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Abstract. To each Drinfeld module over a finitely generated field with generic characteristic, one
can associate a Galois representation arising from the Galois action on its torsion points. Pink and
Rütsche have described the image of this representation up to commensurability. Their theorem
is qualitative, and the objective of this paper is to complement this theory with a worked out
example. In particular, we give examples of Drinfeld modules of rank 2 for which the Galois action
on their torsion points is as large as possible. We will follow the approach that Serre used to give
explicit examples of his openness theorem for elliptic curves. Using our specific examples, we will
numerically test analogues of some well-known elliptic curve conjectures.

1. Introduction

Let Fq be a finite field with q elements. Let A be the ring Fq[T ] and let F be its fraction field.
For a given field extension K of Fq, let K be an algebraic closure of K and let Ksep be the separable
closure of K in K. Denote by GK = Gal(Ksep/K) the absolute Galois group of K.

1.1. Drinfeld modules and Galois representations. We now give enough background in order
to state and explain our theorem. For an in-depth introduction to Drinfeld modules, see [Gos96,
DH87,Dri74].

Let K{τ} be the ring of skew polynomials; i.e., the ring of polynomials in the indeterminate τ
with coefficients in K that satisfy the commutation rule τ · c = cqτ for c ∈ K. One can identify
K{τ} with a subring of End(Ga,K) by identifying τ with the Frobenius map X 7→ Xq. A Drinfeld
A-module over K is a homomorphism

φ : A→ K{τ}, a 7→ φa

of Fq-algebras whose image is not contained in K. The Drinfeld module φ is determined by
φT =

∑r
i=0 aiτ

i where ai ∈ K and ar 6= 0; the positive integer r is called the rank of φ.
Let ∂0 : K{τ} → K be the ring homomorphism

∑
i aiτ

i 7→ a0. The characteristic of φ is the
kernel p0 of the homomorphism ∂0 ◦ φ : A → K. If p0 is the zero ideal, then we say that φ has
generic characteristic and we may then view K as an extension of F .

The Drinfeld module φ endows Ksep with an A-module structure, i.e., a · x = φa(x) for a ∈ A
and x ∈ Ksep. We shall write φKsep if we wish to emphasize this action. For a non-zero ideal a of
A, the a-torsion of φ is

φ[a] := {x ∈ φKsep : a · x = 0 for all a ∈ a} = {x ∈ Ksep : φa(x) = 0 for all a ∈ a}.
If a is relatively prime to the characteristic p0, then φ[a] is a free A/a-module of rank r.

For the rest of the section, assume that φ has generic characteristic. The absolute Galois group
GK acts on φ[a] and respects the A-module structure. This action can be re-expressed in terms of
a Galois representation

ρφ,a : GK → Aut(φ[a]) ∼= GLr(A/a).
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Let p be a place of A. If φ has good reduction at p and p - a, then the representation ρφ,a is
unramified at p (one can use this as a definition of good reduction, it will agree with the later
definition).

For each non-zero prime ideal λ of A, we have a Galois representation

ρφ,λ : GK → Aut
(

lim−→
i

φ[λi]
)
∼= GLr(Aλ)

where Aλ is the λ-adic completion of A. These representations have properties similar to the
familiar `-adic representations attached to elliptic curves. For example, if φ has good reduction at
p - λ, then Pφ,p(x) := det(xI − ρφ,λ(Frobp)) is a polynomial with coefficients in A that does not
depend on λ. In particular, ap(φ) := tr(ρφ,λ(Frobp)) is an element of A that does not depend on λ.
Combining all the representations together, we obtain a single Galois representation

ρφ : GK → Aut
(

lim−→
a

φ[a]
)
∼= GLr(Â)

where Â is the profinite completion of A.

1.2. Open image theorem. Pink and Rütsche have described the image of ρφ up to commensu-
rability [PR09a]. For simplicity, we only state the version for which φ has no extra endomorphisms.
Recall that the ring EndK(φ) of endomorphisms is the centralizer of φ(A) in K{τ}.

Theorem 1.1 (Pink-Rütsche). Let φ be a Drinfeld A-module of rank r over a finitely generated
field K. Assume that φ has generic characteristic and that EndK(φ) = φ(A). Then the image of

ρφ : GK → GLr(Â)

is open in GLr(Â). Equivalently, ρφ(GK) has finite index in GLr(Â).

1.3. An explicit example. Theorem 1.1 is qualitative in nature since it only describes the group
ρφ(GK) up to commensurability (it is unclear from the proof if it is feasible to actually compute
the group ρφ(GK) in general). Except for the rank one case, which resembles the classical theory
of complex multiplication, the author is unaware of any worked out examples in the literature.

The main objective of this paper is to compute the image of ρφ for an explicit example. This
example also proves the existence of Drinfeld modules of rank 2 for which the Galois action on its
torsion points is maximal. We will use our example to investigate various conjectures in §2.

Theorem 1.2. Let q ≥ 5 be an odd prime power. Let ϕ : Fq[T ]→ Fq(T ){τ} be the Drinfeld module
of rank 2 for which

ϕT = T + τ − T q−1τ2.

Then the Galois representation

ρϕ : GFq(T ) → GL2

(
F̂q[T ]

)
is surjective. Moreover, ρϕ

(
GFq(T )

)
= GL2

(
F̂q[T ]

)
.

1.4. Elliptic curves. We now discuss the analogous theory of elliptic curves which strongly influ-
ences the proof of Theorem 1.1 and the methods of this paper. Let E be an elliptic curve defined
over a number field K. For each positive integer m, the Galois action on the m-torsion points E[m]
of E(Ksep) gives a representation

ρE,m : GK → Aut(E[m]) ∼= GL2(Z/mZ).
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Let p be a non-zero prime ideal for which E has good reduction, then there is a unique polynomial
PE,p(x) = x2 − ap(E)x + N(p) ∈ Z[x] such that PE,p(x) ≡ det(I − ρE,m(Frobp)) (mod m) when
p - m. Combining the representations ρE,m together, we obtain a single Galois representation

ρE : GK → Aut
(

lim−→
m

E[m]
)
∼= GL2(Ẑ).

In 1972, Serre [Ser72] showed that if EndK(E) ∼= Z, then ρE is open in GL2(Ẑ); this is a clear
analogue of Theorem 1.1. Earlier, Serre had shown that ρE has open image if E has non-integral
j-invariant (cf. §3.2 of [Ser68, Chapter IV]). What makes the non-integral j-invariant case easier
is that, using the theory of Tate curves, one can show that the image of ρE,` : GK → GL2(Z/`Z)
contains an element of order ` for all but finitely many primes ` (cf. the proposition of [Ser68,
Chapter IV Appendix A.1.5]). Serre has given worked out examples of ρE(GK) for several non-CM
elliptic curves over K = Q (cf. [Ser72, §5.5]). The first example with surjective ρE was given by
A. Greicius [Gre10].

1.5. Overview. In §2, which is independent of the rest of the paper, we mention three well-known
conjectures for elliptic curves. The heuristics and resulting predictions for these conjectures depend
on the Galois action on the curve’s torsion points. Having worked out the Galois image for a specific
Drinfeld module of rank 2, we can now start doing numerical experiments on the analogous Drinfeld
module statements.

The remainder of the paper is dedicated to the proof of Theorem 1.2.
In §3, we prove that the character det ◦ρϕ : GF → Â× is surjective. This will be accomplished by

first recognizing that det ◦ρϕ is the representation ρC associated with the Carlitz module C; this
particular Drinfeld module has been extensively studied.

