure
of the groups A(L) for various infinite algebraic extensions L of K. For example, the group A(Kab)
has finite torsion if and only if A has no abelian subvarieties with complex multiplication over K,
where Kab is the maximal abelian extension of K [Zar87].

Let GalK be the absolute Galois group Gal(K/K). Fix an integer e ≥ 1. The group GaleK
is profinite and is thus equipped with a unique Haar measure µK for which µK(GaleK) = 1. For
each σ = (σ1, . . . , σe) ∈ GaleK , let K(σ) be the fixed field of σ1, . . . , σe in K. In this paper, we will
consider the fields K(σ) for almost all σ in GaleK . By “almost all”, we mean for all σ ∈ GaleK outside
of some set with Haar measure 0. For almost all σ ∈ GaleK , the field K(σ) is pseudo-algebraically
closed [FJ05, Theorem 18.6.1] (i.e., every geometrically irreducible variety defined over K(σ) has
a K(σ)-rational point) and the absolute Galois group GalK(σ) is isomorphic to the free profinite

group on e generators [FJ05, Theorem 18.5.6].
Frey and Jarden showed that the group A(K(σ)) has infinite rank for almost all σ ∈ GaleK

[FJ74, Theorem 9.1]. We will thus focus on the torsion points of A(K(σ)). Jacobson and Jarden
showed that if e ≥ 2, then A(K(σ))tors is finite for almost all σ ∈ GalK [JJ01]. Our main theorem
deals with the remaining case e = 1.

Theorem 1.1. Let A be a non-zero abelian variety defined over a number field K. For all σ ∈ GalK
outside a set of Haar measure zero, the group of torsion points in A(K(σ)) is infinite.

Since there are only countably many abelian varieties defined over K, the set of measure zero in
Theorem 1.1 can actually be chosen independent of A.

For each positive integer m and field extension L/K, let A(L)[m] be the m-torsion subgroup of
A(L). Jacobson and Jarden have also shown that for almost all σ ∈ GalK , the groupA(K(σ))[`∞] :=⋃
n≥1A(K(σ))[`n] is finite for all rational primes ` [JJ01]. So to prove Theorem 1.1, we will need

to demonstrate that for almost all σ ∈ GalK , the group A(K(σ))[`] is non-zero for infinitely many
primes `.

A weaker version of Theorem 1.1 was proved by Geyer and Jarden in [GJ05] where they first
needed to replace K by some finite extension (which may depend on A). Our theorem, with the
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earlier results cited above, completes the proof of the following conjecture of Geyer and Jarden in
the case where K is a number field, see [GJ78].

Conjecture (Geyer-Jarden). Let A be a non-zero abelian variety defined over a finitely generated
field K and let e be a positive integer. Then for almost all σ ∈ GaleK , we have:

(a) If e = 1, then A(K(σ))tors is infinite.
(b) If e ≥ 2, then A(K(σ))tors is finite.
(c) The group A(K(σ))[`∞] is finite for each prime `.

Geyer and Jarden made this conjecture after proving it for the special case of an elliptic curve.
Following the approach of our main theorem, one should be able to prove this conjecture in the
case where K is a general finitely generated field of characteristic 0 (parts (b) and (c) are already
known). The only thing stopping us from doing so is the lack of a convenient reference for the
image of Galois representations over such fields.

1.1. Galois representations. Throughout this section, we will let A be an abelian variety of
dimension g ≥ 1 defined over a number field K. For each prime `, the group A(K)[`] is isomorphic

to F2g
` and has an action of GalK that respects the group structure. This action thus defines a

Galois representation
ρA,` : GalK → Aut(A(K)[`]) ∼= GL2g(F`).

Observe that for σ ∈ GalK , we have A(K(σ))[`] 6= 0 if and only if the matrix ρA,`(σ) ∈ GL2g(F`) has
1 as an eigenvalue. Theorem 1.1 will be a straightforward application of the following proposition.

Proposition 1.2. Let A be a non-zero abelian variety defined over a number field K. Then there
is a finite Galois extension L/K, a set S of rational primes with positive density, and a positive
constant c such that that the following hold:

(a) For each prime ` ∈ S and β ∈ GalK , we have

|{h ∈ ρA,`(βGalL) : det(I − h) = 0}|
|ρA,`(βGalL)|

≥ c

`
.

(b) The homomorphism
∏
`∈S ρA,` : GalL →

∏
`∈S

ρA,`(GalL) is surjective.

