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Abstract. With a fixed prime power q > 1, define the ring of polynomials A = Fq[t] and
its fraction field F = Fq(t). For each pair a = (a1, a2) ∈ A2 with a2 nonzero, let ϕ(a) : A →
F{τ} be the Drinfeld A-module of rank 2 satisfying t 7→ t+ a1τ + a2τ

2. The Galois action

on the torsion of ϕ(a) gives rise to a Galois representation ρϕ(a) : Gal(F sep/F ) → GL2(Â),

where Â is the profinite completion of A. We show that the image of ρϕ(a) is large for

random a. More precisely, for all a ∈ A2 away from a set of density 0, we prove that the

index [GL2(Â) : ρϕ(a)(Gal(F sep/F ))] divides q − 1 when q > 2 and divides 4 when q = 2.

We also show that the representation ρϕ(a) is surjective for a positive density set of a ∈ A2.

1. Introduction

Throughout we fix a finite field Fq with q elements. Define the polynomial ring A = Fq[t]
and its fraction field F = Fq(t).

1.1. Background. We now recall some notions concerning Drinfeld modules. For an in-
troduction see [Gos96,DH87,Dri74]. Let K be an A-field, i.e., a field K with a fixed ring
homomorphism ι : A→ K. Using ι, we can view K as a field extension of Fq.
Let K{τ} be the ring of skew polynomials over K, i.e., the ring of polynomials in the

indeterminate τ with coefficients in K that satisfy the commutation rule τc = cqτ for all
c ∈ K. We can identify K{τ} with a subring of End(Ga,K) by identifying τ with the
Frobenius map X 7→ Xq. Let ∂0 : K{τ} → K be the ring homomorphism

∑
i aiτ

i 7→ a0.
A Drinfeld A-module over K is a ring homomorphism

ϕ : A→ K{τ}, a 7→ ϕa

such that ∂0 ◦ ϕ = ι and ϕ(A) ̸⊆ K. The characteristic of ϕ is the kernel p0 of ι; equivalently,
the kernel of ∂0 ◦ ϕ : A → K. If p0 = (0), then we say that ϕ has generic characteristic and
we may use ι to view K as a field extension of F . The Drinfeld module ϕ is determined by
ϕt =

∑r
i=0 aiτ

i where we have ai ∈ K with ar ̸= 0; the positive integer r is called the rank of
ϕ.

Fix a separable closure Ksep of K. The Drinfeld module ϕ endows Ksep with an A-module
structure. More precisely, a · x := ϕa(x) for a ∈ A and x ∈ Ksep, where we are using our
identification of K{τ} with a subring of End(Ga,K). We shall write ϕKsep if we wish to
emphasize Ksep with this particular A-module structure. For a nonzero ideal a of A, the
a-torsion of ϕ is the A-module

ϕ[a] := {x ∈ ϕKsep : a · x = 0 for all a ∈ a} = {x ∈ Ksep : ϕa(x) = 0 for all a ∈ a}.
Suppose that a is relatively prime to the characteristic p0. Then ϕ[a] is a free A/a-module

of rank r. The absolute Galois group GalK := Gal(Ksep/K) acts on ϕ[a] and respects the
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A-module structure. This action can be expressed in terms of a Galois representation

ρϕ,a : GalK → Aut(ϕ[a]) ∼= GLr(A/a).

For the rest of the section, assume that ϕ has generic characteristic. By choosing bases
compatibly and taking the inverse limit, we obtain a single representation

ρϕ : GalK → GLr(Â)

that encodes the Galois action on the torsion submodule of ϕKsep, where Â is the profinite
completion of A. The representation ρϕ is continuous when the groups are endowed with
their profinite topologies.

For a nonzero prime ideal λ of A, let ρϕ,λ : GalK → GLr(Aλ) be the representation obtained

by composing ρϕ with the quotient map GLr(Â) → GLr(Aλ), where Aλ is the inverse limit
of the rings A/λi with i ≥ 1. The representation ρϕ,λ encodes the Galois action on the
λ-power torsion of ϕ. We can identify ρϕ with

∏
λ ρϕ,λ by using the natural isomorphism

GLr(Â) =
∏

λGLr(Aλ), where the product is over the nonzero prime ideals of A.
Pink and Rütsche [PR09a] have described the image of ρϕ up to commensurability when

K is finitely generated. For simplicity, we only state the version for which ϕ has no extra
endomorphisms. Recall that the ring EndK(ϕ) of endomorphisms is the centralizer of ϕ(A)
in K{τ}, where K ⊇ Ksep is an algebraic closure of K.

Theorem 1.1 (Pink-Rütsche). Let ϕ be a Drinfeld A-module of rank r over a finitely gen-
erated field K. Assume that ϕ has generic characteristic and that EndK(ϕ) = ϕ(A). Then

ρϕ(GalK) is an open subgroup of GLr(Â). Equivalently, ρϕ(GalK) has finite index in GLr(Â).

Theorem 1.1, especially with r ≥ 2, is a Drinfeld module analogue of Serre’s open image
theorem for non-CM elliptic curves, cf. [Ser72].

In this article, we are interested in producing Galois representations ρϕ with largest possible
image. We shall focus our attention on the most immediate case which is r = 2 and K = F .
We shall show that there are infinitely many nonisomorphic Drinfeld modules ϕ over F of

rank 2 with ρϕ(GalF ) = GL2(Â).

1.2. Density. For a fixed integer n ≥ 1, we will want to talk about properties holding for
“most” a ∈ An. To make this precise, we introduce the notion of density. For any subset
S ⊆ An and positive integer d, we let S(d) be the set of (a1, . . . , an) ∈ S with deg(ai) ≤ d
for all 1 ≤ i ≤ n. Define

δ(S) := lim sup
d→+∞

|S(d)|
|An(d)|

and δ(S) := lim inf
d→+∞

|S(d)|
|An(d)|

;

these are the upper density and lower density of S, respectively. Note that |An(d)| = qn(d+1).
When δ(S) = δ(S), we call the common value the density of S and denote it by δ(S). Of
course, δ(An) = 1.

1.3. Main result. We shall always view F as an A-field via the inclusion A ⊆ F . For each
pair a = (a1, a2) ∈ A2 with a2 ̸= 0, let

ϕ(a) : A→ F{τ}, α 7→ ϕ(a)α
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be the Drinfeld A-module over F for which ϕ(a)t = t + a1τ + a2τ
2. The Drinfeld module

ϕ has rank 2 and generic characteristic. Associated to ϕ, we have a Galois representation

ρϕ(a) : GalF → GL2(Â) that is uniquely determined up to isomorphism.
We now define the following sets which consist of pairs a ∈ A2 for which ρϕ(a) has especially

large image:

• Let S1 be the set of a ∈ A2 with a2 ̸= 0 for which ρϕ(a)(GalF ) = GL2(Â).

• When q ̸= 2, let S2 be the set of a ∈ A2 with a2 ̸= 0 for which ρϕ(a)(GalF ) ⊇ SL2(Â)

and [GL2(Â) : ρϕ(a)(GalF )] divides q − 1.
• When q = 2, let S2 be the set of a ∈ A2 with a2 ̸= 0 for which ρϕ(a)(GalF ) contains

the commutator subgroup of GL2(Â) and [GL2(Â) : ρϕ(a)(GalF )] divides 4.
• Let S3 be the set of a ∈ A2 with a2 ̸= 0 for which ρϕ(a),λ(GalF ) = GL2(Aλ) for all
nonzero prime ideals λ of A.

Our main theorem shows that the sets S1, S2 and S3 are large.

Theorem 1.2.

(i) There is a subset of S1 with positive density.
(ii) The set S2 has density 1.
(iii) The set S3 has density 1.

Loosely, Theorem 1.2(ii) says that for a “randomly chosen” a ∈ A2 the index of ρϕ(a)(GalF )

in GL2(Â) is finite and divides q − 1 or 4 when q ̸= 2 or q = 2, respectively. Theorem 1.2(i)

shows that ρϕ(a)(GalF ) = GL2(Â) holds for many a ∈ A2.

Remark 1.3.

(i) Assume q ̸= 2. Take any (a1, a2) ∈ A2 with a2 monic and deg(a2) ≡ 1 (mod q − 1).

We have [Â× : det(ρϕ(a)(GalF ))] = q − 1 and hence [GL2(Â) : ρϕ(a)(GalF )] ≥ q − 1,
cf. Theorem 6.1. This shows that the set S1 does not have density 1 and that the
integer q − 1 occurring in the definition of S2 is optimal for Theorem 1.2(ii) to hold.

(ii) The commutator subgroup of GL2(Â) is SL2(Â) when q ̸= 2. A group theoretic

complication that arises when q = 2 is that the commutator subgroup of GL2(Â) is a

proper subgroup of SL2(Â); in fact, it is a subgroup of index 4. This is the underlying
reason why definition of S2 is different when q = 2.

(iii) Theorem 1.2(i) gives counterexamples to [Che22a, Theorem 4.4] which would imply
that S1 = ∅ when q = 2. There seem to be issues when working with wildly ramified
quadratic extensions of F in their proof. Also, Theorem 1.2(i) gives counterexamples
to [Che22a, Theorem 5.4] which would imply that S1 has density 0 when q = 3.

1.4. Explicit examples. For each prime power q > 1, we also give an example of a rank 2
Drinfeld module whose Galois representation is surjective.

Theorem 1.4. Let ϕ : A→ F{τ} be the Drinfeld module for which

ϕt =

{
t+ τ − tq−1τ 2 if q ̸= 2,

t+ t3τ + (t2 + t+ 1)τ 2 if q = 2.

Then ρϕ(GalF ) = GL2(Â).
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1.5. Overview. We give a brief overview of the paper. Consider a Drinfeld module ϕ : A→
F{τ} of rank 2 with EndF (ϕ) = ϕ(A).
In §2, we give a criterion that will allow us to show that a subgroup of GL2(Aλ) is equal

to the full group. In §3, we give a criterion that will allow us to show that a subgroup of

GL2(Â) contains the commutator subgroup of GL2(Â). We will try to apply these results

to the subgroup ρϕ(GalF ) of GL2(Â). It is these group theoretic results that motivate the
structure of the paper.

Galois representations for Drinfeld modules defined over local fields will be studied in §4.
This will be used in our proofs to understand the action of inertia subgroups on the torsion
of ϕ at primes for which our Drinfeld modules have semistable reduction. In particular, this
will give a way to construct subgroups of ρϕ,a(GalF ) that we have some control over.

In §5, we recall that the representations ρϕ,a are compatible and give rise to Frobenius
polynomials. These polynomials have coefficients in A and are computable. In §6, we recall
a theorem of Gekeler that will give an explicit expression for the index of det(ρϕ(GalF )) in

Â×.
An important step in showing that ρϕ has large image is to prove that the representations

ρϕ,λ : GalF → GL2(Fλ) are irreducible for all nonzero prime ideals λ. In §7, we prove that
this holds for all but finitely many λ and give an explicit bound on the norms of any possible
exceptions.

In §8, we prove a version of Hilbert’s irreducibility theorem. We use it to show that for a
fixed nonzero ideal a of A, we have ρϕ(a),a(GalF ) = GL2(A/a) for all a ∈ A2 away from a set
of density 0 (for future reference, we will give a version that holds for arbitrary rank r ≥ 2).
The set of density 0 will depend on a, so Hilbert’s irreducibility theorem cannot be used by
itself to prove our main theorems.

In §9, we use all the above ingredients and some careful sieving to get information on the
image of ρϕ(a) for all a ∈ A2 away from a set of density 0. In particular, for all a ∈ A2 away
from a set of density 0, we show that ρϕ(a),λ(GalF ) = GL2(Aλ) for all nonzero prime ideals

λ of A, and also show that ρϕ(a)(GalF ) and GL2(Â) have the same commutator subgroup.
The proof of Theorem 1.2 in the case q ̸= 2 will then be quickly proved in §9.2.
Suppose that q = 2. In §10, we give a condition on ϕ that ensures that the homomorphism

GalF → GL2(Â)/[GL2(Â),GL2(Â)] obtained by composing ρϕ with the quotient map is
surjective. This is achieved by considering the ramification at the place ∞ of F . In §10.4,
we prove the remaining case of Theorem 1.2.

Finally, §11 is dedicated to the computation of the Galois images of the explicit Drinfeld
modules from Theorem 1.4.

1.6. Some earlier results. In the unpublished preprint [Zyw11] the author proved Theo-
rem 1.4 when q ≥ 5 is odd. This was extended to q = 3 and q = 2e ≥ 4 in [Che22a]. The
original goal of this work was to reprove this in a manner that could readily generalize to most
Drinfeld modules like as in Theorem 1.2. When q = pe with p ≥ 5 and p ≡ 1 (mod 3), Chen

gave an example of a rank 3 Drinfeld A-module ϕ : A→ F{τ} for which ρϕ(GalF ) = GL3(Â),
cf. [Che22b]. There are also some recent papers proving Hilbert irreducibility like results,
cf. [Ray24a,Ray24b,Che24].

1.6.1. Elliptic curves. Let us briefly mention the analogous case of elliptic curves over a fixed
number field K. Consider an elliptic curve E over K. For each integer n ≥ 1, the Galois
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action on the n-torsion points of E gives rise to a continuous representation ρE,n : GalK :=

Gal(K/K) → GL2(Z/nZ). By choosing compatible bases, these combine to give a single

Galois representation ρE : GalK → GL2(Ẑ).
Serre observed that for an elliptic curve over Q, we can never have ρE(GalQ) ⊇ SL2(Ẑ),

cf. [Ser72, Prop. 22]. One ingredient of this obstruction is that det ◦ρE : GalQ → Ẑ× is
the cyclotomic character and hence the fixed field in Q of its kernel is the maximal abelian
extension of Q by the Kronecker–Weber theorem. When K ̸= Q there is no such obstruction

and we have ρE(GalK) ⊇ SL2(Ẑ) for a “random” elliptic curve E over K, cf. [Zyw11]. Jones

[Jon10] prove that we have [GL2(Ẑ) : ρE(GalQ)] = 2 for a “random” elliptic curve E/Q.