In §4, we shall recall the Tate uniformization of a Drinfeld module (this is the analogue of the
usual Tate uniformization of elliptic curves over non-archimedean local fields). We can then apply
this theory to our Drinfeld module ϕ at the place (T ) where it has bad and stable reduction. The
main application of the section is that for every non-zero prime ideal λ of A, ρϕ,λ(GF ) contains a
p-Sylow subgroup of GL2(A/λ) where p is the prime dividing q.

In §5, we prove that ϕ[λ] is an irreducible Fλ[GF ]-module for all λ. If ϕ[λ] is reducible, then
we can understand the semi-simplification of the action of GF on ϕ[λ] in terms of two characters
χ, χ′ : GF → F×λ . Using our knowledge of ρϕ,λ, we will describe the possibilities for the pair {χ, χ′},
and then derive a contradiction based upon traces of Frobenii.

Having shown that the image of ρE(GF ) is “large” in these three different contexts, we will
then combine them to prove surjectivity. That the residual representations ρϕ,λ are surjective, will
follow quickly. In contrast to the elliptic curve situation, it takes some serious work to prove that
these representations are independent. For elliptic curves, one makes use of the easy fact that the
groups SL2(Z`) have no common quotients; this fails for the groups SL2(Aλ) (just consider λ with
the same degree). The required group theory is contained in a short appendix.

Notation. We fix throughout an odd prime power q ≥ 5. We let A be the ring Fq[T ] and we let F
be the fraction field Fq(T ). For a positive integer n, let πA(n) be the number of monic irreducible
polynomials of degree n in A.

We will usually denote a non-zero prime ideal of A by λ, which we will also call a finite place of
F . Since A = Fq[T ] is a PID, we will occasionally identify λ with its monic irreducible generator.
We shall denote the residue field A/λ by Fλ. Let Aλ and Fλ be the λ-adic completion of A and F ,
respectively. For each non-zero ideal a ⊆ A, denote the cardinality of A/a by N(a).
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2. Some conjectures

Throughout this section, let E be a non-CM elliptic curve over Q. For each prime p of good re-
duction, we have a finite abelian group E(Fp). Several number theoretic conjectures deal with the
asymptotics of primes p for which E(Fp) has a fixed property. In §2.1, we discuss a conjecture that
predicts the distribution of p for which E(Fp) is cyclic. In §2.2, we discuss a conjecture of Koblitz
that predicts the distribution of p for which E(Fp) has prime cardinality. (These two conjectures
are interesting in part because of public key cryptography where it is useful to have a point in
E(Fp) that generates a group of large prime order.) Finally in §2.3, we mention a conjecture of
Lang and Trotter on the number of primes p for which ap(E) takes a fixed value t. The precise
Drinfeld module analogue for the Lang-Trotter conjecture is the least clear. We will not venture a
full conjecture here, but hope to return to it in the future.

Before continuing, we recall a little more about the arithmetic of Drinfeld modules. For simplicity,
we restrict our attention to a Drinfeld module

φ : A→ F{τ}
of rank 2 such that ∂0 ◦ φ : A → F is the inclusion map and EndF (φ) = φ(A); our numerical
data will all be for the Drinfeld module ϕ of Theorem 1.2 with q = 5. Let p be a non-zero prime
ideal of A for which φ has good reduction; we will sometimes identify p with its monic irreducible
generator. Reduction mod p induces a Drinfeld module φp : A → Fp{τ} where Fp = A/pA. We
shall denote by φFp, the group Fp equipped with the A-module action coming from φp. Note that
as an A-module, φFp need not be isomorphic to A/pA. For conjectures concerning the structure of
the groups E(Fp), we will instead consider the structure of the A-modules φFp. As an A-module
φFp is isomorphic to

A/dpA×A/dpepA

where dp and ep are unique monic polynomials in A. The Euler-Poincaré characteristic of φFp is the
ideal

χφ(p) = d2
pepA.

We can relate the Euler characteristic to our Galois representations by noting that χφ(p) is the
ideal of A generated by Pφ,p(1). For conjectures about the orders |E(Fp)| = PE,p(1), the analogous
object of study is χφ(p).

Let Dφ be the index of ρφ(GFFq
) in ρφ(GF ); it is known to be finite. By Theorem 1.2, we have

Dϕ = 1. Restriction gives an exact sequence

1→ GFFq
↪→ GF → Gal(Fq/Fq)

deg∼−−→ Ẑ→ 1

where deg(Frobp) equals the degree of p for irreducibles p of A. For an integer n and a non-zero
ideal a of A, we define ρφ,a(GF )n to be the image under ρφ,a of {σ ∈ GF : deg(σ) ≡ n (mod Dφ)}.

2.1. Cyclicity of reductions modulo p. For primes p of good reduction, the group E(Fp) is
isomorphic to Z/dpZ × Z/dpepZ for unique positive integers dp and ep. It is natural to ask how
often E(Fp) is cyclic (dp = 1), that is, describe the asymptotics of the function

fE(x) := #{p ≤ x : E(Fp) is cyclic}.
Serre [Ser78] showed that, assuming the Generalized Riemann Hypothesis (GRH), one has

(2.1) fE(x) ∼ cE
x

log x
as x → +∞, where cE :=

∑
m≥1 µ(m)/[Q(E[m]) : Q] (see §5 of [Mur83] for a proof and §6 for

an unconditional result in the CM case). If cE = 0, then we interpret this as meaning that fE(x)
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is uniformly bounded. It is still unknown if (2.1) holds unconditionally. If cE > 0, then Murty
and Gupta [GM90] showed that fE(x)�E x/ log2 x, and the constant cE is positive if and only if
Q(E[2]) 6= Q. For more background and progress on the conjecture, see [CM04].

The Drinfeld module analogue has been formulated and proven by W. Kuo and Y.-R. Liu [KL09].
We shall say that φFp is cyclic if it is isomorphic as an A-module to A/wA for some non-constant
element w of A; equivalently, dp = 1. For each positive integer n, we let fφ(n) be the number of
monic irreducible polynomials p of degree n in A for which φFp is cyclic. Kuo and Liu have shown
that

lim
n→+∞

fφ(n)
πA(n)

= cφ(n)

where cφ(n) is an explicit constant whose value depends only on n modulo Dφ (recall that in the
function field setting the analogue of GRH is known to hold). They also give a good bound on
the error term, and prove a similar result for rank ≥ 3. Theorem 1.1 plays a vital role in their proof.

Let us now consider our Drinfeld module ϕ : A → F{τ}. Since Dϕ = 1, we can simply write cϕ
for the constant. The constant given in [KL09] is

cϕ =
∑

m∈A monic

µq(m)
[F (ϕ[m]) : F ]

where µq is the Möbius function for A (i.e., the multiplicative function that vanishes on polynomials
with a multiple irreducible factor and is −1 for irreducible polynomials). By Theorem 1.2, we find
that µq(m)/[F (ϕ[m]) : F ] = µq(m)/|GL2(A/mA)| is a multiplicative function, hence

cϕ =
∏
λ∈A

monic irreducible

(
1− 1
|GL2(A/λA)|

)
=
∞∏
d=1

(
1− 1

qd(qd − 1)2(qd + 1)

)πA(d)
.

This expression for cϕ is easy to estimate (note that πA(d) equals 1
d

∑
e|d µ(e)qd/e).