Let us now explain how Theorem 1.1 follows from Proposition 1.2. We first define the measure
µ = [L : K]µK on GalK , i.e., the Haar measure on GalK such that µ(GalK) = [L : K]. Now fix any
element β ∈ GalK . Since µ(βGalL) = 1, we may view βGalL with measure µ as a probability space.
For each prime ` ∈ S, define the set U` := {σ ∈ βGalL : A(K(σ))[`] 6= 0}. Since A(K(σ))[`] 6= 0 is
equivalent to det(I − ρA,`(σ)) = 0, the set U` is thus µ-measurable with

µ(U`) = |{h ∈ ρA,`(βGalL) : det(I − h) = 0}|/|ρA,`(βGalL)|.
Using Proposition 1.2(b), we find that the map

∏
`∈S ρA,` : βGalL →

∏
`∈S ρA,`(βGalL) is surjec-

tive, and thus the U` are µ-independent subsets of βGalL (i.e., µ(∩`∈IU`) =
∏
`∈I µ(U`) for any

finite subset I of S). By Proposition 1.2(a), we have∑
`∈S

µ(U`) ≥ c
∑
`∈S

1

`
= +∞

where the divergence of the series uses that S has positive density. The second Borel-Cantelli
lemma now implies that the set

⋂∞
n=1

⋃
`≥n, `∈S U` has µ-measure 1. Equivalently, the set{

σ ∈ βGalL : A(K(σ))[`] 6= 0 for infinitely many primes ` ∈ S}
has µ-measure 1. By combining the [L : K] cosets of GalL in GalK , we find that the set{

σ ∈ GalK : A(K(σ))[`] 6= 0 for infinitely many primes ` ∈ S}
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has µ-measure [L : K]. Theorem 1.1 follows by recalling that µK = [L : K]−1µ.

Acknowledgements. Many thanks to Moshe Jarden for introducing his and Geyer’s conjecture to
me and suggesting that I should study it. Thanks to Moshe and Andrew Obus for their corrections.
Thanks to the referee for his or her careful reading and suggestions.

2. Counting points

In this section, we give a quick application of the Weil conjectures. The essential feature of the
bound in the following theorem is its uniformity; its proof requires a bound for the sum of Betti
numbers due to Katz (which builds on estimates of Bombieri).

Theorem 2.1. Let V ⊆ AnFq
with n > 1 be a closed subvariety defined by the simultaneous van-

ishing of r polynomials f1, . . . , fr in Fq[x1, . . . , xn], each of degree at most d. Let V1, . . . , Vm be the
irreducible components of VFq

which have the same dimension as V . Then

|V (Fq)| ≤ mqdimV + 6(3 + rd)n+12rqdimV−1/2.

If the components V1, . . . , Vm are all defined over Fq, then∣∣∣ |V (Fq)| −mqdimV
∣∣∣ ≤ 6(3 + rd)n+12rqdimV−1/2.

Proof. Set N = dimV and fix a prime ` that does not divide q. By the Grothendieck-Lefschetz
theorem [Del77, II Théorème 3.2], we have

|V (Fq)| =
∑2N

i=0
(−1)i Tr(F ∗|H i

c(VFq
,Q`))

where F ∗ is the linear transformation arising from the Frobenius morphism which acts on the `-
adic cohomology groups with compact support. From Deligne, we know that the eigenvalues of
F ∗ acting on H i

c(VFq
,Q`) have absolute value at most qi/2 under any embedding Q` ↪→ C (see the

comment following Théorème 1 of [Del80]). Therefore,∣∣∣ |V (Fq)| − Tr(F ∗|H2N
c (VFq

,Q`))
∣∣∣(2.1)

≤
∑2N−1

i=0
qi/2 dimH i

c(VFq
,Q`)

≤ qN−1/2
∑2N−1

i=0
dimH i

c(VFq
,Q`))

≤ qN−1/2 · 6(3 + rd)n+12r

where the last inequality follows from the corollary of Theorem 1 in [Kat01].
First suppose that the components V1, . . . , Vm are all defined over Fq. Choose a closed subvariety

Z with dimZ < dimV = N such that U := V − Z is the disjoint union of smooth, open and
geometrically irreducible subvarieties U1, . . . , Um of V . By Poincaré duality (for example, as in
Corollary 11.2 of [Mil80]), we have an isomorphism between the Q`-vector space H2N

c (Ui,Fq
,Q`)

and the dual of H0(Ui,Fq
,Q`(1)) which respects the Frobenius actions.