1.7. Notation. For a nonzero ideal a of A, we let Aa be the inverse limit of the rings A/ai

with i ≥ 1. We have natural isomorphisms

Aa =
∏
p⊇a

Ap and Â =
∏
p

Ap,

where the product is over the nonzero prime ideals p of A. Each ring Ap is a complete
discrete valuation ring.

Consider a nonzero prime ideal p of A. Define the residue field Fp := A/p and denote
its cardinality by N(p). We let deg(p) be the degree of the field extension Fp/Fq. We have
N(p) = qdeg(p) and deg(p) is also the degree of any polynomial π ∈ A with p = (π). Let Fp

be the completion of F at p; it is a local field with valuation ring Ap. Let vp : F
×
p → Z be

the corresponding valuation normalized so that vp(F
×
p ) = Z and we set vp(0) = +∞.

For a field K, let Ksep be a separable closure of K and define the absolute Galois group
GalK = Gal(Ksep/K).

Let ϕ : A→ K{τ} be a Drinfeld module of rank 2. The j-invariant of ϕ is jϕ := aq+1
1 /a2 ∈

K, where ϕt = t+ a1τ + a2τ
2.

2. Group theoretic criterion for large λ-adic image

Throughout this section, we fix a finite field F and define the ring of formal power series
R := F[[π]]. The ring R is a complete discrete valuation ring with maximal ideal p generated
by π and has residue field F.

The following proposition gives a criterion to check if a subgroup of GL2(R) is actually
the full group. Note that for a nonzero prime ideal λ of A = Fq[t], the ring Aλ is of the form
Fλ[[π]], cf. [Ser77, Chapter II §4 Theorem 2]. In particular, Proposition 2.1 gives a group
theoretic criterion to check if ρϕ,λ(GalF ) is equal to the full group GL2(Aλ) for a Drinfeld
A-module ϕ : A→ F{τ}.
Proposition 2.1. Let G be a closed subgroup of GL2(R) that satisfies the following condi-
tions:

(a) det(G) = R×,
(b) the image of G modulo p is GL2(F),
(c) if |F| > 2, then there is an element I + πB of G with B ∈ M2(R) so that B modulo

p is a nonscalar matrix in M2(F),
(d) if |F| = 2, then the image of G modulo p2 is GL2(R/p

2),
(e) if |F| = 2, then G∩ SL2(R) contains an element whose reduction modulo p in SL2(F)

has order 2.
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Then G = GL2(R).

We will prove the proposition in §2.3. When |F| > 3, Proposition 2.1 also follows from
[PR09a, Proposition 4.1].

2.1. Groups over a finite field.

Proposition 2.2. Let G be a subgroup of GL2(F) that acts irreducibly on F2 and contains
a subgroup of cardinality |F|. Then G ⊇ SL2(F).

Proof. Let P1 be a subgroup of G of order |F|; it is a p-Sylow subgroup of GL2(F), where p
is the characteristic of F. There is a unique 1-dimensional F-subspace W1 of F2 that is fixed
by every element of P1. If P1 is a normal subgroup of G, then W1 would be stable under
the action of G which would contradict our irreducibility assumption. Therefore, there is
a second subgroup P2 ̸= P1 of G with cardinality |F|. Let W2 be the unique 1-dimensional
F-subspace of F2 that is fixed by every element of P2. We have W1 ̸= W2. After conjugating
G in GL2(F), we may assume that (1, 0) ∈ W1 and (0, 1) ∈ W2, and hence

P1 = {( 1 x
0 1 ) : x ∈ F} and P2 = {( 1 0

x 1 ) : x ∈ F} .
Now take any matrix M = ( A B

C D ) ∈ SL2(F). First suppose that B ̸= 0. For a, b, c ∈ F, we
have

( 1 0
a 1 ) (

1 b
0 1 ) (

1 0
c 1 ) =

(
1+bc b

a+c+abc 1+ab

)
.

So setting b = B and solving 1 + bc = A and 1 + ab = D for a and c (recall that B ̸= 0),
we find an expression for M as a product of matrices in P1 and P2 (that a+ c+ abc = C is
automatic since our matrices have determinant 1 and b = B ̸= 0). Therefore M ∈ G. An
analogous argument shows that M ∈ G when C ̸= 0. Finally in the case B = C = 0, we
simply note that

( −1 0
0 −1

)
= ( 1 0

1 1 ) (
1 −2
0 1 ) ( 1 0

1 1 ) (
1 −2
0 1 ) ∈ G. □

Lemma 2.3.

(i) If |F| > 3, then the group SL2(F)/{±I} is nonabelian and simple.
(ii) If |F| > 3, then [SL2(F), SL2(F)] = SL2(F), i.e., SL2(F) is perfect.
(iii) If |F| > 2, then [GL2(F),GL2(F)] = SL2(F).

Proof. Parts (i) and (ii) are shown in [Wil09, §3.3.2]. Part (iii) follows from (ii) when |F| > 3
and can be checked directly when |F| = 3. □

We define gl2(F) := M2(F) and we let sl2(F) be the subgroup consisting of matrices with
trace 0. These F-vector spaces are Lie algebras under the pairing [x, y] = xy − yx.

Lemma 2.4. If |F| > 2, then any subgroup of gl2(F) that is invariant under conjugation by
GL2(F) either contains sl2(F) or consists only of scalar matrices.

Proof. This is Proposition 2.1 of [PR09a] when |F| ≥ 4. A direct computation shows that
this also holds when |F| = 3. □

2.2. Filtration of a closed subgroup. Consider a closed subgroup G of GL2(R). For each
i ≥ 0, define the open subgroup

Gi := {g ∈ G : g ≡ I (mod pi)}
of G. For each i ≥ 0, we have a quotient group G[i] := Gi/Gi+1. Reduction modulo p induces
an injective homomorphism ν0 : G

[0] ↪→ GL2(F) whose image we will denote by G. For i ≥ 1,
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we have an injective homomorphism νi : G
[i] ↪→M2(F) = gl2(F) that takes the coset [1+πiB]

to B modulo p; we denote its image by gi.
Take any i ≥ 1. For g = I + πiB ∈ Gi, we have det(g) ≡ 1 + πi tr(B) (mod pi+1). So for

g ∈ Gi, we have det(g) ≡ 1 (mod pi+1) if and only if νi([g]) lies in sl2(F).
Let H be the commutator subgroup of G. With notation as above, we define H ⊆ GL2(F)

and hi for i ≥ 1. Using that H ⊆ SL2(R), we find that H ⊆ SL2(F) and that hi ⊆ sl2(F) for
all i ≥ 1.

The vector spaces gi and hi are invariant under conjugation by G; this follows by consid-
ering the conjugation action of G on Gi and H i. The commutator map (g, h) 7→ ghg−1h−1

induces a function G[0] ×G[i] → H [i] that corresponds to the function

G× gi → hi, (g, x) 7→ gxg−1 − x(2.1)

via ν0 and νi. The commutator map also induces a function G[1] × G[i] → H [i+1] that
corresponds to the function

g1 × gi → hi+1, (x, y) 7→ [x, y] = xy − yx(2.2)

via ν0, νi and νi+1.

Lemma 2.5. With notation as above, assume that g1 = gl2(F) and h1 = sl2(F). Then H
is the subgroup of SL2(R) consists of those matrices whose image modulo λ lies in [G,G] ⊆
SL2(F).

Proof. We will prove that hi = sl2(F) for all i ≥ 1 by induction on i. The base case
h1 = sl2(F) is true by assumption so suppose that hi = sl2(F) for some fixed i ≥ 1. From
the map (2.2), we find that hi+1 ⊆ sl2(F) contains the F-subspace spanned by [x, y] with
x ∈ g1 = gl2(F) and y ∈ hi = sl2(F). We thus have hi+1 = sl2(F) since sl2(F) is spanned by
the vectors

[( 1 0
0 0 ) , (

0 1
0 0 )] = ( 0 1

0 0 ) , [( 1 0
0 0 ) , (

0 0
1 0 )] = − ( 0 0

1 0 ) and [( 0 0
1 0 ) , (

0 1
0 0 )] = ( −1 0

0 1 ) .

Since H is a closed subgroup of SL2(R) with hi = sl2(F) for all i ≥ 1, we find that H
contains all the A ∈ SL2(R) with A ≡ I (mod λ). The lemma is now immediate since
H = [G,G]. □

2.3. Proof of Proposition 2.1. Let H be the commutator subgroup of G and fix notation
as in §2.2.

Lemma 2.6. We have g1 = gl2(F).

Proof. The lemma holds if |F| = 2 by (d), so we may assume that |F| > 2. When |F| > 3,
the lemma holds from Proposition 4.1 of [PR09a] . So we may assume that |F| = 3. Using
(c), we find that g1 contains a nonscalar matrix. We have G = GL2(F) by (b) and hence the
space g1 is invariant under conjugation by GL2(F). We thus have g1 ⊇ sl2(F) by Lemma 2.4.
We now suppose that g1 ̸= gl2(F) and hence g1 = sl2(F) since |F| is prime. So for all

g ∈ G1, we have det(g) ≡ 1 (mod p2). Let W be the subgroup of GL2(R) generated by
G1 and H; it is a normal subgroup of G. Note that det(g) ≡ 1 (mod p2) for all g ∈ W
since this is true for all g ∈ G1 and we have H ⊆ SL2(R). Since det(G) = R× by (a) and
det(W ) ⊆ 1 + p2R, we find that (R/p2)× is a quotient of G/W .
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Let W be the image of W modulo p. We have

W = H = [G,G] = [GL2(F),GL2(F)] = SL2(F),

where the last equality uses Lemma 2.3(iii). Since W ⊇ G1 and W = SL2(F), we find that
the group W is normal in G and G/W ∼= GL2(F)/ SL2(F) ∼= F×. This is a contradiction
since (R/p2)× is a quotient of G/W and has cardinality strictly larger than F× = (R/p)×.
Therefore, g1 = gl2(F). □

Lemma 2.7. We have hi = sl2(F) for all i ≥ 1.

Proof. We have G = GL2(F) and g1 = gl2(F) by Lemma 2.6. By (2.1), h1 ⊆ sl2(F) contains
the F-subspace spanned by gxg−1 − x with g ∈ GL2(F) and x ∈ gl2(F). After computing
gxg−1 − x with g ∈ {( 1 1

0 1 ) , (
0 −1
1 0 )} and x ∈ {( 0 0

0 1 ) , (
0 0
1 0 )}, we deduce that h1 ⊇ sl2(F) and

hence h1 = sl2(F).
We now prove the lemma by induction on i ≥ 1. We have already proved the base case

so suppose that hi = sl2(F) for some i ≥ 1. From the map (2.2), we find that hi+1 ⊆ sl2(F)
contains the F-subspace spanned by [x, y] with x ∈ g1 = gl2(F) and y ∈ hi = sl2(F). We
thus have hi+1 = sl2(F) since sl2(F) is spanned by the vectors

[( 1 0
0 0 ) , (

0 1
0 0 )] = ( 0 1

0 0 ) , [( 1 0
0 0 ) , (

0 0
1 0 )] = − ( 0 0

1 0 ) and [( 0 0
1 0 ) , (

0 1
0 0 )] = ( −1 0

0 1 ) . □

Lemma 2.8. The commutator subgroup H of G agrees with the subgroup of matrices in
SL2(R) whose image modulo p lies in [GL2(F),GL2(F)]. If |F| > 2, then H = SL2(R).

Proof. Let H ′ be the group of matrices in SL2(R) whose image modulo p lies in the group
[GL2(F),GL2(F)]. Since G = GL2(F), the image of H ′ modulo p is equal to [G,G] = H. For
each i ≥ 1, let H ′i be the group of g ∈ H ′ for which g ≡ I (mod pi). The inclusion H ⊆ H ′

induces an injective homomorphism H i/H i+1 ↪→ H ′i/H ′i+1 that we view as an inclusion.
Suppose that H ̸= H ′. The group H ′ is open in SL2(R) and contains H. Since H is a

proper closed subgroup of H ′ that has the same image modulo p, we must have H i/H i+1 ⊊
H ′i+1/H ′i+1 for some i ≥ 1. Since H ′ ⊆ SL2(R), this implies that hi ̸= sl2(F) which
contradicts Lemma 2.7. Therefore, H = H ′. If |F| > 2, we have H = H ′ = SL2(R) by
Lemma 2.3(iii). □

We claim that G ⊇ SL2(R). If |F| > 2, then Lemma 2.8 implies that G ⊇ H = SL2(R).
Now suppose that |F| = 2. The group [GL2(F),GL2(F)] has cardinality 3 and has index 2 in
SL2(F). By Lemma 2.8, H is the index 2 subgroup of SL2(R) consisting of matrices whose
image modulo p lies in [GL2(F),GL2(F)]. By (e), there is an element g ∈ G∩ SL2(R) whose
image in SL2(F) has order 2. Therefore, g represents the nonidentity coset of H in SL2(R).
Since g ∈ G and H ⊆ G, we have SL2(R) ⊆ G. This completes the proof of the claim.
We thus have G = GL2(R) since G ⊇ SL2(R) and det(G) = R× by (a). The proposition

follows from this and Lemma 2.8.

2.4. Commutator subgroups of GL2(R) and SL2(R). The following gives some informa-
tion on commutator subgroups that will be useful later.

Proposition 2.9.