For q = 5, we find that cϕ = 0.989600049329883 . . .. In Table 1, we see that, even for small n,
the ratio fϕ(n)/πA(n) is well approximated by cϕ.

n fϕ(n) πA(n) fϕ(n)/πA(n)
2 10 10 1
3 40 40 1
4 150 150 1
5 618 624 0.99038461 . . .
6 2554 2580 0.98992248 . . .
7 11069 11160 0.99184587 . . .
8 48270 48750 0.99015384 . . .
9 214807 217000 0.98989400 . . .
10 966135 976248 0.98964095 . . .
11 4392845 4438920 0.98962022 . . .

Table 1. Values of fϕ(n) for small n where ϕ : F5[T ] → F5(T ){τ} is the Drinfeld
module for which T 7→ T + τ − T 4τ2.
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2.2. Koblitz conjecture. Let PE(x) be the number of primes p ≤ x of good reduction for which
|E(Fp)| is prime. Koblitz conjectured that there is a constant CE such that PE(x) ∼ CE

x

(log x)2

as x→ +∞, where CE ≥ 0 is an explicit constant. The constant, as revised in [Zyw11a], is

CE = lim
m→+∞

|{g ∈ ρE,m(GQ) : det(I − g) ∈ (Z/mZ)×}|/|ρE,m(GQ)|∏
p|m(1− 1/p)

where m runs over positive square-free integers ordered by divisibility.

Let Pφ(n) be the number of monic irreducible polynomials p of degree n in A for which χφ(p) is
a prime ideal (equivalently, φFp is a simple A-module). We conjecture that

(2.2) Pφ(n) ∼ Cφ(n)
qn

n2

as n→ +∞, where

Cφ(n) = lim
m

|{g ∈ ρφ,m(GF )n : det(I − g) ∈ (A/mA)×}|/|ρφ,m(GF )n|∏
λ|m,λ prime(1− 1/N(λ))

and the m run over monic polynomials of A ordered by divisibility. The constant Cφ(n) is well-
defined (one uses Theorem 1.1 to check convergence) and depends only on the value of n modulo
Dφ. Analogues of Koblitz’s conjecture for Drinfeld modules were first investigated in the Master’s
thesis of L. Jain [Jai08].

Let us give a crude heuristic for this conjecture. A “random” monic polynomial of degree n in
A should be irreducible with probability πA(n)/qn ≈ 1/n. So for each irreducible polynomial p
of degree n, we expect the degree n monic generator of χφ(p) to be irreducible with probability
1/n. Thus a naive estimate for Pφ(n) is πA(n)/n ≈ qn/n2. What this heuristic is ignoring is that
the Euler characteristics χA(p) are not random ideals when it comes to congruences. Fix a monic
polynomial m in A. Then the ratio of irreducible polynomials p of degree n for which m is relatively
prime to χφ(p) is approximately |{g ∈ ρφ,m(GF )n : det(I − g) ∈ (A/mA)×}|/|ρφ,m(GF )n|, while
the naive ratio is |(A/mA)×|/|A/mA| =

∏
λ|m(1−1/N(λ)). So by taking into account congruences

modulo m, we expect

|{g ∈ ρφ,m(GF )n : det(I − g) ∈ (A/mA)×}|/|ρφ,m(GF )n|∏
λ|m,λ prime(1− 1/N(λ))

qn

n2

to be a better estimate for Pφ(n). The conjecture (2.2) arises by letting m run over more and more
divisible elements of A (it actually suffices to consider only squarefree m).

Now consider our Drinfeld module ϕ. Since Dϕ = 1, we can simply write Cϕ for the constant.
Using Theorem 1.2, one can compute as in [Zyw11a] and show that

Cϕ =
∏
λ

|{g ∈ GL2(A/λ) : det(I − g) ∈ (A/λA)×}|/|GL2(A/λA)|
1− 1/N(λ)

=
∏
d≥1

(
1− q2d − qd − 1

(qd − 1)3(qd + 1)

)πA(d)
.

Taking q = 5, we find that Cϕ = 0.76075227630 . . .. In Table 2, we numerically test our analogue
of Koblitz’s conjecture for small n.
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n Pϕ(n) Pϕ(n)/
(

5n

n2

)
2 5 0.8
3 10 0.72
4 41 1.0496
5 106 0.848
6 317 0.730368
7 1194 0.7488768
8 4540 0.7438336
9 18534 0.768642048
10 74724 0.76517376
11 307931 0.76308013056

Table 2. Numerical evidence for the Koblitz conjecture for the Drinfeld module
ϕ : F5[T ]→ F5(T ){τ}, T 7→ T + τ − T 4τ2.

2.3. Lang-Trotter. Fix a positive integer t. In [LT76, Part I], Lang and Trotter conjectured that

|{p ≤ x : ap(E) = t}| ∼ CE,t
√
x

log x
as x→∞, where CE,t ≥ 0 is an explicit constant. Again if CE,t = 0, we interpret the asymptotic as
meaning that there are only finitely many primes p such that ap(E) = t. Their predicted constant
is

CE,t =
2
π

lim
m→∞

|{g ∈ ρE,m(GQ) : tr(g) ≡ t (mod m)}|/|ρE,m(GQ)|
1/m

where the limit is over positive integers m ordered by divisibility. Note that the value of CE,t
depends only on the image of the representation ρE : GQ → GL2(Ẑ). In particular, their conjecture
implies that there are infinitely many primes p for which ap(E) = t if and only if if there are no
congruence obstructions (i.e., for each m, there is one, and hence infinitely many, primes p of good
reduction such that ap(E) ≡ t (mod m)).

Now consider the Drinfeld module analogue. Fix an element t ∈ A. Let Pφ,t(n) be the number
of monic irreducible polynomials of degree n in A for which ap(φ) = t. We conjecture that there is
a positive integer Mφ such that

(2.3) Pφ,t(n) ∼ Cφ,t(n)
qn/2

n

as n → +∞, where Cφ,t(n) are constants whose value depends only on n modulo Mφ. As we will
see, the conjecture is in general false with Mφ = Dφ. This conjecture has been proven “on average”
for t = 0 by C. David [Dav96], and the main theorem there suggests that Mφ = 2 for a “random” φ.

Consider our Drinfeld module ϕ : Fq[T ]→ Fq(T ){τ} from Theorem 1.2. The following proposition
shows that when q is congruent to 1 modulo 4 and n is a sufficiently large even integer, we will
always have Cϕ,t(n) = 0.

Proposition 2.1. Assume that q ≡ 1 (mod 4). If n is an even integer and p 6= (T ) is an irreducible
polynomial in A of degree n, then ap(t) has degree n/2.

Proof. Let L be the field Fq[T ]/p. Since n is even, L contains a quadratic extension Fq2 of Fq. By

Hasse’s bound, we know that ap(ϕ) =
∑n/2

i=1 aiT
i with ai ∈ Fq. We need to check that an/2 6= 0.
7



By [Gek08, Proposition 2.14(i)] or [HY00, Theorem 5.1],

an/2 = TrFq2/Fq

(
NL/Fq2

(−T q−1)−1
)

= ±TrFq2/Fq

(
NL/Fq2

(T q−1)−1
)
.

Let α := NL/Fq2
(T q−1)−1 ∈ F×

q2
. Assume that an/2 = TrFq2/Fq

(α) is equal to 0; we shall derive a

contradiction. We have NFq2/Fq
(α) = (NL/Fq

(T )q−1)−1 = 1−1 = 1, so α is a root of the polynomial

x2 − TrFq2/Fq
(α)x+NFq2/Fq

(α) = x2 + 1.