We have an exact sequence

H2N−1
c (ZFq

,Q`)→ H2N
c (UFq

,Q`)→ H2N
c (VFq

,Q`)→ H2N
c (ZFq

,Q`),

cf. Remark 1.30 of [Mil80]. The inequality dimZ < N implies that H i
c(ZFq

,Q`) = 0 for all i > 2(N−
1), so we have an isomorphism H2N

c (UFq
,Q`)

∼−→ H2N
c (VFq

,Q`) with compatible linear maps F ∗.

We have H2N
c (UFq

,Q`) = ⊕mi=1H
2N
c (Ui,Fq

,Q`). Using that Ui is smooth and absolutely irreducible,

Poincaré duality gives an isomorphism H2N
c (Ui,Fq

,Q`) = Q`(−N) for all i. Recall that Q`(−N)
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is the space Q` with F ∗ acting on it by multiplication by qN . Therefore, H2N
c (VFq

,Q`) is an

m-dimensional Q`-vector space and F ∗ acts on it as multiplication by qN . By (2.1), we deduce that∣∣∣ |V (Fq)| −mqN
∣∣∣ ≤ 6(3 + rd)n+12rqN−1/2.

Now suppose we are in the general case. We have just shown that dimQ`
H2N
c (VFq

,Q`) = m

(one can first base extend by a finite extension of Fq over which all of the Vi are defined). The
eigenvalues of F ∗ acting on H2N

c (VFq
,Q`) have absolute value at most qN by Deligne [Del80], so

|Tr(F ∗|H2N
c (VFq

,Q`))| ≤ mqN and the theorem follows. �

Remark 2.2. For the main application in this paper, it would suffice to have a version of Theo-
rem 2.1 where the term 6(3 + rd)n+12r is replaced by any constant depending only on r, d and n.
Such bounds can be readily deduced from the Weil-Lang bounds instead of the more sophisticated
cohomological machinery. The above explicit version will be used in future work.

3. Proof of Proposition 1.2

Fix an abelian variety A of dimension g ≥ 1 defined over a number field K. For each rational
prime `, let

ρA,` : GalK → Aut(A(K)[`]) ∼= GL2g(F`)
be the Galois representation coming from the Galois action on the `-torsion points of A. For each
`, let ρA,`∞ : GalK → Aut(A(K)[`∞]) ∼= GL2g(Z`) be the `-adic representation which describes the

Galois action on A(K)[`∞].
For a finite extension K ′ of K and a maximal ideal p of OK′ for which AK′ has good reduction,

let PA,p(x) ∈ Z[x] be the characteristic polynomial of Frobenius for the reduction of A modulo p;
it is the unique polynomial in Z[x] such that PA,p(x) = det(xI − ρA,`∞(Frobp)) for all primes `
satisfying p - `.

3.1. Image of Galois modulo `.

Theorem 3.1 (Serre). There is a finite Galois extension L of K and positive integers N , r and κ
such that the following hold:

(a) For all ` ≥ κ, there is a connected, reductive subgroup H` of GL2g,F`
of rank r such that

ρA,`(GalL) is contained in H`(F`) and the index [H`(F`) : ρA,`(GalL)] divides N . Further-
more, H` contains the group Gm of homotheties.

(b) The homomorphism
∏
` ρA,` : GalL →

∏
` ρA,`(GalL) is surjective.

The above theorem is a consequence of results of J.-P. Serre presented in his 1985-1986 course at
the Collège de France, see [Ser86] for an overview of the course1. Detailed sketches were supplied
in letters that have since been published in his collected papers; see the beginning of [Ser00], in
particular the letters to M.-F. Vignéras [Ser00, #137] and K. Ribet [Ser00, #138] contain informa-
tion on parts (a) and (b), respectively. The paper [Win02] contains a detailed construction of the
reductive groups H` (where they are denoted by G(`)alg). A proof of part (b) can now be found in
[Ser13]. For the rest of §3, we will use the notation of Theorem 3.1.

Lemma 3.2. There is a finite Galois extension M of Q such that if ` is a sufficiently large prime
that splits completely in M , then the following hold:

(a) The reductive group H` is split.

1The referee has pointed out that Eva Bayer-Fluckiger’s notes for the course can be found at http://alg-geo.

epfl.ch/~bayer/html/notes.html
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(b) Let xi,j (1 ≤ i, j ≤ 2g) and y be independent variables. We may identify GL2g,F`
with

the closed subvariety of Spec(F`[xi,j , y]) = AnF`
, with n = 4g2 + 1, defined by the equation

det(xi,j) · y = 1 (that is, identify a matrix B with the n-tuple ((Bi,j), 1/ det(B))).
Let T be a split maximal torus of H`. Then the torus T , viewed as a closed subvariety

of AnF`
, is defined by at most C1 polynomials of degree at most C2, where C1 and C2 are

constants that do not depend on `.