(i) If |F| > 2, then the commutator subgroup of GL2(R) is SL2(R).
8



(ii) If |F| = 2, then the commutator subgroup of GL2(R) is

{B ∈ SL2(R) : B modulo p lies in [GL2(F),GL2(F)]}.

In particular, [SL2(R) : [GL2(R),GL2(R)]] = 2.

Proof. Define G := GL2(R). Note that G satisfies all the conditions of Proposition 2.1.
Lemma 2.8 in the proof of Proposition 2.1 shows that [G,G] is the group consisting of all
B ∈ SL2(R) for which B modulo p lies in [GL2(F),GL2(F)]. This proves (ii). Part (i) follows
from Lemma 2.3(iii). □

Proposition 2.10. Suppose |F| > 3,

(i) The group SL2(R) is equal to its own commutator subgroup.
(ii) The only closed normal subgroup of SL2(R) with simple quotient is the group consist-

ing of those matrices A ∈ SL2(R) for which A ≡ ±I mod p.

Proof. Define the group G = SL2(R) and let H be its commutator subgroup. With notation
as in §2.2, we have G = SL2(F) and subgroups hi ⊆ gi = sl2(F) for all i ≥ 1. The image
of H modulo p is H = [G,G] = [SL2(F), SL2(F)] = SL2(F), where the last equality uses
Lemma 2.3(ii).

Take any i ≥ 1. With g = ( 0 −1
1 0 ) ∈ G and x = ( 0 −1

0 0 ) ∈ gi, the matrix gxg−1 − x = ( 0 1
1 0 )

lies in hi by (2.1). In particular, hi ⊆ sl2(F) contains a nonscalar matrix. The group hi is
stable under conjugation by GL2(F) since G is a normal subgroup of GL2(R). Therefore,
hi = sl2(F) by Lemma 2.4.

We have shown that H is a closed subgroup of SL2(R) for which H = SL2(F) and hi =
sl2(F) for all i ≥ 1. Therefore, H = SL2(R). This proves (i).

Let N be a closed normal subgroup of SL2(R) for which S := SL2(R)/N is simple. The
group S is finite since it is simple and profinite. Let φ : SL2(R) → S be the quotient map.
The group S is nonabelian since SL2(R) is equal to its own commutator subgroup. Let W
be the closed normal subgroup of SL2(R) consisting of all A ∈ SL2(R) for which A ≡ ±I
(mod p). The group W is pro-solvable and hence φ(W ) is a solvable normal subgroup of
S. We have φ(W ) = 1 since S is nonabelian and simple. Therefore, W ⊆ N . We have
SL2(R)/W ∼= SL2(F)/{±I} which is simple by Lemma 2.3(i). Therefore, W = N which
proves (ii). □

3. Group theoretic criterion for large adelic image

Let G be a subgroup of GL2(Â). The goal of this section is to give conditions that ensure

that G and GL2(Â) have the same commutator subgroup. For a nonzero ideal a of A, we

will denote by Ga the image of G under the projection map GL2(Â) → GL2(Aa).
Let Λ be the set of nonzero prime ideals of A.

Theorem 3.1. Let G be a closed subgroup of GL2(Â) such that the following hold:

(a) For all λ ∈ Λ, we have Gλ ⊇ SL2(Aλ).
(b) For all distinct λ1, λ2 ∈ Λ with N(λ1) = N(λ2) > 3, G modulo λ1λ2 has a subgroup

of cardinality N(λ1)
2.

(c) For all distinct λ1, λ2 ∈ Λ with N(λ1) = N(λ2) = 2, the group Gλ1λ2 ∩ SL2(Aλ1λ2)
contains a subgroup that is conjugate in GL2(Aλ1λ2) to {( 1 b

0 1 ) : b ∈ Aλ1λ2} .
9



(d) Suppose q ∈ {2, 3} and let a be the ideal that is the product of the prime ideals of A
of norm q. Then det(Ga) = A×

a .

Then [G,G] = [GL2(Â),GL2(Â)]. In particular, [G,G] = SL2(Â) when q > 2.

3.1. Proof of Theorem 3.1. Define H := [G,G]; it is a closed subgroup of SL2(Â).

Lemma 3.2. For any distinct nonzero prime ideals λ1 and λ2 of A with norm at least 4, we
have Hλ1λ2 = SL2(Aλ1)× SL2(Aλ2).

Proof. For each 1 ≤ i ≤ 2, we have Gλi ⊇ SL2(Aλi) by (a). Since SL2(Aλi) is perfect by
Proposition 2.10(i), we deduce that Hλi = [Gλi , Gλi ] equals SL2(Aλi). We thus have an
inclusion of groups Hλ1λ2 ⊆ Hλ1 × Hλ2 = SL2(Aλ1) × SL2(Aλ2) such that each projection
pi : Hλ1λ2 → SL2(Aλi) is surjective. Let N1 and N2 be the kernel of p2 and p1, respectively.
We may identify Ni with a closed normal subgroup of SL2(Aλi) and hence have an inclusion
N1 × N2 ⊆ Hλ1λ2 . By Goursat’s lemma ([Rib76, Lemma 5.2.1]), the inclusion Hλ1λ2 ⊆
SL2(Aλ1)× SL2(Aλ2) induces a homomorphism

Hλ1λ2/(N1 ×N2) ↪→ SL2(Aλ1)/N1 × SL2(Aλ2)/N2

whose image is the graph of an isomorphism SL2(Aλ1)/N1
∼−→ SL2(Aλ2)/N2.

Suppose the group SL2(Aλ1)/N1 is trivial. We then have Ni = SL2(Aλi) for each 1 ≤ i ≤ 2.
Therefore, SL2(Aλ1)× SL2(Aλ2) = N1 ×N2 ⊆ Hλ1λ2 ⊆ SL2(Aλ1)× SL2(Aλ2) and the lemma
follows.

We may now assume that SL2(Aλ1)/N1 is nontrivial and hence each Ni is a proper closed
normal subgroup of SL2(Aλi). By Proposition 2.10(ii), we find that Ni ⊆ {B ∈ SL2(Aλi) :
B ≡ ±I (mod λi)}. Therefore, the homomorphism

Hλ1λ2 → SL2(Fλ1)/{±I} × SL2(Fλ2)/{±I}
obtained by composing reduction modulo λ1λ2 with the obvious quotient map has image
equal to the graph of an isomorphism SL2(Fλ1)/{±I}

∼−→ SL2(Fλ2)/{±I} of finite simple
groups. By comparing cardinalities of these simple groups, we have N(λ1) = N(λ2).

Now consider the homomorphism

φ : Gλ1λ2 → GL2(Fλ1)/{±I} ×GL2(Fλ2)/{±I}
obtained by reducing modulo λ1λ2 and composing with the obvious quotient map. From (b),
φ(Gλ1λ2) contains a group of orderN(λ1)N(λ2); it is a p-Sylow subgroup of GL2(Fλ1)/{±I}×
GL2(Fλ2)/{±I} where p is the prime dividing q. In particular, there is a g ∈ Gλ1λ2 such that
φ(g) = (I, g2), where g2 ∈ GL2(Fλ2)/{±I} has order a positive power of p. We have already

shown that φ(Hλ1λ2) is the graph of an isomorphism SL2(Fλ1)/{±I}
∼−→ SL2(Fλ2)/{±I}.

So there is an (h1, h2) ∈ φ(Hλ1λ2) for which h2 and g2 do not commute (an element in
GL2(Fλ2)/{±I} that commutes with SL2(Fλ2)/{±I} will be represented by a scalar matrix
and hence has order relatively prime to p). Since H is normal in G, we deduce that

(I, g2)(h1, h2)(I, g2)
−1 = (h1, g2h2g

−1
2 )

is also in φ(Hλ1λ2). Since (h1, g2h2g
−1
2 ) and (h1, h2) are distinct elements of φ(Hλ1λ2), this

contradicts that the group φ(Hλ1λ2) is the graph of a function. □

Lemma 3.3. Let S1, . . . , Sr be profinite groups that are all perfect with r > 1. Let H be a
closed subgroup of S1 × · · · × Sr such that the projection H → Si × Sj is surjective for all
1 ≤ i < j ≤ r. Then H = S1 × · · · × Sr.

10



Proof. When the Si are finite, this is [Rib76, Lemma 5.2.2] and follows from Goursat’s lemma.
The general case follows directly from the finite group case since H is closed. □

Lemma 3.4. Let Λ1 be the set of nonzero prime ideals of A of norm at least 4. Then the
projection H →

∏
λ∈Λ1

SL2(Aλ) is surjective.

Proof. Let I be any finite nonempty subset of Λ1 with cardinality at least 2. The group
SL2(Aλ) is perfect for all λ ∈ Λ1 by Proposition 2.10(i). For any two distinct λ1, λ2 ∈ I, the
projection H → SL2(Aλ1)× SL2(Aλ2) is surjective by Lemma 3.2. Therefore, the projection
H →

∏
λ∈I SL2(Aλ) is surjective by Lemma 3.3. The lemma follows by increasing the set I

and using that H is a closed subgroup of SL2(Â) =
∏

λ SL2(Aλ). □

Lemma 3.5. Let Λ2 be the set of nonzero prime ideals of A of norm at most 3. Then the
projection H →

∏
λ∈Λ2

[GL2(Aλ),GL2(Aλ)] is surjective.

Proof. We may assume that Λ2 is nonempty and hence q ∈ {2, 3}. We claim that the
projection

G→
∏
λ∈Λ2

GL2(Aλ)

is surjective. The lemma follow immediately by taking commutator subgroups.
Suppose on the contrary that the claim fails. Then there is a minimal nonempty set

Λ′
2 ⊆ Λ2 for which G→

∏
λ∈Λ′

2
GL2(Aλ) is not surjective and we denote its image by B. For

any λ ∈ Λ′
2, we have Gλ = GL2(Aλ) by (a) and (d), and hence |Λ′

2| ≥ 2.
Fix a place λ1 ∈ Λ′

2 and define the groups B1 := GL2(Aλ1) and B2 :=
∏

λ∈Λ′
2−{λ1}GL2(Aλ).

We can view B as a subgroup of B1 × B2. The projections pi : B → Bi are surjective by
the minimality of Λ′

2. Let N1 and N2 be the kernels of p2 and p1, respectively. We can
view Ni as a subgroup of Bi and hence N1 × N2 ⊆ B. The image of the quotient map
G→ B1/N1 ×B2/N2 is the graph of an isomorphism B1/N1

∼−→ B2/N2 by Goursat’s lemma
([Rib76, Lemma 5.2.1]).

If B1/N1 or B2/N2 is trivial, then N1 = B1 and N2 = B2 and hence B ⊇ B1 × B2 =∏
λ∈Λ′

2
GL2(Aλ) which contradicts our choice of Λ′

2.

So we may assume each Ni is a proper closed normal subgroup of Bi. There are thus proper
closed normal subgroupsMi of Bi withMi ⊇ Ni such that the image of G→ B1/M1×B2/M2

is the graph of an isomorphism B1/M1
∼−→ B2/M2 of finite simple groups. The group B1 is

prosolvable (this uses that GL2(F2) and GL2(F3) are solvable). Therefore, B1/M1 is a cyclic
group of prime order.

Suppose that q = 3. Using that each Bi/Mi is abelian and Proposition 2.10(i), we find that
M1 ⊇ SL2(Aλ1) and M2 ⊇

∏
λ∈Λ′

2−{λ1} SL2(Aλ). Since the homomorphism G → B1/M1 ×
B2/M2 is not surjective, we deduce that the projection det(G) →

∏
λ∈Λ′

2
A×
λ is not surjective.

This contradicts (d).
Finally suppose that q = 2. We have Λ2 = Λ′

2 = {λ1, λ2} for a unique λ2. Since each
Bi/Mi is abelian and Bi = GL2(Aλi), we have Mi ⊇ [GL2(Aλi),GL2(Aλi)]. By (d), there
is a g ∈ Gλ1λ2 ∩ SL2(Aλ1λ2) whose projection g1 in GL2(Aλ1) has order 2 modulo λ1 and
whose projection in GL2(Aλ2) is the identity matrix. We have g1 ∈ N1 ⊆M1. Using Propo-
sition 2.9(ii), the group SL2(Aλ1) is generated by g1 and [GL2(Aλ1),GL2(Aλ1)]. Therefore,
M1 ⊇ SL2(Aλ1). A similar argument shows that M2 ⊇ SL2(Aλ2). Since the homomorphism
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G → B1/M1 × B2/M2 is not surjective, we deduce that the projection det(G) →
∏

λ∈Λ′
2
A×
λ

is not surjective. This contradicts (d). □

Define B1 :=
∏

λ∈Λ1
SL2(Aλ) and B2 :=

∏
λ∈Λ2

[GL2(Aλ),GL2(Aλ)]. We have a natural
inclusion

H ⊆ [GL2(Â),GL2(Â)] =
∏

λ∈Λ1∪Λ2

[GL2(Aλ),GL2(Aλ)] = B1 ×B2,

where we have used Proposition 2.10(i). The projections H → B1 and H → B2 are surjective
by Lemmas 3.4 and 3.5.

Suppose H is a proper subgroup of B1 × B2. By Goursat’s lemma ([Rib76, Lemma
5.2.1]), there are closed proper normal subgroups Ni of Bi for which we have an isomorphism
B1/N1

∼= B2/N2. This implies that there is a finite simple group Q that shows up as
a quotient of both B1 and B2. The group B1 is perfect by Proposition 2.10(i) so Q is
nonabelian. However, the group B2 is prosolvable (since GL2(F2) and GL2(F3) are solvable)

and hence Q is cyclic. This gives a contradiction and thus H = B1×B2 = [GL2(Â),GL2(Â)].

Finally when q > 2, we have [GL2(Â),GL2(Â)] = SL2(Â) by Theorem 2.9(i).