Since q ≡ 1 (mod 4), we deduce that α ∈ F×q and hence TrFq2/Fq
(α) = 2α 6= 0. �

When q ≡ 1 (mod 4), the same obstruction to ap(ϕ) = t does not occur when we restrict to p of
odd degree. Moreover, there are infinitely many p, with necessarily odd degree, for which ap(ϕ) = 0
(this follows from Theorem 1.1.6 of [Bro92] with the correction mentioned in §2 of [Poo98]). In
fact, it is not unreasonable to expect that Cϕ,t(n) > 0 whenever n is odd.

What makes Proposition 2.1 surprising, at least in contrast to the elliptic curve case, is that
it cannot be explained by congruence obstructions. Indeed, the elements ρϕ(Frobp) for p of even
degree are dense in ρϕ

(
GFq2 (T )

)
= GL2(Â), so for each non-zero ideal a of A there are infinitely

many p of even degree for which ap(ϕ) ≡ t (mod a). The obstruction to ap(ϕ) = t for p of large
even degree arises from the infinite place!

In the elliptic curve setting, there is an archimedean component of Lang and Trotter’s heuristic
which is played by the Sato-Tate law of E. It is responsible for the innocuous factor 2/π occurring in
the constant CE,t, and in particular it never gives an obstruction to ap(E) = t (at least not for large
enough p). J.-K. Yu has proved that there is an analogue of Sato-Tate for Drinfeld modules [Yu03],
and the obstruction of Proposition 2.1 can be deduced from it. The Sato-Tate law has been de-
scribed in [Zyw11b], and the author hopes to state a general Lang-Trotter conjecture in future work.

It is hard to give convincing numerical evidence for (2.3), at least compared to that supplied in
§2.2 and §2.1, since qn/2/n grows much slower than πA(n) ≈ qn/n. For example, some computations
show that

Pϕ,0(9) = 84, Pϕ,0(11) = 359, Pϕ,1(9) = 62, Pϕ,1(11) = 272, Pϕ,T (9) = 62, Pϕ,T (11) = 259,

which is compatible with the conjectural asymptotic (2.3) with Mϕ = 2 and Cφ,0(1) ≈ 0.5, Cφ,1(1) ≈
0.4, Cφ,T (1) ≈ 0.4.

Remark 2.2. C. David and A.C. Cojocaru proved the upper bound Pφ,t(n)�φ q
4
5
n/n1/5 in [CD08]

(in that paper, they were mainly considering the Drinfeld module analogue of another conjecture
of Lang and Trotter). A key ingredient for their bound was the rank 2 case of Theorem 1.1. In
[Zyw11b], the Sato-Tate law for φ is used to prove the upper bound Pφ,t(n)�φ,t q

3
4
n.

3. The determinant of ρϕ

3.1. The Carlitz module. The Carlitz module is the Drinfeld module C : A → F{τ} for which
CT = T + τ .

Proposition 3.1 (Hayes [Hay74]). For every non-zero ideal a of A, the representation

ρC,a : GF → Aut(C[a]) = (A/a)×

is surjective. The representation ρC,a is unramified at all finite places of F not dividing a, and for
each monic irreducible polynomial p of A not dividing a, we have ρC,a(Frobp) ≡ p mod a.

In particular, the proposition implies that ρC : GF → GL1(Â) = Â× is surjective; this gives a
rank one example of Theorem 1.1.
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3.2. The determinant. Let p be a monic irreducible polynomial of A different from T . For any
non-zero ideal a of A relatively prime to p, we know that

det(xI − ρϕ,a(Frobp)) ≡ x2 − ap(ϕ)x+ εp(ϕ)p (mod a)

for ap(ϕ) ∈ A and εp(ϕ) ∈ F×q that do not depend on a.
We can explicitly compute εp(ϕ): Let T be the image of T in Fp. By Theorem 2.11 of [Gek08]

(with L = Fp) we have

εp(ϕ) = (−1)deg pNFp/Fq
(−T q−1)−1 = (NFp/Fq

(T )q−1)−1 = 1,

where the last equality uses that NFp/Fq
(T ) 6= 0 since p 6= T . Thus (det ◦ρϕ,a)(Frobp) ≡ p ≡

ρC,a(Frobp) mod a. Using the Chebotarev density theorem, we find that the characters det ◦ρϕ,a : GF →
(A/a)× and ρC,a : GF → (A/a)× are the same.

Proposition 3.2. The representation det ◦ρϕ,a : GF → (A/a)× equals ρC,a, and hence satisfies the
properties of Proposition 3.1.

Remark 3.3. That det ◦ρϕ = ρC is not a surprising coincidence. In the category of T -motives it
makes sense to take the “determinant” of ϕ which gives a rank one Drinfeld A-module defined by
T 7→ T + T q−1τ , and this is isomorphic to C over F .

4. The Drinfeld-Tate uniformization

We now fix some notation that will hold for the rest of the section. Let O be a complete discrete
valuation ring containing A, m ⊂ O the maximal ideal, K the field of fractions of O, and Ksep a
separable closure of K. Let v : K× � Z be the associated discrete valuation (we will also denoted
by v the corresponding Q-valued extension of v to Ksep). Let IK be the inertia subgroup of GK
and let Kun be the maximal unramified extension of K in Ksep. We will return to our specific
Drinfeld module ϕ in §4.5.

4.1. Stable reduction. Let φ : A → K{τ} be a Drinfeld module of rank r. We say that φ has
stable reduction if there exists a Drinfeld module φ′ : A→ O{τ} such that φ′ and φ are isomorphic
over K and the reduction of φ′ modulo m is a Drinfeld module (equivalently, the degree of the
reduction of φ′T is greater that 1). We say that φ has stable reduction of rank r1 if it has stable
reduction and the rank of φ′ modulo m is r1. We say that φ has good reduction if it has stable
reduction of rank r. Every Drinfeld A-module over K has potentially stable reduction (i.e., has
stable reduction after possibly replacing K by a finite separable extension).

If φ : A → K{τ} is a Drinfeld module of rank 2, then the j-invariant of φ is defined to be
jφ = gq+1/∆ where φT = T + gτ + ∆τ2. Two Drinfeld A-modules over K of rank 2 have the same
j-invariant if and only if they are isomorphic over K. The Drinfeld module φ has potentially good
reduction if and only if v(jφ) ≥ 0; cf. [Ros03, Lemma 5.2].

4.2. Image of inertia at places of stable bad reduction.

Proposition 4.1. Let φ : A→ K{τ} be a Drinfeld module of rank 2 and of generic characteristic
that has stable reduction of rank 1. Let a be a non-zero proper ideal of A.

(i) There is a basis of φ[a] over A/a such that for ρφ,a : GK → Aut(φ[a]) ∼= GL2(A/a) we have

ρφ,a(IK) ⊆
{(

1 b
0 c

)
: b ∈ A/a, c ∈ F×q

}
.

(ii) Let eφ be the order of
v(jφ)

(q − 1)N(a)
+ Z in Q/Z. Then #ρφ,a(IK) ≥ eφ.

The proof of Proposition 4.1 will be given in §4.4.
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4.3. Drinfeld-Tate uniformization. Let ψ : A → O{τ} be a Drinfeld module. A ψ-lattice is a
finitely generated projective A-submodule Γ of ψKsep that is discrete and is stable under the action
of GK . By discrete we mean that any disk of finite radius in Ksep, with respect to the valuation v,
contains only finitely many elements of Γ.