Proof. Define the scheme A2g
∗ = A2g−1 × Gm, and let cl : GL2g → A2g

∗ be the morphism that
associates to a matrix B the 2g-tuple (a1, . . . , a2g) where det(xI − B) = x2g + a1x

2g−1 + . . . +
a2g−1x+ a2g. If G is a connected reductive subgroup of GL2g,k for a field k, then cl(G) is a closed

irreducible subvariety of A2g
∗,k whose dimension is the same as the rank of G (we have cl(G) = cl(T ),

where T is a maximal torus of G, so it suffices to consider a torus).
There is a finite extension L′ of L such that the Zariski closure of ρA,`∞(GalL′) in GL2g,Q`

is a
connected algebraic group for each `, cf. [Ser00, p.18] and [LP97]. Let P be the Zariski closure in

A2g
∗,Q of the set of 2g-tuples Pp := (a1, . . . , a2g) ∈ Z2g where p varies over the maximal ideals of OL′

for which A has good reduction and PA,p(x) equals x2g + a1x
2g−1 + . . .+ a2g−1x+ a2g.

Serre has shown that, after choosing an integral model of P, we have cl(H`) = PF`
for all

sufficiently large `, cf. [Ser00, #137 §6] where P is denoted P1. In particular, the rank of H` agrees
with dim(P) for ` large enough (this is how r is determined in the proof of Thereom 3.1).

Let d be the maximum number of distinct roots PA,p(x) has in Q as p varies over the maximal
ideals of OL′ for which A has good reduction. For ` large enough so that H` is defined, we define d`
to be the maximum number of distinct roots det(xI−h) ∈ F`[x] has as h varies over the elements of
H`(F`). For ` large, the equality cl(H`) = PF`

implies that d = d` (the polynomials with less than
d roots are described by a codimension 1 subvariety of P). By the Chebotarev density theorem,
the set of maximal ideals p ⊆ OL′ for which PA,p(x) has d distinct roots has density 1. Let q be
a maximal ideal of OL′ for which A has good reduction and PA,q(x) has d distinct roots. There is
a constant c1 such that PA,q(x) ≡ det(xI − ρA,`(Frobq)) ∈ F`[x] has d = d` distinct roots for all
` ≥ c1. Let M be the splitting field of PA,q(x) over Q. For the rest of the proof, suppose that ` is a
prime greater than c1 for which ` splits completely in M , and hence det(xI − ρA,`(Frobq)) ∈ F`[x]
has d distinct roots in F`.

Let tq ∈ H`(F`) be the semisimple part of a representative of the conjugacy class ρA,`(Frobq).
Let T be a maximal torus of H` which contains tq; we will show that T is split (as a torus over F`).
Let X(T ) be the group of characters TF`

→ Gm,F`
and let ι : T → GL2g,F`

the inclusion morphism.

For each character α ∈ X(T ), define the vector space

V (α) = {v ∈ F2g
` : ι(t) · v = α(t)v for all t ∈ T (F`)}.

We say that α is a weight of ι if V (α) 6= 0, and we will denote the (finite) set of such weights by Ω.

We have F2g
` = ⊕α∈ΩV (α) since ι(T ) is a diagonalizable subgroup of GL2g,F`

. For each t ∈ T (F`),
we thus have

det(xI − ι(t)) =
∏
α∈Ω

(x− α(t))
dimF`

V (α)
.

Since every semisimple element of H` is conjugate to an element in T , we find that |Ω| = d` and
hence |Ω| = d. Since PA,q(x) ≡ det(xI − tq) ∈ F`[x] has d distinct roots in F`, we deduce that α(tq)
belongs to F` for each α ∈ Ω and that α1(tq) 6= α2(tq) for all distinct α1, α2 ∈ Ω.