4. Local fields and the image of inertia

Fix a nonzero prime ideal p of A. Let K be a finite separable extension of Fp which we
consider as an A-field via the inclusions A ⊆ Fp ⊆ K. The integral closure of Ap in K is
a complete discrete valuation ring O whose maximal ideal we will denote by m. Define the
residue field F := O/m.

Let v : K× → Z be the discrete valuation corresponding to O normalized so that v(K×) =
Z and we set v(0) = +∞. We will also denoted by v the corresponding Q-valued extension
of v to a fixed separable closure Ksep of K. Let IK be the inertia subgroup of GalK =
Gal(Ksep/K) and let Kun be the maximal unramified extension of K in Ksep.
Let ϕ : A→ K{τ} be a Drinfeld A-module of rank r. We shall say that ϕ is defined over O

if ϕa ∈ O{τ} for all a ∈ A. The Drinfeld module ϕ has stable reduction (of rank r′) if there
exists a Drinfeld module ϕ′ : A → K{τ} defined over O such that ϕ′ and ϕ are isomorphic
over K and the reduction of ϕ′ modulo m is a Drinfeld module A → F{τ} of rank r′ ≥ 1.
Recall that ϕ has good reduction if it has stable reduction of rank r.
Suppose that ϕ has rank 2. The j-invariant of ϕ is jϕ := aq+1

1 /a2 ∈ K, where ϕt =
t+a1τ+a2τ

2. The Drinfeld module ϕ has potentially good reduction if and only if v(jϕ) ≥ 0,
cf. [Ros03, Lemma 5.2].

4.1. Image of inertia. Let ϕ : A→ K{τ} be a Drinfeld A-module of rank 2. For a nonzero
ideal a ⊆ A, the Galois action on the a-torsion of ϕ gives rise to a Galois representation
ρϕ,a : GalK → GL2(A/a). If ϕ has good reduction and p ∤ a, then ρϕ,a(IK) = 1. We now
study the group ρϕ,p(IK) when ϕ has good reduction.

Proposition 4.1. Assume that K/Fp is unramified. Let ϕ : A→ K{τ} be a Drinfeld module
of rank 2 that has good reduction. Then one of the following hold:

(a) ρϕ,p(IK) is conjugate in GL2(Fp) to a subgroup of
{
( a b0 1 ) : a ∈ F×

p , b ∈ Fp

}
,

(b) ρϕ,p(IK) is a cyclic subgroup of GL2(Fp) of order q
2 deg p − 1.
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Proof. We summarize material from §2 of [PR09b]. After replacing ϕ by an isomorphic
Drinfeld module, we may assume that ϕ is defined over O and that reducing modulo m gives
a Drinfeld module of rank 2. Then ϕ[p] extends to a finite flat group scheme over O. The
connected and étale components of ϕ[p] give an exact sequence 0 → ϕ[p]0 → ϕ[p] → ϕ[p]ét →
0 of finite flat group schemes. Taking Ksep-points gives a short exact sequence

0 → ϕ[p]0(Ksep) → ϕ[p](Ksep) → ϕ[p]ét(Ksep) → 0(4.1)

of Fp-vector spaces that is GalK-equivariant. Let h be the height of the Drinfeld module ϕ
modulo p. The Fp-vector space ϕ[p]

◦(Ksep) has dimension h.
The action of IK on ϕ[p]ét(Ksep) is trivial from the definition of an étale group scheme. So

when h = 1, (a) follows from the exact sequence (4.1). We may now suppose that h = 2 and
hence ϕ[p]ét(Ksep) = 0. Property (b) then follows from [PR09b, Proposition 2.7(ii)] which
shows that IK acts on ϕ[p]0(Ksep) via a fundamental character whose image is cyclic of order
q2 deg p − 1. □

The following proposition, which we prove in §4.2, gives constraints on ρϕ,a(IK) when ϕ
has stable and bad reduction.

Proposition 4.2. Let ϕ : A→ K{τ} be a Drinfeld module of rank 2 that has stable reduction
of rank 1. Consider an ideal a = pea′, where e ≥ 0 is an integer and a′ is a nonzero ideal of
A that is relatively prime to p.

(i) The group ρϕ,a(GalK) is conjugate in GL2(A/a) to a subgroup of{
( a b0 c ) : a ∈ (A/a)× with a ≡ 1 (mod a′), b ∈ A/a, c ∈ F×

q

}
.(4.2)

(ii) The cardinality of ρϕ,a(IK) is divisible by the denominator of
v(jϕ)

N(a)
∈ Q in lowest

terms.
(iii) If gcd(v(jϕ), q) = 1 and e ≤ 1, then ρϕ,a(IK) contains a subgroup that is conjugate in

GL2(A/a) to {( 1 b
0 1 ) : b ∈ A/a}.

4.2. Proof of Proposition 4.2. After possibly replacing ϕ with a K-isomorphic Drinfeld
module, we may assume that ϕ is defined over O and that the reduction of ϕ modulo m is a
Drinfeld module of rank 1. We have jϕ ̸= 0 since ϕ has stable reduction of rank 1.
For a Drinfeld module ψ : A → K{τ}, a ψ-lattice is a finitely generated projective A-

submodule Γ of ψKsep that is discrete and is stable under the action of GalK . By discrete we
mean that any disk of finite radius in Ksep, with respect to the valuation v, contains only
finitely many elements of Γ.

Associated to ϕ, we now recall the construction of its Tate uniformization; it is a pair
(ψ,Γ) which consists of a Drinfeld module ψ : A → K{τ} of rank 1 defined over O and a
ψ-lattice Γ of rank 1. For details see Proposition 7.2 of [Dri74] and its proof; for further
details see [Leh09, Chapter 4 §3]. There exists a unique Drinfeld module ψ : A → K{τ}
defined over O of rank 1 and a unique series u = τ 0 +

∑∞
i=1 aiτ

i ∈ O{{τ}} with ai ∈ m and
ai → 0 in K, such that

(4.3) uψa = ϕau

for all a ∈ A. We can identify u with the power series u(x) = x +
∑∞

i=1 aix
qi and one can

show that u(z) converges for all z ∈ Ksep. By considering the analytic properties of u and
13



(4.3), one shows that the map
ψKsep → ϕKsep, z 7→ u(z)(4.4)

is a surjective homomorphism of A-modules whose kernel Γ is a ψ-lattice. Since ϕ has rank
2 and has stable reduction of rank 1, the A-module Γ has rank 2− 1 = 1.
Fix an a ∈ A for which a = (a). From the homomorphism (4.4) of A-modules, we obtain

an isomorphism

(4.5) ψ−1
a (Γ)/Γ

∼−→ ϕ[a] = ϕ[a], z + Γ 7→ u(z)

of A-modules that is GalK-equivariant. We also have a GalK-equivariant short exact sequence
of A-modules:

(4.6) 0 → ψ[a] = ψ−1
a (0) → ψ−1

a (Γ)/Γ
ψa−→ Γ/aΓ → 0.

So by combining (4.5) and (4.6), we obtain a short exact sequence

0 → ψ[a] → ϕ[a] → Γ/aΓ → 0(4.7)

of A-modules that is GalK-equivariant.
The A/a-module ψ[a] is free of rank 1 since ψ has rank 1. Define the character χ1 :=

ρψ,a : GalK → AutA(ψ[a]) = (A/a)×. Since A is a PID, Γ is a free A-module of rank 1.
The Galois action on Γ is thus given by a character χ2 : GalK → AutA(Γ) = A× = F×

q .
The character χ2 also describes the Galois action on the quotient Γ/aΓ. From (4.7) we may
assume, after making an appropriate choice of basis of ϕ[a], that

ρϕ,a(σ) =
(
χ1(σ) ∗

0 χ2(σ)

)
holds for all σ ∈ GalK .

To complete the proof of (i), it remains to show that χ1(σ) ≡ 1 (mod a′) for all σ ∈ IK .
Equivalently, we need to show that the action of IK on ψ[a′] is trivial. It thus suffices to
prove that ψ has good reduction. We have ψt ≡ ϕt (mod m) by reducing (4.3) modulo m.
This proves that ψ has good reduction since ϕ modulo m is a Drinfeld module of rank 1 and
ψ has rank 1.

We now prove (ii). Fix a generator γ of the A-module Γ and choose a z ∈ Ksep for which
ψa(z) = γ.

Lemma 4.3. We have v(z) =
v(jϕ)

(q−1)N(a)
.

Proof. First suppose that v(z) ≥ 0. Since ψa has coefficients inO, we have v(γ) = v(ψa(z)) ≥
0. Since γ is nonzero and 0 = u(γ) = γ +

∑∞
i=1 aiγ

qi , we must have v(γ) ≥ v(aiγ
qi) for some

i ≥ 1 with ai ̸= 0. So v(γ) ≥ v(ai) + qiv(γ) > qiv(γ) which is impossible since v(γ) ≥ 0.
Therefore, v(z) < 0 and hence

v(γ) = v(ψa(z)) = v(zq
deg a

) = qdeg av(z) = N(a)v(z).

By [Ros03, Lemma 5.3], we have v(γ) = v(jϕ)/(q − 1) and the lemma follows. □

Let d be the denominator of v(jϕ)/N(a) ∈ Q. Let Kt be the maximal tamely ramified
extension of K in Ksep. Let L be the minimal extension of Kt in Ksep for which Gal(Ksep/L)
fixes z + Γ. The Galois group Gal(Ksep/Kt) acts trivially on Γ since the Galois action
on Γ is given by χ2. Therefore, L = Kt(z). From the isomorphism (4.5), we find that
Kt(z) ⊆ Kt(ϕ[a]).
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A rational number occurs as v(α) for some nonzero α ∈ Kt if and only if its denominator is
relatively prime to q. By Lemma 4.3, we find that d is the minimal positive integer for which
dv(z) ∈ v(Kt − {0}). Therefore, [Kt(z) : Kt] is divisible by d. So d divides [Kt(ϕ[a]) : Kt]
and hence also divides |ρϕ,a(IK)|. This completes the proof of (ii).
It remains to prove (iii), so assume gcd(v(j∞), q) = 1 and e ≤ 1. Let G ⊆ GL2(A/a) be

the subgroup (4.2). Since e ≤ 1, the group B := {( 1 b
0 1 ) : b ∈ A/a} is a p-Sylow subgroup of

G, where p is the prime dividing q. We have ρϕ,a(Ip) ⊆ G from (i), so it suffices to show that
ρϕ,a(Ip) contains a subgroup of order N(a) (since this will be a p-Sylow subgroup of G and
hence conjugate to B). The group ρϕ,a(Ip) contains a subgroup of order N(a) by (i) and our
assumption gcd(v(j∞), q) = 1.

5. Frobenius polynomials

Consider a Drinfeld A-module ϕ : A → F{τ} of rank r. Take any nonzero prime ideal p
of A for which ϕ has good reduction. So after replacing ϕ by an isomorphic Drinfeld, we
may assume that the coefficients of ϕ are integral at p and that reducing modulo p gives a
Drinfeld module ϕ : A→ Fp{τ} of rank r.

Let Pϕ,p(x) ∈ A[x] be the characteristic polynomial of the Frobenius endomorphism πp :=

τdeg p ∈ EndFp(ϕ); it is the degree r polynomial that is a power of the minimal polynomial
of πp over F . The following is an easy consequence of [Gos96, Theorem 4.12.12].

Proposition 5.1. Let p be a nonzero prime ideal of A for which ϕ has good reduction. For
any nonzero ideal a of A that is relatively prime to p, ρϕ,a is unramified at p and

Pϕ,p(x) ≡ det(xI − ρϕ,a(Frobp)) (mod a).

We will need to explicitly know some Frobenius polynomials in order to prove Theorem 1.4.

Lemma 5.2. With q fixed, let ϕ : A→ F{τ} be the rank 2 Drinfeld module from Theorem 1.4.

(i) If q ̸= 2, then

Pϕ,(t−c)(x) = x2 − x+ (t− c)

for all nonzero c ∈ Fq.
(ii) If q = 3, then Pϕ,(t2+t+2)(x) = x2 + 2x+ t2 + t+ 2.
(iii) If q = 2, then Pϕ,(t)(x) = x2 + t and Pϕ,(t+1)(x) = x2 + x+ t+ 1.

Proof. We first assume that q ̸= 2 and prove (i). Define the prime ideal q := (t − c) of
A; note that ϕ has good reduction at q since c is nonzero. The image of t in Fq is c, so

the reduction of ϕ modulo q is the Drinfeld A-module ϕ : A → Fq{τ} = Fq{τ} for which

t 7→ c+ τ − cq−1τ 2 = c+ τ − τ 2. The j-invariant jϕ of ϕ is −1. By [Gek08, Proposition 2.11],

the constant term of Pϕ,(t−c)(x) is equal to −(−1)−1(t − c) = t − c. We have Pϕ,(t−c)(x) =
x2 − ax+ (t− c) for a unique a ∈ A. By [Gek08, Proposition 2.14(ii)] (with n = 1), we have
a ∈ Fq and a = −1−1jϕ = 1. Therefore, Pϕ,(t−c)(x) = x2 − x+ (t− c).
Parts (ii) and (iii) both were found using the algorithm outlined in [Gek08, §3.4] to compute

Pϕ,p. □
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6. Determinant of the image of Galois

Fix polynomials a1 and a2 in A with a2 ̸= 0, and let d be the degree of a2. Let ϕ : A→ F{τ}
be the Drinfeld A-module of rank 2 for which ϕt = t+ a1τ + a2τ

2. The following result gives

an explicit expression for the index of det(ρϕ(GalF )) in Â
×.

Theorem 6.1. Let ζ ∈ F×
q be the leading coefficient of (−1)d+1a2 in A = Fq[t] and let e be

the order of ζ in F×
q . Then

[Â× : det(ρϕ(GalF ))] = gcd(d− 1, (q − 1)/e).