Definition 4.2. A Tate datum over O is a pair (ψ,Γ), where ψ is a Drinfeld module over O and
Γ is a ψ-lattice. We say that two pairs (ψ,Γ) and (ψ′,Γ′) of Tate datum are isomorphic if there
is an isomorphism from ψ to ψ′ such that the corresponding homomorphism ψKsep → ψ′

Ksep of
A-modules induces an isomorphism between Γ and Γ′.

Proposition 4.3 (Drinfeld [Dri74, §7]). Let r1 and r2 be positive integers. There is a natural
bijection between the following:

(a) the set of K-isomorphism classes of Drinfeld modules φ : A → K{τ} of rank r := r1 + r2

with stable reduction of rank r1;
(b) the set of K-isomorphism classes of Tate datum (ψ,Γ) where ψ : A → O{τ} is a Drinfeld

module of rank r1 with good reduction and Γ is a ψ-module of rank r2.

The proposition is not very meaningful as stated; we shall now give a brief description of
the implied correspondence. This correspondence is called the Drinfeld-Tate uniformization; see
[Leh09, Chapter 4 §3] for a detailed description and proof.

We start with a Drinfeld module ψ : A → O{τ} of rank r1 with good reduction and a ψ-lattice
Γ of rank r2. Define the power series

eΓ(X) = X
∏

γ∈Γ, γ 6=0

(
1− X

γ

)
∈ O[[X]],

it is Fq-linear with an infinite radius of convergence and satisfies eΓ(X) ≡ X mod m; the discrete-
ness of Γ is key here. We may then view eΓ as an element of O{{τ}}; the (non-commutative) ring
of formal power series in τ with coefficients in O. There exists a unique Drinfeld A-module φ over
O such that eΓψa = φaeΓ holds for all a ∈ A. This is the desired Drinfeld module φ; it has rank
r1 + r2 with stable reduction of rank r1. That φ has stable reduction of rank r1 is clear since
φT ≡ φT eΓ = eΓψT ≡ ψT mod m and ψ has good reduction.

In the other direction, start with a Drinfeld A-module φ of rank r := r1 + r2 over K which has
stable reduction of rank r1. After possibly replacing φ with a K-isomorphic Drinfeld module, we
may assume that φ takes values in O{τ}. There exists a unique Drinfeld module ψ : A→ O{τ} of
of rank r1 and a unique element u = τ0 +

∑∞
i=1 aiτ

i ∈ O{{τ}} with ai ∈ m and |ai| → 0, such that

(4.1) uψa = φau

for all a ∈ A. Drinfeld shows that u defines an analytic homomorphism. Let Γ be the kernel of u.
It is a subgroup of Ksep, and moreover it is a ψ-lattice of rank r2. The pair (ψ,Γ) is the desired
Tate uniformization of φ.

Fix an a ∈ A−Fq. In the proof that Γ is a lattice, one makes use of the following GK-equivariant
short exact sequence of A-modules:

(4.2) 1→ ψ[a] = ψ−1
a (0)→ ψ−1

a (Γ)/Γ
ψa−→ Γ/aΓ→ 1.

We also have an isomorphism

(4.3) ψ−1
a (Γ)/Γ ∼−→ φ[a], z + Γ 7→ u(z)

of A[GK ]-modules (it is a well-defined map by (4.1)).
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4.4. Proof of Proposition 4.1. Fix a Drinfeld module φ : A → O{τ} of rank 2 that has stable
reduction of rank 1. Let (ψ,Γ) be the corresponding Tate uniformization as in §4.3. We have
a = (a) for some a ∈ A. Using the isomorphism (4.3), it suffices to prove the analogous statement
of the proposition for ψ−1

a (Γ)/Γ. We first consider the Galois action on the pieces ψ[a] and Γ/aΓ.

The Drinfeld module ψ : A→ O{τ} has rank 1 and good reduction, so the Galois representation
ρψ,a : GK → Aut(ψ[a]) = (A/a)× is unramified. Choose a generator w of ψ[a] as an A/a-module;
thus σ(w) = w for all σ ∈ IK .

The lattice Γ is a free A-module of rank 1. Fix a generator γ of Γ, it is well-defined up to
multiplication by an element of F×q . Since the lattice Γ is stable under the Galois action, there is a
character χΓ : GK → F×q such that σ(γ) = χΓ(σ)γ for all σ ∈ GK .

Choose a z ∈ Ksep for which ψa(z) = γ; this is equivalent to choosing a splitting of the short
exact sequence (4.2) of A/a-modules. For any σ ∈ IK ,

ψa(σ(z)) = σ(ψa(z)) = σ(γ) = χΓ(σ)γ = χΓ(σ)ψa(z) = ψa(χΓ(σ)z).

Thus σ(z)− χΓ(σ)z ∈ ψ[a], hence there exists a unique bσ ∈ A/a such that

σ(z) = χΓ(σ)z + bσw.

Thus with respect to the basis {w + Γ, z + Γ} of ψ−1
a (Γ)/Γ, an automorphism σ ∈ IK acts via the

matrix (
1 bσ
0 χΓ(σ)

)
.

This proves part (i).
If v(z) ≥ 0, then v(γ) = v(ψa(z)) ≥ 0 since ψa has coefficients in O. However the discreteness of

the lattice Γ implies that v(γ) < 0, so we must have v(z) < 0. Therefore,

v(γ) = v(ψa(z)) = v(zq
deg a

) = qdeg av(z) = N(a)v(z).

Let K ′ be the smallest extension of Kun in Ksep for which Gal(Ksep/K ′) acts trivially on ψ−1
a (Γ)/Γ.

The field K ′ is of course equal to Kun(φ[a]), and ρφ,a(IK) ∼= Gal(K ′/Kun). Since ψ[a] ⊆ Kun, we
find that K ′ = Kun(z). The ramification index of the extension Kun(z)/Kun is at least the order
of v(z) + Z in Q/Z. By [Ros03, Lemma 5.3], we have v(γ) = v(jφ)/(q − 1) and thus

v(z) =
v(γ)
N(a)

=
v(jφ)

(q − 1)N(a)
.

Part (ii) now follows immediately.

4.5. Our example. We will now apply the above theory to our specific Drinfeld module ϕ : A→
F{τ} with ϕT = T + τ − T q−1τ2. Let p be the prime dividing q.

Proposition 4.4. Let IT be an inertia subgroup of GF at T . For any non-zero ideal a of A,
ρφ,a(IT ) is a p-Sylow subgroup of Aut(φ[a]) ∼= GL2(A/a). Equivalently, #ρφ,a(IT ) = N(a).

Proof. The Drinfeld module ϕ has stable reduction of rank 1 at (T ). The field K := Fq((T )) is
the completion of F with respect to T . Let vT be the corresponding valuation normalized so that
vT (T ) = 1.

We know from Proposition 3.2 that det ◦ρϕ,a = ρC,a. Since C has good reduction at (T ), we must
have det(ρϕ,a(IK)) = ρC,a(IK) = 1. This combined with Proposition 4.1(i) shows that ρϕ,a(IK) is
contained in a subgroup of GL2(A/a) of order N(a). By Proposition 4.1(ii), vT (jφ) = −(q − 1)
implies that #ρϕ,a(IT ) ≥ N(a). �
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5. Irreducibility

Proposition 5.1. The Fλ[GF ]-module ϕ[λ] is irreducible for every finite place λ of F .