For σ ∈ GalF`
and α ∈ X(T ), we define σα to be the character of T for which σ(α(t)) = σα(σ(t))

for all t ∈ T (F`); this defines an action of the Galois group GalF`
= Gal(F`/F`) on the character

group X(T ). Since ι is defined over F`, GalF`
also acts on the set Ω. Take any α ∈ Ω and σ ∈ GalF`

.
Since α(tq) and tq are defined over F`, we have α(tq) = σ(α(tq)) = σα(σ(tq)) = σα(tq). Since β(tq)
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takes distinct values for different β ∈ Ω, we deduce that σα = α. Therefore, the action of GalF`
on

Ω is trivial. The group X(T ) is generated by Ω since ι is a faithful embedding (using the morphism∏
α∈Ω α : T → Gn

m,F`
with n = |Ω|, one need only note that the character group of the full diagonal

torus in GLm,F`
is generated by the m obvious characters). Therefore, the GalF`

action on X(T )
is also trivial. That GalF`

acts trivially on X(T ) implies that T is a split torus [Bor91, III §8.12].
This completes the proof of part (a).

We will now prove part (b). Since all split maximal tori of H` are conjugate by an element of
H`(F`) [Spr09, §15.2.6], and conjugation does not change the number or degree of the equations
needed to define the torus, we need only verify (b) for our specific split torus T . Similarly by
conjugating H` by an element of GL2g(F`), we may assume that the split torus T lies in the
diagonal torus of GL2g,F`

. Moreover, we may assume that the inclusion T → GL2g,F`
maps t ∈ T

to the diagonal matrix 
α1(t)Im1

α2(t)Im2

. . .
αd(t)Imd


where Ω = {α1, . . . , αd} and mi = dimF`

V (αi). For each 1 ≤ s ≤ d, define es = 1 +
∑

1≤k<smk.
The torus T thus consists of the matrices B ∈ GL2g,F`

for which Bi,j = 0 for i 6= j, Bi,i = Bj,j
if es ≤ i < j < es+1 for 1 ≤ s < d, and

∏
1≤i≤dB

ni
ei,ei = 1 whenever

∏
1≤i≤d α

ni
i = 1 with

ni ∈ Z. It thus suffices to prove that subgroup N of Zd consisting of those (n1, . . . , nd) for which∏
1≤i≤d α

ni
i = 1 is generated by the finite set {(n1, . . . , nd) : |ni| ≤ C} where C is some constant

that does not depend on `.
One of the ingredients in Serre’s proof of cl(H`) = PF`

for large ` is that we can lift H` to a
reductive group H` over a field F of characteristic 0 [Ser00, #137 §6]. (Moreover for ` sufficiently
large, the Zariski closure of ρA,`∞(GalL′) in GL2g,Z`

is a reductive group scheme H` whose special
fiber is H`; see [Win02, §2] and use [Win02, §3.4.1] to identify the special fiber with Serre’s group.
Then the generic fiber of H` gives the desired lift H`.) By choosing the lift appropriately, one
can assume that there is an embedding F ↪→ C such that the reductive group H`,C ⊆ GL2g,C is
conjugate in GL2g,C to one of a finite number of reductive groups (which do not depend on `). This
is a key step in [Ser00, #137 §6]; the idea is that there is a natural way to lift the central torus
of H` that does not depend on ` (the central torus for ` sufficiently large enough is determined by
the endomorphism ring of AK), then there are finitely many possibilities for the semisimple part
of the lift. It is this finiteness of reductive groups that allows us to pick a constant C that depends
only on these finitely many reductive groups, and is hence independent of `. �

3.2. Proof of Proposition 1.2. With notation as in §3.1, we fix a conjugacy class C of Gal(L/K).
We define dC to be the maximum number of distinct roots PA,p(x

N ) has in Q as p varies over the
non-zero prime ideals of OK such that A has good reduction at p, L is unramified at p, and
(p, L/K) = C; fix such a prime pC for which this maximum occurs.

Let S be the set of primes ` that satisfy the following conditions:

• ` ≥ κ and pC - ` for each conjugacy class C of Gal(L/K),
• ` splits completely in M ,
• For each conjugacy class C of Gal(L/K), PA,pC (xN ) mod ` ∈ F`[x] has dC distinct roots in
F`.

The set S, after possibly removing a finite number of primes, will be the set of Proposition 1.2.
The set S has positive density by the Chebotarev density theorem. After removing a finite number
of primes from S, by Lemma 3.2(a) we may assume that H` is split for all ` ∈ S.
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For the rest of this section, fix a prime ` ∈ S and an element β ∈ GalK . Let C be the conjugacy
class of Gal(L/K) = GalK /GalL containing the coset βGalL. Choose a matrix B ∈ ρA,`(βGalL)
that lies in the conjugacy class ρA,`(FrobpC ). Since the index of ρA,`(GalL) in H`(F`) divides N , we

have hN ∈ ρA,`(GalL) for all h ∈ H`(F`). In particular, BhN ∈ ρA,`(βGalL) for every h ∈ H`(F`).
Therefore,

(3.1)
⋃

T split maximal
torus of H`

{
BtN :

t ∈ T (F`) such that det(I −BtN ) = 0
and tN is regular in H`

}

is a subset of {h ∈ ρA,`(βGalL) : det(I − h) = 0} (with regular defined as in [Bor91, IV §12]).