We also give a condition that can be used to show that the image of ρϕ,a has maximal
determinant.

Proposition 6.2. Let a be a nonzero ideal of A and define

g := gcd
(
{d− 1, q − 1} ∪ {vp(a2) : p ∤ a nonzero prime ideal of A}

)
.

If g = 1, then det(ρϕ,a(GalF )) = (A/a)×.

We will prove Theorem 6.1 and Proposition 6.2 in §6.2.

6.1. Galois image for rank 1 Drinfeld modules. Fix a nonzero ∆ ∈ A and let ψ : A→
F{τ} be the Drinfeld A-module of rank 1 for which ψt = t +∆τ . For each nonzero ideal a
of A, ψ[a] is a free A/a-module of rank 1 with a Galois action that is described by a Galois
representation

ρψ,a : GalF → AutA(ψ[a]) = (A/a)×.

Taking the inverse limit, we obtain an isomorphism ρψ : GalF → Â×. We now state a
theorem of Gekeler that describes the index of the images of ρψ,a and ρψ.

Theorem 6.3. Let d be the degree of ∆. Let ζ ∈ F×
q be the leading coefficient of (−1)d∆

and let e be its order in F×
q .

(i) Take any nonzero ideal a of A. The integer [(A/a)× : ρψ,a(GalF )] is the greatest
common divisor of d− 1, (q − 1)/e, and the integers vp(∆) for nonzero prime ideals
p ∤ a of A.

(ii) The group ρψ(GalF ) has finite index in Â× and

[Â× : ρψ(GalF )] = gcd(d− 1, (q − 1)/e).

Proof. Before citing Gekeler’s result (Theorem 3.13 of [Gek16]), we need to match his as-
sumptions and notation. The representation ρψ,a depends only on a and the class of ∆ in
F×/(F×)q−1; this can be deduced for example from [Gek16, Lemma 1.8]. So after dividing
∆ by a suitable (q − 1)-th power of a monic polynomial, we may assume that

∆ = (−1)dζP k1
1 · · ·P ks

s

where the Pi ∈ A are distinct monic irreducible polynomials with 1 ≤ ki < q − 1. Note that
this does not change the gcds in (i) and (ii).

We may order the irreducible polynomials so that P1, . . . , Pr divide a and Pr+1, . . . , Ps are
relatively prime to a. Choose a generator c of the cyclic group F×

q . We have (−1)dζ = ck0

and ζ = ck
∗
0 for unique 0 ≤ k0, k

∗
0 < q − 1. We have k∗0 = k0 when (−1)d = 1, i.e., when q is

16



even or d is even. When q is odd and d is odd, we have k∗0 ≡ (q − 1)/2 + k0 (mod q − 1).
Theorem 3.13 of [Gek16] now says that

[(A/a)× : ρψ,a(GalF )] = gcd(d− 1, q − 1, k∗0, kr+1, . . . , ks).

Since ζ = ck
∗
0 and c has order q−1 in F×

q , we have e = (q−1)/ gcd(q−1, k∗0). So gcd(q−1, k∗0) =
(q − 1)/e and hence

[(A/a)× : ρψ,a(GalF )] = gcd(d− 1, (q − 1)/e, kr+1, . . . , ks).

Part (i) now follows since the set {kr+1, . . . , ks} consists of those nonzero integers of the form
vp(∆) for some nonzero prime ideal p ∤ a of A.
When a is divisible by all the irreducible polynomials P1, . . . , Ps, we have simply [(A/a)× :

ρψ,a(GalF )] = gcd(d − 1, (q − 1)/e). Part (ii) is now immediate since ρψ(GalF ) is a closed

subgroup of Â×. □

6.2. Proofs of Theorem 6.1 and Proposition 6.2. Let ψ : A → F{τ} be the rank 1
Drinfeld module for which ψt = t− a2τ . By Corollary 4.6 in [Ham93], we have

det ρϕ = ρψ.(6.1)

Therefore, [Â× : det(ρϕ(GalF ))] = [Â× : ρψ(GalF )] and hence Theorem 6.1 follows from
Theorem 6.3(ii) with ∆ := −a2.

We now prove Proposition 6.2. We have det ρϕ,a = ρψ,a by (6.1). With ∆ := −a2, Theo-
rem 6.3(i) implies that [(A/a)× : det(ρϕ,a(GalF ))] divides g. In particular, det(ρϕ,a(GalF )) =
(A/a)× if g = 1.

7. Irreducibility

Let ϕ : A → F{τ} be a Drinfeld A-module of rank 2. Suppose that λ is a nonzero prime
ideal of A for which

• ρϕ,λ : GalF → GL2(Fλ) is reducible,
• ϕ has stable reduction at λ.

After conjugating ρϕ,λ, we may assume that

ρϕ,λ(σ) =
(
χ1(σ) ∗

0 χ2(σ)

)
(7.1)

for all σ ∈ GalF , where χ1, χ2 : GalF → F×
λ are characters. In this section, we will give a

bound on the norm of λ.

Lemma 7.1. Set n := (q − 1)2(q + 1).

(i) The characters χn1 and χn2 are both unramified at any nonzero prime ideal p ̸= λ of
A.

(ii) One of the characters χn1 or χn2 is unramified at λ.

Proof. Take any nonzero prime ideal p of A. We shall view ϕ as being defined over Fp and
hence ρϕ,λ, χ1 and χ2 are representations of GalFp . Let Ip be an inertia subgroup of GalFp .
Suppose that p = λ and ϕ has good reduction. The cardinality of the group ρϕ,λ(GalF )

divides qdeg λ(qdeg λ−1)2 by (7.1) and hence ρϕ,λ(GalF ) cannot have a subgroup of cardinality

q2 deg λ − 1. Therefore, property (a) of Proposition 4.1 holds and this implies that χ1 or χ2

is unramified at λ. Now suppose that p = λ and ϕ does not have good reduction. By
17



assumption on λ, the Drinfeld module ϕ has stable reduction of rank 1. Proposition 4.2(i)
implies that one of χq−1

1 or χq−1
2 is unramified at λ. We have thus proved (ii) since q − 1

divides n.
We may now assume that p ̸= λ. We have ϕt = t+ a1τ + a2τ

2 with a1 ∈ F and a2 ∈ F×.
Define m := min{vp(ai)/(qi − 1) : 1 ≤ i ≤ 2} and take 1 ≤ j ≤ 2 maximal such that
vp(aj)/(q

j − 1) = m.

Let K be the splitting field of xq
j−1 = aj over Fp and fix a root b ∈ K. The extension

K/Fp is finite and Galois. The ramification index e := e(K/Fp) of the extension K/Fp

divides qj − 1. Let IK be the inertia subgroup of GalK ⊆ GalFp . For any σ ∈ Ip, we have

σe ∈ IK . It thus suffices to prove that χ
n/e
1 (IK) = 1 and χ

n/e
2 (IK) = 1.

Let O be the integral closure of Ap in K. Let ϕ′ : A → K{τ} be the Drinfeld module for
which ϕ′

t = bϕtb
−1. The Drinfeld module ϕ′ is isomorphic to ϕ over K.

Suppose j = 2. Then ϕ′ is defined over O and has good reduction. Since ϕ′ has good
reduction and p ̸= λ, we have ρϕ′,λ(IK) = 1. Therefore, χ1(IK) = 1 and χ2(IK) = 1. Since e

divides q2 − 1 and hence n, we have χ
n/e
1 (IK) = 1 and χ

n/e
2 (IK) = 1.

Suppose that j = 1. Then ϕ′ is defined over O and has stable reduction of rank 1. By
Proposition 4.2(i) and λ ̸= p, we have χq−1

1 (IK) = 1 and χq−1
2 (IK) = 1. Since n/e is divisible

by n/(q − 1) = (q − 1)(q + 1), we have χ
n/e
1 (IK) = 1 and χ

n/e
2 (IK) = 1. □

For a monic polynomial P (x) ∈ A[x] and a positive integer n ≥ 1, we let P (n)(x) ∈ A[x] be
the monic polynomial whose roots (with multiplicity), in some algebraic closure, are precisely
the roots of P (x) raised to the n-th power.

Lemma 7.2. Let n be a positive integer for which parts (i) and (ii) of Lemma 7.1 hold.

Then there is a ζ ∈ F×
λ such that P

(n)
ϕ,p (ζ

deg p) = 0 in Fλ for all nonzero prime ideals p ̸= λ of
A for which ϕ has good reduction.

Proof. By assumption, there is an i ∈ {1, 2} such that χni is unramified at all nonzero prime
ideals of A.
We claim that χni (Gal(F sep/Fq(t)) = 1. Let L be the minimal extension of Fq(t) in

F sep for which χni (Gal(F sep/L)) = 1. The extension L/Fq(t) corresponds to a morphism

π : C → P1
Fq

of smooth projective and irreducible curves over Fq. From our assumptions on

χni , π is unramified away from all points of P1
Fq

except perhaps ∞. The morphism π has

degree N := [L : Fq(t)] which is relatively prime to q. Since L/Fq(t) is tamely ramified, the
Riemann–Hurwitz theorem implies that 2g− 2 = N(2 · 0− 2) +

∑s
i=1(ei− 1), where g is the

genus of C and the ei ≥ 1 are the ramification indices at the s points of C lying over ∞.
Since

∑s
i=1 ei = N , we have 2g = 2−N − s. Since N and s are positive integers and g ≥ 0,

we must have N = 1. This proves the claim.
From the claim χni factors through a cyclic Galois group Gal(FqdF/F ) for some d ≥ 1. So

there is a ζ ∈ F×
λ for which χni (Frobp) = ζdeg p for all nonzero prime ideals p of A. If p ̸= λ and

ϕ has good reduction at p, then χni (Frobp) = ζdeg p is a root of det(xI−ρϕ,λ(Frobp)
n) ≡ P

(n)
ϕ,p (x)

(mod λ). □

Proposition 7.3. Let n be a positive integer for which parts (i) and (ii) of Lemma 7.1 hold.
Let d ≥ 1 be an integer for which ϕ has good reduction at multiple nonzero prime ideals of
A with the same degree d. Then deg λ ≤ 2nd.
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Proof. Let p1 and p2 be distinct prime ideals of A with deg p1 = deg p2 = d for which ϕ
has good reduction. We may assume that λ /∈ {p1, p2} since otherwise deg λ = d and the

proposition is immediate. For each 1 ≤ i ≤ 2, set Qi(x) := P
(n)
ϕ,pi

(x) ∈ A[x].
Let r ∈ A be the resultant of the polynomials Q1(x) and Q2(x). By our choice of n and

Lemma 7.2, the polynomials Q1(x) and Q2(x) have a common root modulo λ and hence
r ≡ 0 (mod λ).

Let L/F be the splitting field of Pϕ,p1(x) and Pϕ,p2(x). Let | · |∞ be an absolute value
on L that satisfies |a|∞ = qdeg a for all nonzero a ∈ A. For any root π ∈ L of Pϕ,pi(x),
we have |π|∞ = N(pi)

1/2 = q(deg pi)/2 = qd/2, cf. [Gos96, Theorem 4.12.8(5)]. So for any
root π ∈ L of Qi(x), we have |π|∞ = qnd/2. Recall that the resultant r is the product of
π1−π2 as we vary over all roots π1 and π2 in L of Q1(x) and Q2(x), respectively. Therefore,
|r|∞ ≤ (qnd/2)4 = q2nd.
We claim that Q1(x) and Q2(x) do not have a common roots in L. To the contrary suppose

that π ∈ L is a root of Q1(x) and Q2(x). Take any i ∈ {1, 2}. From [Gos96, Theorem
4.12.8(1)] applied to the reduction of ϕ modulo pi, there is a unique place of F (π) for which
π has a zero and it lies over the place of pi. We get a contradiction since p1 ̸= p2 and the
claim follows.

From the claim, we have r ̸= 0. Since r is a nonzero element of A with |r|∞ ≤ q2nd, we
have deg r ≤ 2nd. Since r is nonzero and r ≡ 0 (mod λ), we have deg λ ≤ deg r. Therefore,
deg λ ≤ deg r ≤ 2nd. □

8. Hilbert irreducibility

Fix an integer r ≥ 2 and a nonzero ideal a of A. For any a = (a1, . . . , ar) ∈ Ar with
ar ̸= 0, we let ϕ(a) : A 7→ F{τ} be the Drinfeld A-module of rank r for which ϕ(a)t =
t+ a1τ + · · ·+ ar−1τ

r−1 + arτ
r and we let

ρϕ(a),a : GalF → GLr(A/a)

be the corresponding Galois representation. The goal of this section is to prove the following
theorem which says that ρϕ(a),a is surjective for “most” a.

Theorem 8.1. The set of a ∈ Ar such that ar ̸= 0 and ρϕ(a),a(GalF ) = GLr(A/a) has density
1.

8.1. A version of Hilbert’s irreducibility theorem. Fix a positive integer r and a
nonempty open subscheme U of Ar

F . Consider a continuous and surjective representation

ρ : π1(U) → G,

where π1(U) is the étale fundamental group of U and G is a finite group. Here we are
suppressing the base point of our fundamental group and hence the representation ρ is only
determined up to conjugacy by an element in G.

Take any point u ∈ U(F ) ⊆ F r. Specialization by u gives rise to a continuous representa-
tion

ρu : GalF
u∗−→ π1(U)

ρ−→ G

that is uniquely determined up to conjugacy in G. In particular, the group ρu(GalF ) ⊆ G
is uniquely determined up to conjugacy in G. We will show that ρu(GalF ) = G for all
u ∈ U(F ) ∩ Ar away from a set of density 0 after first proving an easy lemma.
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Lemma 8.2. Let I be a nonzero ideal of A and fix a subset B ⊆ (A/I)r. Then the set of
a ∈ Ar whose image modulo I lies in B has density |B|/N(I)r.