We now suppose that ϕ[λ] is a reducible Fλ[GF ]-module for a fixed λ. We shall eventually
obtain a contradiction and thus prove Proposition 5.1. The strategy of this section is based on
§5.4 of [Ser72]. By choosing an appropriate basis of ϕ[λ], we may assume that the image of
ρϕ,λ : GF → Aut(ϕ[λ]) ∼= GL2(Fλ) lies in the group of upper triangular matrices. Moreover, there

are two characters χ and χ′ : GF → F×λ such that ρλ is represented in matrix form by
(
χ ∗
0 χ′

)
.

We will now try to determine these characters.

Lemma 5.2. The characters χ and χ′ are unramified at all finite places p 6= λ. One of these two
characters is unramified at all the finite places of F .

Proof. First consider the place p = (T ). By Proposition 4.4, the order of every element of ρϕ,λ(Ip)
divides some power of q (where Ip is the inertia subgroup of GF at p). Therefore, χ(Ip) = 1 and
χ′(Ip) = 1 since both take values in a group of cardinality relatively prime to q.

Now consider a finite place p not equal to λ or (T ). Since ϕ has good reduction at p, we find
that ρϕ,λ is unramified at p and hence so are χ′ and χ′′.

Finally consider the case where p = λ and p 6= (T ). The reduction of ϕ modulo p has height
1 (if it had height 2, then [PR09b, Proposition 2.7(ii)] would imply that ϕ[λ] is an irreducible

GF -module). By [PR09b, Proposition 2.7], ρϕ,λ(Ip) acts on ϕ[λ] via matrices of the form
(
∗ ∗
0 1

)
with respect to an appropriate basis. Hence χ(Ip) = 1 or χ′(Ip) = 1. �

Lemma 5.3. One of the characters χ, χ′ : GF → F×λ is of the form GF � Gal(Fq/Fq)→ F×λ , where
the first map is restriction.

Proof. By Lemma 5.2, one of the characters χ or χ′ : GF → F×λ , without loss of generality χ′, is
unramifed at all finite places of F . Thus we may view χ′ as a F×λ -valued character of the étale
fundamental group of A1

Fq
. Since A1

Fq
has no non-trivial étale covers of order prime to q, we deduce

that χ′ : GF → F×λ is trivial on Gal(F sep/Fq(T )). The lemma is now immediate. �

We can now express the values ap(ϕ) mod λ in terms of the characters χ and χ′.

Lemma 5.4. Let λ be a finite place of F for which ϕ[λ] is a reducible Fλ[GF ]-module. There is a
ζ ∈ F×λ such that for any monic irreducible polynomial p ∈ A that is not T or λ, we have

(5.1) ap(ϕ) ≡ ζ− deg p p + ζdeg p mod λ.

Proof. By Lemma 5.3, one of the characters χ, χ′ : GF → F×λ , say χ′, factors through a character
Gal(Fq/Fq) → F×λ . Hence there is a ζ ∈ F×λ such that χ′(Frobp) = ζdeg p for any monic irre-
ducible polynomial p that is not T or λ. By Proposition 3.2, we know that χ(Frobp)χ′(Frobp) =
det(ρϕ,λ(Frobp)) ≡ p mod λ, hence

χ(Frobp) ≡ ζ− deg p p mod λ and χ′(Frobp) = ζdeg p mod λ.

We deduce that

ap(ϕ) ≡ tr
(
ρϕ,λ(Frobp)

)
= χ(Frobp) + χ′(Frobp) ≡ ζ− deg p p + ζdeg p mod λ. �

By checking (5.1) for various primes p, we will be able to rule out many λ; it turns out that we
will only need to consider p of degree 1.

Lemma 5.5. Let p be the irreducible polynomial T − c ∈ A with c ∈ F×q . Then ap(ϕ) = 1.
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Proof. The image of T in Fp is c. By Proposition 2.14(ii) of [Gek08] (with L = Fp = Fq) we have
ap(ϕ) = −(−1/cq−1) = 1. �

Since q ≥ 5, there exist c1, c2 ∈ F×q such that λ, T − c1 and T − c2 are distinct. By Lemma 5.4
and 5.5 with p = T − ci, we get

1 ≡ ζ−1(T − ci) + ζ mod λ

This implies that T ≡ ζ − ζ2 + ci (mod λ) for distinct c1, c2 ∈ Fq ⊆ Fλ; this is our contradiction.

6. Proof of Theorem 1.2

In different respects, Propositions 3.2, 4.4 and 5.1 all show that the group ρϕ(GF ) is large. We
now combine everything together to prove that indeed ρϕ(GF ) = GL2(Â). This will require some
extra group theory which we have collected in Appendix A.

Let F ab be the maximal abelian extension of F in F sep. Note that ρϕ,a(GF ab) ⊆ SL2(A/a) for
each non-zero ideal a of A. We first show that the λ-adic representations of ϕ are surjective.

Lemma 6.1. For every finite place λ of F , we have ρϕ,λ(GF ) = GL2(Aλ) and ρϕ,λ(GF ab) =
SL2(Aλ).

Proof. By Propositions 5.1 and 4.4, the group ρϕ,λ(GF ) ⊆ GL2(Fλ) acts irreducibly on ϕ[λ] ∼=
F2
λ as an Fλ-module and it also contains a group of order N(λ). Lemma A.1 then implies that

ρϕ,λ(GF ) ⊇ SL2(Fλ). We have ρϕ,λ(GF ) = GL2(Fλ) since det(ρϕ,λ(GF )) = F×λ by Proposition 3.2.
The group H := ρϕ,λ(GF ) is closed in GL2(Aλ), and satisfies det(H) = A×λ by Proposition 3.2.

The group H mod λ2 = ρϕ,λ2(GF ) contains a non-scalar matrix that is congruent to the identity
modulo λ by Proposition 4.4. We just verified that H mod λ = ρϕ,λ(GF ) = GL2(Fλ). Applying
Lemma A.2, we deduce that H = GL2(Aλ). The group ρϕ,λ(GF ab) is just the commutator subgroup
of H = GL2(Aλ) which from Lemma A.3 is SL2(Aλ). �

Having surjective representations ρϕ,λ is not enough to deduce that ρϕ is surjective. There may
be interdependencies between the representations. We now show that the mod λ representations
are pairwise independent.

Lemma 6.2. Let λ1 and λ2 be distinct finite places of F , and let a = λ1λ2 be the corresponding
ideal of A. Then ρϕ,a(GF ) = GL2(A/a) and ρϕ,a(GF ab) = SL2(A/a).

Proof. Define H := ρϕ,a(GF ) and H ′ := H ∩ SL2(A/a). We shall verify the three conditions of
Lemma A.7, which will imply that ρϕ,a(GF ) = GL2(A/a). We will then have ρϕ,a(GF ab) = SL2(A/a)
automatically since SL2(A/a) is the commutator subgroup of GL2(A/a) by Lemma A.3.

Condition (a) of Lemma A.7 follows from Proposition 3.2. By Lemma 6.1 we have ρϕ,λi
(GF ab) =

SL2(Fλi
), so condition (b) follows since ρϕ,a(GF ab) ⊆ H ′.

Take any c ∈ F×q such that p = T − c is not λ1 or λ2. By Lemma 5.5, we have

det
(
ρϕ,a(Frobp)

)
/ tr

(
ρϕ,a(Frobp)

)2 ≡ p/ap(ϕ)2 = p = T − c (mod a).