Suppose that t1 and t2 are semisimple elements of H`(F`) with tN1 and tN2 regular in H`. If
BtN1 = BtN2 , then tN1 = tN2 , and since they are regular they must lie in a unique maximal torus
of H`; in particular, t1 and t2 lie in the same (unique) maximal torus of H`. Therefore, (3.1) is
actually a disjoint union.

If h is an element of the rank r torus T , then there are at most N r elements t in T for which
tN = h. We thus have

|{h ∈ ρA,`(βGalL) : det(I − h) = 0}|(3.2)

≥ 1

N r

∑
T

|{t ∈ T (F`) : det(I −BtN ) = 0 and tN is regular in H`}|

where the sum is over all split maximal tori T of H`. The key technical lemma of this paper is the
following:

Lemma 3.3. There is a constant c not depending on the choice of B or ` such that

|{t ∈ T (F`) : det(I −BtN ) = 0 and tN is regular in H`}|

is greater than `r−1 − c`r−3/2 for all split maximal tori T of H`.

Assuming the validity of Lemma 3.3, let us finish the proof of Proposition 1.2. Combining
(3.2) with Lemma 3.3, we find that |{h ∈ ρA,`(βGalL) : det(I − h) = 0}| is greater or equal to

1
Nr

∑
T

(
`r−1 − c`r−3/2

)
where the sum is over the split maximal tori of H`.

Fix a split maximal torus T of H` (such a torus exists by our choice of S). All split maximal
tori of H` are conjugate to T by some element of H`(F`) [Spr09, §15.2.6]. Let N be the group
of elements of H`(F`) that normalize the torus T . The group N clearly contains T (F`) and the
quotient W := N/T (F`) is isomorphic to a subgroup of the Weyl group W (H`). Therefore, there
are exactly |H`(F`)|/|N | = |H`(F`)||W |−1(`− 1)−r split maximal tori of H`. Combining this with
our previous estimate, we have

|{h ∈ ρA,`(βGalL) : det(I − h) = 0}|

≥ N−r|H`(F`)||W |−1(`− 1)−r · (`r−1 − c`r−3/2
)

≥ N−r|H`(F`)||W (H`)|−1(1− c`−1/2
)
· `−1.

Using that |H`(F`)| ≥ |ρA,`(GalL)| = |ρA,`(βGalL)|, we find that

|{h ∈ ρA,`(βGalL) : det(I − h) = 0}|
|ρA,`(βGalL)|

≥ 1

N r · |W (H`)|
(1− c`−1/2)

`
.

Since H` is a reductive group of rank r, there is a lower bound for |W (H`)|−1 that depends only
on r (more precisely, W (H`) depends only on the Lie type of H` and there are only finite many for
a given r). Proposition 1.2(a) is now immediate after removing a finite number of primes from S.
Proposition 1.2(b) is a consequence of Theorem 3.1(b) and our choice of L.
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3.3. Proof of Lemma 3.3. Fix a split maximal torus T of H`. Let W be the closed subvariety of
T defined by the equation det(I−BtN ) = 0 where t ∈ T . By Theorem 3.1(a), T contains the group
Gm of homotheties. Let ϕ : W → T/Gm be the morphism obtained by composing the inclusion
W ↪→ T with the quotient homomorphism. Take any t ∈ T (F`), and let t be the corresponding
coset in T/Gm. Then ϕ−1(t) = {λt : λ ∈ F`, det(I − λNBtN ) = 0}, and hence |ϕ−1(t)| equals the
number of distinct roots of det(xN −BtN ) in F`. Let d be the integer such that for a generic t′ in
T/Gm, ϕ−1(t′) has d distinct points (counted without multiplicity).

Lemma 3.4. Assuming ` ∈ S is sufficiently large, there exists an element t ∈ T (F`) such that
ϕ−1(t) consists of d distinct points each belonging to W (F`).
Proof. By our choice of pC , the polynomial PA,pC (xN ) has degree dC . Our set S was chosen so that
the polynomial

PA,pC (xN ) ≡ det(xNI − ρA,`(FrobpC )) = det(xNI −B) ∈ F`[x]

has dC distinct roots all of which belong to F`, see §3.2. In terms of our morphism ϕ, this shows
that ϕ−1(I) consists of dC points each belonging to W (F`). So dC ≤ d and it thus suffices to prove
equality.