Proof. Consider a positive integer d. Define the reduction map φd : A
r(d) → (A/I)r; it is

a homomorphism of finite additive groups. By taking d sufficiently large, we may assume
that φd is surjective. Therefore, the cardinality of φ−1

d (b) is the same for all b ∈ (A/I)r. In
particular, |φ−1

d (B)|/|Ar(d)| = |B|/|(A/I)r| for all sufficiently large d. The lemma is now
immediate. □

Theorem 8.3. The set of u ∈ U(F ) ∩ Ar for which ρu(GalF ) = G has density 1.

Proof. For a fixed algebraic closure F of F , we define the group Gg := ρ(π1(UF )); it is
a closed and normal subgroup of G. Let F ′/F be the minimal extension in F for which
Gg = ρ(π1(UF ′)). The extension F ′/F is Galois and we have a natural short exact sequence

1 → Gg → G
π−→ Gal(F ′/F ) → 1.

Take any proper subgroup H of G and let S be the set of u ∈ U(F )∩Ar for which ρu(GalF )
is conjugate in G to a subgroup of H. We will prove that S has density 0. This will prove
the theorem since G has only finitely many proper subgroups. We have π(ρu(GalF )) =
Gal(F ′/F ) for all u ∈ U(F ), so we may assume that π(H) = Gal(F ′/F ) since otherwise
S is empty. We thus have H ∩ Gg ⊊ Gg since H is a proper subgroup of G. Define
C :=

⋃
g∈G gHg

−1. Since Gg is a normal subgroup of G and π(H) = Gal(F ′/F ), we have

C ∩Gg =
⋃
g∈G

g(H ∩Gg)g
−1 =

⋃
g∈Gg

g(H ∩Gg)g
−1.

Since H ∩Gg is a proper subgroup of Gg, we have C ∩Gg ⊊ Gg by Jordan’s lemma ([Ser03,
Theorem 4’]).

There is a ring R := A[1/n] ⊆ F with a nonzero n ∈ A, an R-subscheme U ⊆ Ar
R, and a

representation
ϱ : π1(U) → G

so that UF = U and base changing ϱ by F gives ρ. Take any nonzero prime ideal p of A that
does not divide n. We will also denote the prime ideal pR ofR by p; we haveR/p = A/p = Fp.
For each u ∈ U(Fp), specialization gives a homomorphism u∗ : GalFp → π1(U) and we denote
by Frobu the image of the N(p)-power Frobenius. Note that Frobu in π1(U) is uniquely
determined up to conjugacy. Define the set

Ωp := {u ∈ U(Fp) : ϱ(Frobu) ∈ G− C}.
Now take any u ∈ S. We have ρu(GalF ) ⊆ C. If u modulo p lies in U(Fp), then ρu is
unramified at p and ρu(Frobp) lies in the same conjugacy class of G as ϱ(Frobu). So if u
modulo p lies in Ωp, then ρu(Frobp) lies in G − C which contradicts that ρu(GalF ) ⊆ C.
Therefore, the image of S modulo p lies in Frp − Ωp. By Lemma 8.2, we have

δ(S) ≤
∏
p∈P

|Frp − Ωp|
|Frp|

=
∏
p∈P

(
1− |Ωp|

N(p)r

)
,

where P is any finite set of nonzero prime ideals of A that do not divide n. So to show
that S has denisty 0 it suffices to prove that there is a positive constant c < 1 such that
1− |Ωp|/N(p)r < c for infinitely many prime ideals p of A.
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Now take a nonzero prime ideal p of A that splits completely in F ′ and does not divide n.
Our assumption that p splits completely in F ′ implies that ϱ(π1(UFp)) ⊆ Gg.
We claim that ϱ(π1(UFp

)) = Gg for all but finitely many such p. Let R′ be the integral

closure of R in F ′. We can base change ϱ to get a surjective representation ϱ′ : π1(UR′) → Gg.
To prove the claim, it suffices to show that ϱ′(π1((UR′)FP

)) = ϱ′(π1(UFP
)) equals Gg for all

but finitely many nonzero prime ideals P of R′. The representation ϱ′ corresponds to an
étale cover Y → UR′ of R′-schemes so that YF ′ and (UR′)F ′ = UF ′ are both geometrically
irreducible. For nonzero prime ideals P of R′, we have an étale cover YFP

→ UFP
of degree

|Gg|. The claim follows from YFP
and UFP

being geometrically irreducible for all but finitely
many P, cf. [Gro66, 9.7.8].
So by excluding a finite number of p, we may assume that ϱ(π1(UFp)) = ϱ(π1(UFp

)) = Gg.

Then an explicit equidistribution result like [Ent21, Theorem 3] implies that

|Ωp| = |{u ∈ U(Fp) : ϱ(Frobu) ∈ Gg − (C ∩Gg)}| = |Gg−(C∩Gg)|
|Gg | N(p)r +O(N(p)r−1/2),

where the implicit constant does not depend on p. To apply [Ent21, Theorem 3] we are using
that the “complexity” of YFP

→ UFP
can be bounded independent of the nonzero prime ideal

P of R′ since they arise from a single morphism Y → UR′ .
Therefore, 1− |Ωp|/N(p)r = |C ∩Gg|/|Gg|+O(N(p)−1/2). Since C ∩Gg ⊊ Gg, there is a

constant c < 1 such that 1− |Ωp|/N(p)r < c holds for all but finitely many prime ideals p of
A that split completely in F ′. The result follows since there are infinitely many prime ideals
p of A that split completely in F ′. □

8.2. Proof of Theorem 8.1. Define the F -algebra R := F [b1, . . . , br, 1/br], where b1, . . . , br
are indeterminant variables over F . Let ϕ : A → R{τ}, α 7→ ϕα be the homomorphism of
Fq-algebras for which

ϕt = t+ b1τ + · · ·+ br−1τ
r−1 + brτ

r;(8.1)

it is a Drinfeld A-module of rank r over the scheme U := SpecR. Note that U is a nonempty
open subscheme of Ar

F = SpecF [b1, . . . , br]. The a-torsion of ϕ gives rise to a representation

ρϕ,a : π1(U) → GLr(A/a)

like before.
Take any a = (a1, . . . , ar) ∈ U(F ) ⊆ F r. We have ar ̸= 0, so (8.1) with bi replaced

by ai gives a Drinfeld A-module ϕ(a) : A → F{τ} of rank r. Specializing ρϕ,a at a gives a
representation GalF → GLr(A/a) that is isomorphic to ρϕ(a),a. Theorem 8.1 will thus follow
from Theorem 8.3 and the following lemma.

Lemma 8.4. We have ρϕ,a(π1(U)) = GLr(A/a).

Proof. Let V be the closed subvariety of U defined by the equation br = 1, i.e., corresponding
to the prime ideal P = (br − 1) of R. Specialization ρϕ,a at P gives a representation

ϱ : π1(V ) → GLr(A/a).

It suffices to prove that ϱ is surjective. The representation ϱ agrees with ρψ,a where ψ : A→
R′{τ}, α 7→ ψα is the Drinfeld A-module with ψt = t + b1τ + · · · + br−1τ

r−1 + τ r and
R′ = F [b1, . . . , br−1].

Set K := F (b1, . . . , br−1). Viewing ψ as a Drinfeld A-module over K, it thus suffices to
show that Gal(K(ψ[a])/K) ∼= GLr(A/a), where ψ[a] is the a-torsion arising from ψ in a
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fixed separable closure of K. In [Bre16, Theorem 6], Breuer proves that Gal(K(ψ[a])/K) ∼=
GLr(A/a) which had been earlier conjectured by Abhyankar. □

9. Sieving

Let B be the set of a = (a1, a2) ∈ A2 with a2 ̸= 0 for which the following hold:

• ρϕ(a),λ(GalF ) = GL2(Aλ) for all nonzero prime ideals λ of A,

• the commutator subgroup of ρϕ(a)(GalF ) ⊆ GL2(Â) is equal to [GL2(Â),GL2(Â)].

The main goal of this section is to prove the following theorem. We will use it in §9.2 to
quickly prove Theorem 1.2 in the case q ̸= 2.

Theorem 9.1. The set B has density 1.

9.1. Proof of Theorem 9.1. Fix an integer m ≥ 2.

• Let R be the set of (a1, a2) ∈ A2 for which there are at least two distinct nonzero
prime ideals p of A that satisfy deg p > 1, vp(a1) = 0 and vp(a2) = 1.

• Let Sm be the set of (a1, a2) ∈ A2 for which a1 ̸≡ 0 (mod p) or a2 ̸≡ 0 (mod p) for
all nonzero prime ideals p of A with deg p > m.

• Let Tm be the set of (a1, a2) ∈ A2 for which there are two distinct prime ideals p1
and p2 of A of the same degree d ≤ m/(2(q − 1)2(q + 1)) for which a2 ̸≡ 0 (mod p1)
and a2 ̸≡ 0 (mod p2).

• Let Um be the set of (a1, a2) ∈ A2 with a2 ̸= 0 for which ρϕ(a),λ2(GalF ) = GL2(A/λ
2)

for all nonzero prime ideals λ of A with deg λ ≤ m.

Lemma 9.2. For any a ∈ R ∩ Sm ∩ Tm ∩ Um and nonzero prime ideal λ of A, we have
ρϕ(a),λ(GalF ) = GL2(Aλ).

Proof. Take any a = (a1, a2) ∈ R ∩ Sm ∩ Tm ∩ Um and any nonzero prime ideal λ of A. We
have a2 ̸= 0. Define G := ρϕ(a),λ(GalF ); it is a closed subgroup of GL2(Aλ). With R := Aλ,
we will show that G satisfies the conditions of Proposition 2.1. Once we have verified that
the conditions hold, Proposition 2.1 will imply that G = GL2(Aλ).

Since a ∈ R, there is a nonzero prime ideal p ̸= λ of A such that vp(a1) = 0 and
vp(a2) = 1. In particular, ϕ(a) has stable reduction of rank 1 at p. Define the j-invariant

jϕ(a) := aq+1
1 /a2 ∈ F . We have vp(jϕ(a)) = −1. Since vp(a2) = 1 and p ̸= λ, det(G) = A×

λ by
Proposition 6.2. This verifies condition (a) of Proposition 2.1.

Let Ip be an inertia subgroup of GalF for the prime p. Take any i ≥ 1. Since p ̸= λ
and the denominator of vp(jϕ(a))/N(λi) = −1/N(λ)i is N(λ)i, Proposition 4.2 implies that
there is a subgroup of {( 1 b

0 1 ) : b ∈ A/λi} of order N(λ)i that is conjugate in GL2(A/λ
i) to

a subgroup of ρϕ(a),λi(Ip). So after choosing an appropriate basis for ϕ[λi] for all i ≥ 1, we
may assume that {

( 1 b
0 1 ) : b ∈ A/λi

}
⊆ ρϕ(a),λi(GalF ).(9.1)

We thus have ( 1 1
0 1 ) ∈ G and hence condition (e) of Proposition 2.1 holds. With i = 2,

(9.1) implies that condition (c) of Proposition 2.1 holds. If N(λ) = 2, then ρϕ(a),λ2(GalF ) =

GL2(A/λ
2) since a ∈ Um and m ≥ 2; this shows that condition (d) of Proposition 2.1 holds.

It remains to verify that condition (b) of Proposition 2.1 holds, i.e., show that ρϕ(a),λ(GalF ) =
GL2(Fλ). Since a ∈ Um, we may assume that deg λ > m. Since a ∈ Sm, we have
a1 ̸≡ 0 (mod λ) or a2 ̸≡ 0 (mod λ). Therefore, ϕ(a) has stable reduction at λ. Since
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ρϕ(a),λ(GalF ) contains a subgroup of order N(λ) by (9.1), Proposition 2.2 implies that
ρϕ(a),λ(GalF ) ⊇ SL2(Fλ) or ρϕ(a),λ is reducible.

Suppose that ρϕ(a),λ is reducible. Since a ∈ Tm, there are two distinct prime ideals p1 and

p2 of A of the same degree d ≤ m/(2(q − 1)2(q + 1)) for which ϕ(a) has good reduction
at both p1 and p2. By Lemmas 7.1 and 7.3 with n := (q − 1)2(q + 1), we have deg λ ≤
2(q − 1)2(q + 1)d ≤ m. This is a contradiction since deg λ > m.

Therefore, ρϕ(a),λ is irreducible and hence ρϕ(a),λ(GalF ) ⊇ SL2(Fλ). Since det(G) = A×
λ ,

we deduce that det(ρϕ(a),λ(GalF )) = F×
λ and hence ρϕ(a),λ(GalF ) = GL2(Fλ). □

Lemma 9.3. Take any a ∈ R∩Sm∩Tm∩Um. Then the commutator subgroup of ρϕ(GalF ) ⊆
GL2(Â) is equal to [GL2(Â),GL2(Â)].

Proof. Define G := ρϕ(GalF ); it is a closed subgroup of GL2(Â). We will now verify that
G satisfies all the conditions of Theorem 3.1. For any nonzero prime ideal λ of A, we have
Gλ = GL2(Aλ) by Lemma 9.2. This verifies condition (a) of Theorem 3.1.

Now take any distinct nonzero prime ideals λ1 and λ2 of A. Since a ∈ R, there is a nonzero
prime ideal p of A such that vp(a1) = 0, vp(a2) = 1, and deg p > 1. In particular, ϕ(a) has
stable reduction of rank 1 at p. We have vp(jϕ(a)) = −1.
Let Ip be an inertia subgroup of GalF for the prime p. Take any i ≥ 1. The denominator of

vp(jϕ(a))/N(λ1λ2) = −1/N(λ1λ2) is N(λ1)N(λ2) and hence ρϕ(a),λ1λ2(Ip) contains a subgroup
of cardinality N(λ1)N(λ2) by Proposition 4.2(ii). In particular, the image of G modulo
λ1λ2 contains a subgroup of cardinality N(λ1)N(λ2). This verifies that condition (b) of
Theorem 3.1 holds.