One readily checks that the subring of A/a generated by the T − c, with at most two of the c ∈ F×q
excluded, is all of A/a. This verifies condition (c) of Lemma A.7. �

Lemma 6.3. Let λ1 and λ2 be distinct finite places of F . Define

ρ : GF → GL2(Aλ1)×GL2(Aλ2), σ 7→ (ρϕ,λ1(σ), ρϕ,λ2(σ)).

Then ρ(GF ab) = SL2(Aλ1)× SL2(Aλ2) and ρ(GF ) = GL2(Aλ1)×GL2(Aλ2).
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Proof. To prove that ρ(GF ab) = SL2(Aλ1) × SL2(Aλ2), it suffices to show that for any positive
integers n1 and n2, we have

ρϕ,a(GF ab) = SL2(A/a)

where a = λn1
1 λn2

2 . That ρ is surjective will follow from this and Proposition 3.2.
Suppose that H := ρϕ,a(GF ab) is not equal to SL2(A/a) = SL2(A/λn1

1 )×SL2(A/λn2
2 ). Let N1 and

N2 be the kernels of the projections H → SL2(A/λn2
2 ) and H → SL2(A/λn1

1 ), respectively. Each
of these projections are surjective by Lemma 6.1. By Lemma A.4 we may view Ni as a normal
subgroup of SL2(A/λni

i ) and the image of H in SL2(A/λn1
1 )/N1 × SL2(A/λn2

2 )/N2 is the graph of
an isomorphism SL2(A/λn1

1 )/N1
∼−→ SL2(A/λn2

2 )/N2.
By our assumption on H, the groups SL2(A/λn1

i )/Ni are non-trivial. So by Lemma A.3, Ni

is a subgroup of the group of B ∈ SL2(A/λn1
i ) with B ≡ ±I mod λ. Therefore the image of H

(equivalently, the image of ρϕ,λ1λ2
(GF ab)) in

SL2(Fλ1)/{±I} × SL2(Fλ2)/{±I}

is the graph of an isomorphism SL2(Fλ1)/{±I} ∼−→ SL2(Fλ2)/{±I}. However, this contradicts
Lemma 6.2 which says that ρϕ,λ1λ2

(GF ab) = SL2(Fλ1)×SL2(Fλ1). Therefore, ρϕ,a(GF ab) = SL2(A/a).
�

We can now finish the proof of Theorem 1.2. We first show that ρϕ(GF ) = GL2(Â). Again by
Proposition 3.2 we have det(ρϕ(GF )) = Â×, so it suffices to show that ρϕ(GF ab) = SL2(Â). The
equality ρϕ(GF ab) = SL2(Â) is equivalent to having

ρϕ,a(GF ab) = SL2(A/a) =
∏
λn‖a

SL2(A/λn)

for every non-zero ideal a of A. By Lemma A.3, the groups SL2(A/λn) have no abelian quotients.
Therefore by Lemma A.6, we need only show that ρϕ,a(GF ab) = SL2(A/a) for a of the form λn1

1 λn2
2

where λ1 and λ2 are distinct maximal ideals of A, and n1 and n2 are positive integers. This is
immediate from Lemma 6.3.

Finally, we show that ρϕ
(
GFq(T )

)
= GL2(Â). Since Fq(T )/Fq(T ) is an abelian extension and the

commutator subgroup of GL2(Â) is SL2(Â), it suffices to show that (det ◦ρϕ)(GFq(T )

)
= Â×. Again

this is easily verified using the description of of det ◦ρϕ in §3.1.

Acknowledgements. The calculations in §2 were performed using Magma [BCP97].

Appendix A. Group theory

In this appendix we collect all the group theory needed in §6 to prove our theorem. The point
of that section was to show that certain closed subgroups of GL2(Â) and SL2(Â) (i.e., ρϕ(GF )
and ρϕ(GF ab), respectively) were the full groups. Note that the material in this section makes no
reference to Drinfeld modules, though it will use our ongoing assumption that A = Fq[T ] with q ≥ 5
an odd prime power.

We start with the following easy generalization of [Ser68, IV-20 Lemma 2].

Lemma A.1. Let F be a finite field. Let H be a subgroup of GL2(F) such that:

• H contains a subgroup of order #F;
• the F[H]-module F2 = F× F is irreducible.

Then H contains SL2(F).
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Proof. Let P1 be a subgroup of H of order #F = ps; it is a p-Sylow subgroup of GL2(F) and hence
also of H. There is a unique one dimensional F-subspace W1 of F2 that is fixed by every element
of P1.

If P1 is a normal subgroup of H, then one finds that W1 is stable under the action of H, which
would contradict our irreducibility assumption. Therefore, there is a second subgroup P2 6= P1 of
H with cardinality #F. Let W2 be the unique one dimensional F-subspace of F2 that is fixed by
every element of P2.

With respect to a basis {w1, w2} of F2 with w1 ∈W1 and w2 ∈W2, the subgroups P1 and P2 of
H become {( 1 x

0 1

)
: x ∈ F

}
and

{( 1 0
x 1

)
: x ∈ F

}
respectively. Now take any matrix M =

(
A B
C D

)
∈ SL2(F). First suppose that B 6= 0. For a, b, c ∈ F,

we have (
1 0
a 1

)(
1 b
0 1

)(
1 0
c 1

)
=
(

1 + bc b
a+ c+ abc 1 + ab

)
.

So setting b = B and solving 1 + bc = A and 1 + ab = D for a and c (recall that B 6= 0), we find
an expression for M as a product of matrices in P1 and P2 (that a + c + abc = C is automatic
since our matrices have determinant 1 and b = B 6= 0). Therefore M ∈ H. An analogous
argument shows that M ∈ H when C 6= 0. Finally in the case B = C = 0, we simply note that(−1 0

0 −1

)
= ( 1 0

1 1 )
(

1 −2
0 1

)
( 1 0

1 1 )
(

1 −2
0 1

)
∈ H. �

The following two lemmas give some useful results about GL2(Aλ) and SL2(Aλ).

Lemma A.2. Let λ be a finite place of F , and let H be a closed subgroup of GL2(Aλ). Suppose that
det(H) = A×λ , H mod λ = GL2(Fλ), and H mod λ2 contains a non-scalar matrix that is congruent
to the identity mod λ. Then H = GL2(Aλ).

Proof. This is Proposition 4.1 of [PR09a] (note that N(λ) ≥ q ≥ 5). �

Lemma A.3. For each finite place λ of F , the group SL2(Aλ) is its own commutator subgroup. The
only normal subgroup of SL2(Aλ) with simple quotient is the group consisting of the B ∈ SL2(Aλ)
for which B ≡ ±I mod λ.

Proof. We first prove that SL2(Aλ) is its own commutator subgroup. Let H be the commutator
subgroup of SL2(Aλ). It is a closed normal subgroup of SL2(Aλ) and GL2(Aλ). Define S0 :=
SL2(Aλ), and for each i ≥ 1 we let Si be the group of s ∈ SL2(Aλ) with s ≡ 1 mod λi. For i ≥ 0,
define H i := H ∩ Si.