Let V be the subvariety of T consisting of those t ∈ T for which det(xNI − BtN ) has strictly
less than d distinct roots in an algebraically closed field. Since V is a proper subvariety of T ; it
has dimension at most dimT − 1 = r − 1. Using Lemma 3.2(b) and Theorem 2.1, we find that
|V (F`)| = O(`r−1) where the implicit constant does not depend on B or `. Since T is split, we have
|T (F`)| = (` − 1)r. Thus for all sufficiently large ` ∈ S, the set T (F`) − V (F`) is non-empty, and
hence there is a t1 ∈ T (F`) such that det(xNI − BtN1 ) ∈ F`[x] has exactly d distinct roots in F`.
Since the index [H`(F`) : ρA,`(GalL)] divides N , we find that tN1 lies in ρA,`(GalL), and hence BtN1
belongs to ρA,`(βGalL). By the Chebotarev density theorem, there is a prime p - ` of OK for which

A has good reduction at p, (p, L/K) = C, and BtN1 is in the conjugacy class ρA,`(Frobp). Since

PA,p(x
N ) ≡ det(xNI −BtN1 ) mod ` has d distinct roots in F`, the polynomial PA,p(x

N ) will have at

least d distinct roots in Q. From our definition of dC (see the beginning of §3.2), we deduce that
d ≤ dC . Therefore, d = dC as claimed. �

Lemma 3.5. For ` ∈ S sufficiently large, each irreducible components of WF`
has dimension r− 1

and is defined over F`.
Proof. The variety W has dimension r− 1. Let W1, . . . ,Wm be the irreducible components of WF`

.

Each component Wi has dimension r − 1, cf. [Lan72, II Theorem 11]. So it remains to show that
all of the Wi are defined over F`, at least for ` sufficiently large.

Set V := (T/Gm)F`
. For each 1 ≤ i ≤ m, let ϕi be the morphism ϕ|Wi : Wi → V . The morphism

ϕi is a cover; by cover, we mean that it is étale of some degree di after replacing Wi and V by
non-empty Zariski open subsets. Let Z be the Zariski closure of ϕ(

⋃
i 6=jWi ∩Wj) in V . Using that

the ϕi are covers, one can show that Z 6= V . So for a general v ∈ V (F`) outside Z, we have a
disjoint union ϕ−1(v) =

⋃
i ϕ
−1
i (v) with d = |ϕ−1(v)| and di = |ϕ−1

i (v)|. Therefore, d =
∑

i di.
Assuming ` ∈ S is sufficiently large, we can fix an element t ∈ T (F`) satisfying the conditions

of Lemma 3.4. By our choice of t, the fiber ϕ−1(t) =
⋃
i ϕ
−1
i (t) has d distinct elements. Since

|ϕ−1
i (t)| ≤ di for each 1 ≤ i ≤ m and d =

∑
i di, we deduce that ϕ−1(t) is the disjoint union of the

sets ϕi(t) and each ϕ−1
i (t) consists of di distinct elements. The disjointness implies that each point

in ϕ−1(t) lies in a unique irreducible component of WF`
.

Fix 1 ≤ i ≤ m. Choose a point wi ∈ ϕ−1
i (t) (such a point exists since ϕ−1

i (t) consists of di ≥ 1
elements). We have wi ∈W (F`) by our choice of t, so wi = σ(wi) ∈ σ(Wi) for all σ ∈ GalF`

. Since
Wi is the unique irreducible component of WF`

that contains wi, we deduce that σ(Wi) = Wi for
all σ ∈ GalF`

and hence Wi is defined over F` as claimed. �
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By taking ` ∈ S sufficiently large, we may assume by Lemma 3.5 that all of the irreducible
components of WF`

are defined over F` (by adjusting c appropriately, it is easy to verify Lemma 3.3

for the finitely many excluded primes). From Lemma 3.2(b) and our choice of S, the split torus
T (viewed as a closed subvariety of AnF`

) is defined by a bounded number of equations of bounded

degree (that is, bounded independently of the choice of B and ` ∈ S). Theorem 2.1 thus implies
that

(3.3) |{t ∈ T (F`) : det(I −BtN ) = 0}| = |W (F`)| ≥ `r−1 +O(`r−3/2)

where the implicit constant does not depend on the choice of B or `.