Now suppose that N(λ1) = N(λ2) = 2. We have p /∈ {λ1, λ2} since deg p > 1. Take any
i ≥ 1. Proposition 4.2 implies that ρϕ(a),λi1λi2(Ip) is conjugate in GL2(A/(λ

i
1λ

i
2)) to a subgroup

of {( 1 b
0 1 ) : b ∈ A/(λi1λ

i
2)} and that ρϕ(a),λi1λi2(Ip) has cardinality divisible by N(λi1λ

i
2). So after

choosing appropriate bases for ϕ[λi1λ
i
2] for all i ≥ 1, we may assume that

{( 1 b
0 1 ) : b ∈ Aλ1λ2} ⊆ ρϕ(a),λ1λ2(GalF ).

This verifies that condition (c) of Theorem 3.1 holds.
Now suppose that q ∈ {2, 3} and let a be the ideal that is the product of the prime ideals

of A of degree 1. We have deg p > 1. Since vp(a2) = 1 and p ∤ a, we have det(ρϕ,ai(GalF )) =

(A/ai)× for all i ≥ 1 by Proposition 6.2. Condition (d) of Theorem 3.1 is now immediate.

We have verified the conditions of Theorem 3.1 and hence G and GL2(Â) have the same
commutator subgroup. □

By Lemmas 9.2 and 9.3, we have an inclusion R∩ Sm ∩ Tm ∩ Um ⊆ B and hence

A2 − B ⊆ (A2 −R) ∪ (A2 − Sm) ∪ (A2 − Tm) ∪ (A2 − Um).(9.2)

We now bounds the upper densities of the sets in the right-hand side of (9.2).

Lemma 9.4. We have δ(A2 −R) = 0.

Proof. Recall that the reciprocal of the zeta function of A1
Fq

= SpecA is the power series∏
p(1−T deg p), where the product is over nonzero prime ideals of A, and it is equal to 1−qT .

By considering T = 1/q, and hence T deg p = 1/N(p), we find that limd→+∞
∏

p, deg p≤d(1 −
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1
N(p)

) = 0. We can choose two disjoint sets P1 and P2 of nonzero prime ideals of A with

degree at least 2 such that

lim
d→+∞

∏
p∈Pi, deg p≤d

(1− 1
N(p)

) = 0(9.3)

for 1 ≤ i ≤ 2.
Take any 1 ≤ i ≤ 2 and let Si be the set of (a1, a2) ∈ A2 such that (vp(a1), vp(a2)) ̸= (0, 1)

for all p ∈ Pi. Take any p ∈ Pi and let Ωp be the set of (b1, b2) ∈ (A/p2)2 for which b1 ̸≡ 0
(mod p), b2 ≡ 0 (mod p) and b2 ̸≡ 0 (mod p2). Define

αp :=
|(A/p2)2−Ωp|

|(A/p2)2| = 1− |Ωp|
|(A/p2)2| = 1− (1− 1

N(p)
)( 1
N(p)

− 1
N(p)2

) ≤ (1− 1
N(p)

)(1 + c
N(p)2

),

where c ≥ 1 is an absolute constant. Note that the image of Si modulo p2 lies in (A/p2)2−Ωp.
For any positive integer d, Lemma 8.2 implies that

δ(Si) ≤
∏

p∈Pi deg p≤d

αp ≤
∏

p∈Pi, deg p≤d

(1− 1
N(p)

)(1 + c
N(p)2

).

Using the zeta function of A1
Fq
, we find that

∏
p, deg p≤d(1+

c
N(p)2

) can be bounded independent

of d. So there is a positive constant C such that

δ(Si) ≤ C
∏

p∈Pi,deg p≤d

(1− 1
N(p)

)

holds for any d ≥ 1. By (9.3), we deduce that δ(Si) = 0 and hence δ(Si) = 0.
We have R ⊇ A2−(S1∪S2) since the sets P1 and P2 are disjoint. Since δ(S1) = δ(S2) = 0,

we conclude that δ(R) = 1. □

Lemma 9.5. For any ε > 0, we have δ(A2 − Sm) < ε for all large enough m ≥ 1.

Proof. Define C := A2 − Sm, i.e., the set of (a1, a2) ∈ A2 for which a1 ≡ 0 (mod p) and
a2 ≡ 0 (mod p) for some prime ideal p of A with deg p > m.
Fix an integer d > m. Let P(d) be the set of (a1, a2) ∈ A2 with deg(a1) ≤ d and

deg(a2) ≤ d. Define C(d) := C ∩ P(d).
Take any (a1, a2) ∈ P(d) − {(0, 0)} with a1 ≡ 0 (mod p) and a2 ≡ 0 (mod p) for some

nonzero prime ideal p of A. Fix an 1 ≤ i ≤ 2 for which ai ̸= 0. We have ai ≡ 0 (mod p) and
hence deg p ≤ deg ai ≤ d.
Therefore,

|C(d)| ≤
∑

p,m<deg p≤d

βp(d),(9.4)

where βp(d) is the number of (a1, a2) ∈ P(d) such that a1 ≡ 0 (mod p) and a2 ≡ 0 (mod p).
Take any nonzero prime ideal p of A with m < deg(p) ≤ d. The reduction modulo p map
P(d) → F2

p is a surjective homomorphism of Fq-vector spaces and hence the kernel has

dimension 2(d+ 1)− 2 deg p. Therefore, βp(d) = q2(d+1−deg p). Using (9.4), we deduce that

|C(d)|
|P(d)|

≤
∑

p,m<deg p≤d

q−2 deg p ≤
∑

p, deg p>m

q−2 deg p,

where we note that the series converges absolutely. So by taking m ≥ 1 large enough, we
will have |C(d)|/|P(d)| < ε for all d > m. Therefore, δ(A2 − Sm) = δ(C) < ε. □
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Lemma 9.6. For any ε > 0, we have δ(A2 − Tm) < ε for all large enough m ≥ 1.

Proof. Let d(m) be the largest integer for which d(m) ≤ m/(2(q − 1)2(q + 1)). By taking
m large enough, we may assume that there are distinct nonzero prime ideals p1 and p2 of A
with deg p1 = deg p2 = d(m). Let Ω be the set of b ∈ A/(p1p2) for which b ≡ 0 (mod p1)
or b ≡ 0 (mod p2). The image of A2 − Tm modulo p1p2 lies in Ω. By Lemma 8.2, we have
δ(A2 − Tm) = |Ω|/|A/(p1p2)| ≤ 1/N(p1) + 1/N(p2) = 2/qd(m). Since d(m) → ∞ as m → ∞,
we conclude that δ(A2 − Tm) < ε for large enough m. □

Lemma 9.7. We have have δ(A2 − Um) = 0.

Proof. This follows from Theorem 8.1. □

From the inclusion (9.2), we have

δ(A2 − B) ≤ δ(A2 −R) + δ(A2 − Sm) + δ(A2 − Tm) + δ(A2 − Um).

Take any ε > 0. Using Lemmas 9.4, 9.5, 9.6 and 9.7, we deduce that δ(A2 − B) < ε for all
sufficiently large integers m. Since ε > 0 was arbitrary, we have δ(A2 − B) = 0 and hence
δ(A2 − B) = 0. Therefore, B has density 1.

9.2. Proof of Theorem 1.2 when q ̸= 2. We assume throughout that q ̸= 2.
Take any a ∈ B. We have ρϕ(a),λ(GalF ) = GL2(Aλ) for all nonzero prime ideals λ of

A by our definition of B and hence a ∈ S3. We have [GL2(Â),GL2(Â)] = SL2(Â) by
Proposition 2.9 and our assumption that q ̸= 2. By our definition of B, the commutator

subgroup of ρϕ(a)(GalF ) is SL2(Â) and in particular we have ρϕ(a)(GalF ) ⊇ SL2(Â). The

index [GL2(Â) : ρϕ(a)(GalF )] thus agrees with [Â× : det(ρϕ(a)(GalF ))] which divides q − 1 by
Theorem 6.3(ii). Therefore, a ∈ S2. Since a was an arbitrary element of B, we have S2 ⊇ B
and S3 ⊇ B. Theorem 9.1 implies that S2 and S3 have density 1.

Let P be the set of (a1, a2) ∈ A2 with a2 ̸= 0 for which the leading coefficient of the
polynomial (−1)deg a2+1a2 generates the cyclic group F×

q . The set P has positive density;
moreover, it has density φ(q− 1)/(q− 1), where φ is Euler’s totient function. For a ∈ P , we

have [Â× : det(ρϕ(a)(GalF ))] = 1 by Theorem 6.1.

We have S1 ⊇ P ∩ B since ρϕ(a)(GalF ) ⊇ SL2(Â) and det(ρϕ(a)(GalF )) = Â× for all
a ∈ P ∩B. We have δ(P ∩B) = δ(P) > 0 since B has density 1 by Theorem 9.1. Therefore,
S1 has a subset with positive density.

10. q = 2 and wild ramification at ∞

Throughout §10, we assume that q = 2. The goal of this section is to give a condition

that ensures ρϕ(GalF ) equals GL2(Â) assuming it contains its commutator subgroup. Let
v∞ : F× ↠ Z be the valuation satisfying v∞(a) = − deg(a) for all nonzero a ∈ A.

Proposition 10.1. Let ϕ : A→ F{τ} be a Drinfeld A-module of rank 2 for which v∞(jϕ) is
odd and v∞(jϕ) ≤ −5. Then the homomorphism

GalF → GL2(Â)/[GL2(Â),GL2(Â)]

obtained by composing ρϕ with the obvious quotient map is surjective.
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10.1. Maximal abelian quotient. For each i ∈ F2, define the prime ideal λi = (t + i) of
A. Define the homomorphism

γi : GL2(Â) → GL2(Fλi) = GL2(F2) → GL2(F2)/[GL2(F2),GL2(F2)] ∼= {±1},

where we are composing reduction modulo λi with the quotient map. We obtain a surjective
continuous homomorphism

β : GL2(Â) → Â× × {±1} × {±1}, B 7→ (det(B), γ0(B), γ1(B)).

Lemma 10.2. The kernel of β is [GL2(Â),GL2(Â)].

Proof. We have GL2(Â) =
∏

λGL2(Aλ), where the product is over the nonzero prime ideals

of A. Therefore, the commutator subgroup of GL2(Â) is equal to
∏

λ[GL2(Aλ),GL2(Aλ)].

Using Proposition 2.9, we obtain a description of [GL2(Â),GL2(Â)] that agrees with the
kernel of β. □

10.2. Cubic polynomials. Consider a separable polynomial f(x) = x3 + bx + c ∈ K[x],
where K is a field. Let r1, r2 and r3 be the distinct roots of f(x) in some separable closure
of K and define the splitting field K ′ := K(r1, r2, r3). Using the numbering of the ri, we
have an injective homomorphism ι : Gal(K ′/K) ↪→ S3 to the symmetric group on 3 letters.
Let ε : Gal(K ′/K) → {±1} be the homomorphism obtained by composing ι with the parity
character.

Let L/K be the subfield of K ′ fixed by the kernel of ε. We want to explicitly describe the
extension L/K. When K has odd characteristic, L is obtained by adjoining to K a square
root of the discriminant of f(x). This is not good enough for our application which concerns
fields of characteristic 2. The following material comes from [Con] and is straightforward to
prove.

Define the polynomial

R2(x) := (x− (r21r2 + r22r3 + r23r1))(x− (r22r1 + r21r3 + r23r2)).

When expanded out, the coefficients of R2(x) are symmetric polynomials in r1, r2, r3 and
hence are polynomials in b and c. A direct computation shows that

R2(x) = x2 − 3cx+ (b3 + 9c2).

One can then verify that the f(x) and R2(x) have the same discriminant. In particular,
R2(x) is separable since f(x) is separable. Note that r

2
1r2+ r

2
2r3+ r

2
3r1 and r

2
2r1+ r

2
1r3+ r

2
3r2

are both fixed by any even permutation of the ri but are swapped by any odd permutation
of the ri. Therefore, L is the splitting field of R2(x) in K

′.

10.3. Proof of Proposition 10.1. By Lemma 10.2, it suffices to prove that β◦ρϕ : GalF →
Â× × {±1} × {±1} is surjective.
Take any i ∈ F2. With γi as in §10.1, we let Li be the subfield of F sep fixed by the kernel

of the homomorphism γi ◦ ρϕ : GalF → {±1}.

Lemma 10.3. We have Li = F (α) with α a root of the polynomial

x2 − x+ jϕ/(t+ i)2 + 1 ∈ F [x].
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Proof. We have ϕt = t + a1τ + a2τ
2 for some a1 ∈ F and a2 ∈ F× and hence ϕt+i =

(t + i) + a1τ + a2τ
2. We have ϕ[λi] ∼= F2

2, so ϕ[λi] = {0, r1, r2, r3} for distinct nonzero
r1, r2, r3 ∈ F sep. The values r1, r2, r3 are the distinct roots in F sep of the polynomial

f(x) := x3 + (a1/a2)x+ (t+ i)/a2 = a−1
2 x−1((t+ i)x+ a1x

2 + a2x
4) ∈ F [x].