For i ≥ 0, we define S[i] := Si/Si+1 andH [i] := H i/H i+1. There is a natural inclusionH [i] ↪→ S[i],

and it suffices to show that H [i] = S[i] for all i ≥ 0.
Reduction modulo λ induces an isomorphism S[0] ∼−→ SL2(Fλ) with the image of H [0] being the

commutator subgroup of SL2(Fλ). Since SL2(Fλ)/{±I} is simple, we find that [SL2(Fλ) : H [0]] = 1
or 2. Since SL2(Fλ) is generated by elements of order p (use Lemma A.1), it has no normal subgroup
of index 2. Therefore, H [0] = S[0].

Now fix an i ≥ 1. Let sl2(Fλ) be the (additive) group of matrices in M2(Fλ) with trace 0. We
have an isomorphism

(A.1) S[i] ∼−→ sl2(Fλ),
[
1 + λiy] 7→ [y];

where we are now viewing λ as a monic polynomial. Conjugation by GL2(Aλ) acts on both sides
of (A.1), and it factors through conjugation by GL2(Fλ). By [PR09a, Proposition 2.1], sl2(Fλ) is
an irreducible GL2(Fλ)-module (this uses that q is odd). Now consider H [i] ↪→ S[i]. Since H is a
normal subgroup of GL2(Aλ), we find that H [i] is stable under the GL2(Fλ)-action. So we need
only prove that H [i] 6= 1.
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Consider the commutator map S0×Si → Si, (g, h) 7→ ghg−1h−1. This induces a map S[0]×S[i] →
S[i] that takes values in H [i], and by using the identification S[0] = SL2(Fλ) and (A.1) it becomes

SL2(Fλ)× sl2(Fλ)→ sl2(Fλ), (s,X) 7→ sXs−1 −X.
This map is non-zero, so H [i] 6= 1. Therefore, H = SL2(Aλ).

Now let N be a normal subgroup of SL2(Aλ) for which SL2(Aλ)/N is simple. Since every p-group
is solvable, the Jordan-Hölder factors of SL2(Aλ) are SL2(Fλ)/{±I}, Z/2Z and Z/pZ. We have
just shown that SL2(Aλ) has no abelian quotients, so SL2(Aλ)/N ∼= SL2(Fλ)/{±I}. Let N ′ be the
group consisting of B ∈ SL2(Aλ) with B ≡ ±I mod λ, it is also a normal subgroup of SL2(Aλ)
with quotient isomorphic to SL2(Fλ)/{±I}. We must have N ⊆ N ′, otherwise NN ′/N ′ would be
a non-trivial normal subgroup of SL2(Aλ)/N ′. Similarly, N ′ ⊆ N . �

Lemma A.4 (Goursat’s lemma [Rib76, Lemma 5.2.1]). Let B1 and B2 be finite groups and suppose
that H is a subgroup of B1 × B2 for which the two projections p1 : H → B1 and p2 : H → B2 are
surjective. Let N1 be the kernel of p2 and let N2 be the kernel of p1. We may view N1 as a normal
subgroup of B1 and N2 as a normal subgroup of B2. Then the image of H in B1/N1 × B2/N2 is
the graph of an isomorphism B1/N1

∼−→ B2/N2.

Remark A.5. In the setting of the above lemma, we will have H = B1 ×B2 if and only if N1 = B1

and N2 = B2.

Lemma A.6 ([Rib76, Lemma 5.2.2]). Let S1, S2, · · · , Sk be finite groups with no non-trivial abelian
quotients. Let H be a subgroup of S1×· · ·×Sk such that each projection H → Si×Sj (1 ≤ i < j ≤ k)
is surjective. Then H = S1 × · · · × Sk.

The arguments in the next lemma were motivated by [Rib76, V §2].

Lemma A.7. Let λ1 and λ2 be distinct maximal ideals of A, and set a = λ1λ2. Let H be a subgroup
of GL2(A/a) for which the following hold:

(a) det(H) = (A/a)×;
(b) the projections p′1 : H ′ → SL2(Fλ1) and p′2 : H ′ → SL2(Fλ2) are surjective, where H ′ :=

H ∩ SL2(A/a);
(c) the ring generated by the set

S := {tr(h)2/ det(h) : h ∈ H} ∪ {det(h)/ tr(h)2 : h ∈ H with tr(h) ∈ (A/a)×}
is A/a.

Then H = GL2(A/a).

Proof. Let N ′1 be the kernel of p′2 and let N ′2 be the kernel of p′1; we may view N ′i as a normal
subgroup of SL2(Fλi

). By Lemma A.4, the image of H ′ in SL2(Fλ1)/N ′1×SL2(Fλ2)/N ′2 is the graph
of a group isomorphism

(A.2) SL2(Fλ1)/N ′1
∼−→ SL2(Fλ2)/N ′2.

If N ′1 = SL2(Fλ1) (equivalently, N ′2 = SL2(Fλ2)), then one has H ′ = SL2(Fλ1) × SL2(Fλ2) =
SL2(A/a). Using condition (a), we deduce that H = GL2(A/a).

We now assume that N ′i is a proper normal subgroup of SL2(Fλi
) for i = 1, 2. Using Lemma A.3,

we find that N ′i ⊆ {±I}. From (A.2) and cardinality considerations, we deduce that N(λ1) = N(λ2)
(equivalently, Fλ1 and Fλ2 are isomorphic fields).

For i ∈ {1, 2}, define the projection pi : H → GL2(Fλi
). Let N1 be the kernel of p2 and let N2

be the kernel of p1; we may view Ni as a normal subgroup of GL2(Fλi
). By Lemma A.4, the image

of H in GL2(Fλ1)/N1 ×GL2(Fλ2)/N2 is the graph of a group isomorphism

(A.3) GL2(Fλ1)/N1
∼−→ GL2(Fλ2)/N2.
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Since Ni/N
′
i and N ′i are abelian, we find that Ni is a solvable normal subgroup of GL2(Fλi

). It is
then readily checked that Ni must be contained in the group of diagonal matrices of GL2(Fλi

). By
taking further quotients, we find that the image of H in PGL2(Fλ1) × PGL2(Fλ2) is the graph of
an isomorphism

α : PGL2(Fλ1) ∼−→ PGL2(Fλ2).

By Theorem 3 of Hua’s supplement in [Die80], α lifts to an isomorphism

α̃ : GL2(Fλ1) ∼−→ GL2(Fλ2).

Let σ : Fλ1

∼−→ Fλ2 be a field isomorphism and χ : GL2(Fλ1)→ F×λ2
a character; these define two

group homomorphisms GL2(Fλ1) ∼−→ GL2(Fλ2):

A 7→ χ(A)Aσ, A 7→ χ(A)((AT )−1)σ;(A.4)

where Bσ represents the matrix obtained by applying σ to each entry of a matrix B ∈ GL2(Fλ1).
By Theorem 1 of Hua’s supplement in [Die80] (and using that Fλ1

∼= Fλ2), we find that there are
σ and χ such that α̃ is the composition of an inner automorphism with one of the homomorphisms
of (A.4). We leave it to the reader to check that in either case, we have

tr(α̃(A))2

det(α̃(A))
= σ

(
tr(A)2

det(A)

)
.

Note that the map GL2(Fλi
)→ Fλi

, A 7→ tr(A)2/ det(A) factors through the projection GL2(Fλi
)→

PGL2(Fλi
). We deduce that σ(tr(h1)2/ det(h1)) = tr(h2)2/det(h2) for every (h1, h2) ∈ H. Let W

be the ring of (x1, x2) ∈ Fλ1 ×Fλ2 = A/a for which σ(x1) = x2. We have just verified that S ⊆W .
However, W 6= A/a, and this contradicts assumption (c). �
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