Lemma 3.6. For ` ∈ S, we have

|{t ∈ T (F`) : t is not regular in H`}| = O(`r−1)

where the implicit constant depends only on r.

Proof. For each diagonalizable group D defined over F`, let X(D) be the group of characters
DF`

→ Gm,F`
. Let R = R(H`, T ) be the set of roots of H` relative to T , see [Bor91, 8.17] (more

precisely, the roots of H`,F`
relative to TF`

); it is a finite subset of X(T ). Since T is split, we can

also identify X(T ) with the group of characters T → Gm,F`
. We will follow the usual convention

and view X(T ) as an additive group.
An element t ∈ T (F`) is regular if and only if α(t) 6= 1 for all α ∈ R [Bor91, 12.2]. We thus have

(3.4) {t ∈ T (F`) : t is not regular in H`} =
⋃
α∈R

Dα(F`),

where Dα := kerα is an algebraic group defined over F`.
Take any root α ∈ R. The group Dα is split and diagonalizable since Dα is a subgroup of the

split torus T . Therefore, Dα = D◦α × Fα where D◦α is a split torus and Fα is a finite abelian group
(whose order is relatively prime to `) [Bor91, 8.7]. Since α is non-trivial, D◦α is a split torus of rank
r − 1. Therefore,

|Dα(F`)| ≤ mα|D◦α(F`)| = mα(`− 1)r ≤ mα`
r−1,

where mα is the cardinality of Fα. From (3.4), we deduce that

|{t ∈ T (F`) : t is not regular in H`}| ≤ |R| ·max
α∈R

mα · `r−1.

It thus remains to prove that |R| and mα can be bounded in terms of r only. These are geometric
quantities, so for the rest of the proof we may assume (after base extending) that H`, T and Dα

are all defined over F`. Associated to the connected reductive group H`/F` and maximal torus T
is its root datum Ψ = (X,R,X∨, R∨), where X := X(T ); see [Spr09, §7.4] for details. For us, an
important part of the root datum is a perfect pairing of free abelian groups 〈 , 〉 : X ×X∨ → Z and
a bijection R→ R∨, α 7→ α∨ such that 〈α, α∨〉 = 2.

We claim that mα ∈ {1, 2} for each α ∈ R. From the exact sequence

1→ Dα → T
α−→ Gm,F`

→ 1,

we have a dual exact sequence

(3.5) 1→ Z→ X(T )→ X(Dα)→ 1

of finitely generated abelian groups [Bor91, III 8.12]. In (3.5), the homomorphism Z → X(T ) is
determined by 1 7→ α and the homomorphism X(T )→ X(Dα) is restriction. Therefore, X(T )/〈α〉
is isomorphic to X(Dα) = X(D◦α)×X(Fα) ∼= Zr−1 × Fα. So there is a character β ∈ X(T ) whose
image in X(T )/〈α〉 generates a group of order mα. The group generated by α and β is cyclic of
infinite order (α and β lie in the free abelian group X(T ) and satisfy some relation since mαβ ∈ 〈α〉.

9



So by making an appropriate choice of β, we find that α = nβ for some integer divisible by mα.
This implies that 2 = 〈α, α∨〉 = n〈β, α∨〉 ≡ 0 (mod mα) and hence mα is 1 or 2.

From the root datum we can view R as a root system in a Euclidean space of dimension at
most r, cf. [Spr09, §7.4.1]. Finally, note that there are only finitely many such root systems up to
isomorphism (just reduce to the irreducible case where we have the familiar classification in terms
of Dynkin diagrams). �

Let D be the set of t ∈ T (F`) for which tN is not regular in H`. For each t′ ∈ T (F`), there are
at most N r elements t ∈ T (F`) for which tN = t′. Thus by Lemma 3.6, we have

(3.6) |D| ≤ N r|{t′ ∈ T (F`) : t′ is not regular in H`}| = O(`r−1)

where the implicit constant depends only on r and N . The group Gm(F`) = F×` acts on D by

multiplication since Gm ⊆ T . For each t ∈ D, there are at most d values of λ ∈ F×` such that
λt ∈W (F`). Therefore,

(3.7) |{t ∈W (F`) : tN not regular in H`}| ≤ d|D|/(`− 1) = O(`r−2)

where the last equality follows from (3.6) and the implicit constant depends only on r, N and d.
Lemma 3.3 follows by combining (3.3) and (3.7).
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