We have a character ε : GalF → {±1} corresponding to f(x) as in §10.2.
With respect to a basis of ϕ[λi] ∼= F2

2, the action of the group GL2(F2) on {r1, r2, r3} is

faithful and transitive and induces an isomorphism GL2(F2)
∼−→ S3. Using this, we find that

ε agrees with γi ◦ ρϕ. Therefore, Li is the subfield of F sep fixed by the kernel of ε. From
§10.2, we find that Li ⊆ F sep is the splitting field over F of the polynomial

R2(x) = x2 − 3
(
t+i
a2

)
x+

(
a1
a2

)3
+ 9

(
t+i
a2

)2 ∈ F [x].

Setting y = a2/(t + i)x and using that our field has characteristic 2, we find that Li is the
splitting field over F of the polynomial y2−y+a31/(a2(t+ i)2)+1 = y2−y+jϕ/(t+ i)2+1. □

Lemma 10.4. The homomorphism

β′ : GalF → {±1} × {±1}, σ 7→ (γ0(ρϕ(σ)), γ1(ρϕ(σ)))

is surjective and is totally ramified at the place ∞ of F .

Proof. Let L be the subfield of F sep fixed by the kernel of β′. We have L = L0L1. For
i ∈ F2, Lemma 10.3 implies that Li = F (αi) with αi a root of the polynomial fi(x) :=
x2 − x+ jϕ/(t+ i)2 + 1.
We claim that each Li/F is a quadratic extension that is totally ramified at the place ∞.

Since we are in characteristic 2, the roots of fi(x) in L are αi and αi + 1. In particular,
αi(αi + 1) = jϕ/(t+ i)2 + 1. We have v∞(jϕ/(t+ i)2) = v∞(jϕ) + 2 < 0, where we have used
our assumption that v∞(jϕ) ≤ −5. Therefore,

v∞(αi(αi + 1)) = v∞(jϕ/(t+ i)2 + 1) = v∞(jϕ/(t+ i)2) = v∞(jϕ) + 2.

Since v∞(jϕ) is odd by assumption, we find that v∞(αi(αi + 1)) is a negative odd integer.
After extending v∞ to a Q-valued valuation on F sep, we find that one of the rational numbers
v∞(αi) or v∞(αi + 1) is negative and hence v∞(αi) = v∞(αi + 1) < 0. Therefore, 2v∞(αi) =
v∞(αi(αi + 1)) is an odd integer and hence v∞(αi) /∈ Z. We deduce that Li = F (αi) is a
nontrivial extension of F that is ramified at ∞. The claim follows since [Li : F ] ≤ 2.
Define α := α0 + α1; it is a root of the polynomial

x2 − x+ (jϕ/t
2 + 1) + (jϕ/(t+ 1)2 + 1) = x2 − x+ jϕ/(t(t+ 1))2.(10.1)

We claim that F (α) is a quadratic extension of F that totally ramified at the place ∞. The
roots of (10.1) are α and α+1, so v∞(α(α+1)) = v∞(jϕ/(t(t+1))2) = v∞(jϕ)+ 4 From our
assumptions on v∞(jϕ), we deduce that v∞(α(α + 1)) is a negative odd integer. Therefore,
v∞(α) = v∞(α + 1) and 2v∞(α) is an odd integer. We have v∞(α) /∈ Z and hence F (α)/F
is a nontrivial extension ramified at ∞. The claim follows since [F (α) : F ] ≤ 2.

We now show that β′ is surjective. It suffices to show that [L : F ] = 4. Since L = L0L1

with [Li : F ] = 2, it suffices to show that L0 ̸= L1. If L0 = L1, then for any σ ∈ GalF , we
have σ(αi) = αi for both i ∈ F2 or σ(αi) = αi + 1 for both i ∈ F2. So if L0 = L1, then
α = α0 + α1 is fixed by GalF and hence α ∈ F . Since F (α)/F is a nontrivial extension, we
deduce that L0 ̸= L1. This completes the proof that β′ is surjective.
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Suppose that L/F is not totally ramified at∞. Since β′ induces an isomorphism Gal(L/F ) ∼=
{±1} × {±1}, one of the three quadratic extensions of F in L must be unramified at ∞.
However, the three quadratic extensions of F in L are L0, L1 and F (α), and we have already
shown that they are all ramified at ∞. Therefore, L/F is totally ramified at ∞. □

Lemma 10.5. The homomorphism det ◦ρϕ : GalF → Â× is surjective and tamely ramified
at the place ∞ of F .

Proof. We have ϕt = t + a1τ + a2τ
2 with a1 ∈ F and a2 ∈ F×. Let ψ : A → F{τ} be the

rank 1 Drinfeld module for which ψt = t− a2τ = t + a2τ . By Corollary 4.6 in [Ham93], we
have det ρϕ = ρψ.

So it suffices to show that ρψ : GalF → Â× is surjective and tamely ramified at ∞. We
have a2ψta

−1
2 = t+τ . So after replacing ψ by an isomorphic Drinfeld module, we may assume

that ψ is the Carlitz module, i.e., ψt = t + τ . For any nonzero ideal a of A, the extension
F (ϕ[a])/F is tamely ramified at ∞ and Gal(F (ϕ[a])/F ) ∼= (A/a)×, cf. [Hay74, Theorems 2.3
and 3.1]. The lemma is now immediate. □

We need to show that

β ◦ ρϕ : GalF → Â× × {±1} × {±1}

is surjective. Composing β ◦ ρϕ with the projection to Â× gives the homomorphism det ◦ρϕ
which is surjective and tamely ramified at ∞ by Lemma 10.5. Composing β ◦ ρϕ with the
projection to {±1} × {±1} gives a homomorphism β′ which is surjective by Lemma 10.4.
Suppose β ◦ ρϕ is not surjective. Goursat’s lemma ([Rib76, Lemma 5.2.1]) implies that

there is a continuous and surjective homomorphism φ : GalF → Q, with Q ̸= 1 a finite
group, that factors through both det ◦ρϕ and β′. The homomorphism φ is tamely ramified
at ∞ since it factors through det ◦ρϕ. However, since φ factors through β′, Lemma 10.4
implies that φ is wildly ramified at ∞. This gives a contradiction since φ ̸= 1 and thus β ◦ρϕ
is surjective.

10.4. Proof of Theorem 1.2 when q = 2. We assume q = 2. Let C be the set of
(a1, a2) ∈ A2 with a1a2 ̸= 0 and deg(a1) = deg(a2)− 1. For any integer d ≥ 1, we have

|C(d)| =
d∑
i=1

(q − 1)qi−1 · (q − 1)qi = (q − 1)2q(q2d − 1)/(q2 − 1).

Therefore,

δ(C) = lim
d→∞

(q − 1)2q(q2d − 1)/(q2 − 1)

q2(d+1)
=

(q − 1)2q

q2(q2 − 1)
=

1

6
.

Let B be the set from §9; it has density 1 by Theorem 9.1. We have S3 ⊇ B and hence S3

has density 1.

Take any a ∈ B. Theorem 6.3(ii) and q = 2 implies that det(ρϕ(a)(GalF )) = Â×. Since

ρϕ(a)(GalF ) ⊇ [GL2(Â),GL2(Â)] and det(ρϕ(a)(GalF )) = Â×, Lemma 10.2 implies that

[GL2(Â) : ρϕ(a)(GalF )] divides 4. In particular, a ∈ S2. We have shown that S2 ⊇ B
and hence S2 has density 1.

Now take any a ∈ C ∩ S2. We have jϕ(a) = aq+1
1 /a2 = a31/a2 and hence

v∞(jϕ(a)) = −v∞(a2) + 3v∞(a1) = deg(a2)− 3 deg(a1) = −2 deg(a2) + 3,
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where the last equality uses that deg(a1) = deg(a2) − 1. Therefore, v∞(jϕ(a)) is an odd
integer and v∞(jϕ(a)) ≤ −5 when deg(a2) ≥ 4. So for any a ∈ C ∩ S2 with deg(a2) ≥ 4,

Proposition 10.1 and ρϕ(a)(GalF ) ⊇ [GL2(Â),GL2(Â)] implies that ρϕ(a)(GalF ) = GL2(Â).
The set C∩S2 has density 1/6 and contains only finitely many a with deg(a2) < 4. Therefore,
S1 has a subset with positive density.

11. Proof of Theorem 1.4

11.1. Proof of Theorem 1.4 when q ̸= 2. Fix a prime power q > 2 and let ϕ : A→ F{τ}
be the Drinfeld A-module for which

ϕt = t+ τ − tq−1τ 2.

We will show that ρϕ(GalF ) = GL2(Â).
Define the prime ideal p := (t) of A and let Ip be an inertia subgroup of GalF at p.

Observe that p is the only nonzero prime ideal of A for which ϕ has bad reduction. We have
jϕ = −1/tq−1 and hence vp(jϕ) = −(q − 1). In particular, gcd(vp(jϕ), q) = 1.

Lemma 11.1. For any nonzero ideal a of A, the character det ◦ρϕ,a : GalF → (A/a)× is
surjective and is unramified at all nonzero prime ideals q ∤ a of A.

Proof. Let ψ : A → F{τ} be the rank 1 Drinfeld module for which ψt = t − (−tq−1)τ =
t + tq−1τ . By Corollary 4.6 in [Ham93], we have det ρϕ = ρψ and hence also det ρϕ,a = ρψ.a.
We have tψtt

−1 = t+ τ and hence ψ is isomorphic to the Carlitz module. The lemma is now
an immediate consequence of [Hay74, Proposition 2.2 and Theorem 2.3]. □

Lemma 11.2. For any nonzero prime ideal λ of A, ρϕ,λ is irreducible.

Proof. We will prove the lemma by contradiction. Suppose that ρϕ,λ is reducible for some λ.
First suppose that λ = p = (t). For each nonzero c ∈ Fq, ϕ has good reduction at (t− c).

We have Pϕ,(t−c)(x) = x2 − x + t − c by Lemma 5.2(i). Therefore, ρϕ,p(GalF ) ⊆ GL2(Fp)
contains an element whose characteristic polynomial is x2 − x − c ∈ Fp[x] = Fq[x]. Since
ρϕ,λ is reducible, we find that the polynomial x2 − x − c in Fq[x] is reducible for all c ∈ Fq.
When q is even, this is impossible since Fq has a quadratic extension which must be given
by a polynomial of the form x2 − x− c ∈ Fq[x]. When q is odd, this is also impossible since
otherwise (−1)2 − 4(−c) = 1 + 4c would be a square in Fq for all c ∈ Fq. Therefore, λ ̸= p.

After conjugating ρϕ,λ, we may assume that (7.1) holds with characters χ1, χ2 : GalF →
F×
λ . Since ϕ has good reduction away from p, χ1 and χ2 are unramified at all nonzero prime

ideals of A except perhaps p and λ. Proposition 4.2(i), with a := λ and using λ ̸= p, implies
that one of the characters χ1 or χ2 is unramified at p. Since det ◦ρϕ,λ = χ1χ2 is unramified at
p by Lemma 11.1, we deduce that χ1 and χ2 are both unramified at p. Since ρϕ,λ is reducible
and ϕ has good reduction at λ, Proposition 4.1 implies that χ1 or χ2 is unramified at λ.

We have verified that χ1 and χ2 satisfy (i) and (ii) of Lemma 7.1 with n := 1. By
Lemma 7.2, there is a ζ ∈ F×

λ such that Pϕ,q(ζ
deg q) = 0 holds in Fλ for all nonzero prime

ideals q /∈ {p, λ} of A.
Assume that q > 3 or deg λ > 1. Then there are distinct nonzero c1, c2 ∈ Fq with

λ ∈ {(t− c1), (t− c2)}. Using Lemma 5.2(i), we have

c2 − c1 = Pϕ,(t−c1)(ζ)− Pϕ,(t−c2)(ζ) ≡ 0 + 0 ≡ 0 (mod λ)

which contradicts that c1 and c2 are distinct elements of Fq.
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It remains to consider the case where q = 3 and deg λ = 1. In particular, λ = (t− b) with
b ∈ F×

3 and Fλ = F3. Define the prime ideal q := (t2 + t+ 2) of A. We have ζdeg q = 1 since
|F×
λ | = 2 = deg q. Therefore, Pϕ,q(1) ≡ 0 (mod λ). We have Pϕ,q(x) = x2 + 2x + t2 + t + 2

by Lemma 5.2(ii). Therefore,

0 ≡ Pϕ,q(1) ≡ 12 + 2 · 1 + b2 + b+ 2 ≡ b2 + b+ 2 (mod λ)

and hence b2 + b + 2 = 0 since b ∈ F3. However, this is a contradiction since x2 + x + 2 is
irreducible in F3[x]. □

Lemma 11.3. For any nonzero prime ideal λ of A, we have ρϕ,λ(GalF ) = GL2(Aλ).

Proof. Take any nonzero prime ideal λ of A. Set G := ρϕ,λ(GalF ) ⊆ GL2(Aλ). Using
Lemma 11.1 with a = λi and i ≥ 1, we find that det(G) = A×

λ .
Since gcd(vp(jϕ), q) = 1, Proposition 4.2(iii) implies that ρϕ,λ(Ip), and hence also ρϕ,λ(GalF ),

contains a subgroup of cardinality N(λ). The group ρϕ,λ(GalF ) acts irreducibly on F2
λ by

Lemma 11.2. Proposition 2.2 implies that ρϕ,λ(GalF ) ⊇ SL2(Fλ). Since det(G) = A×
λ , we

deduce that the image of G modulo λ is GL2(Fλ).
Fix a generator π of the ideal λ. Let P be a p-Sylow subgroup of ρϕ,λ2(Ip), where p is the

prime dividing q. Proposition 4.2(ii) and gcd(v(jϕ), q) = 1 implies that the cardinality of P
is divisible by N(λ)2. Since a p-Sylow subgroup of GL2(Fλ) has cardinality N(λ), we deduce
that there is a g ∈ P such that g ≡ I + πB (mod λ2) with B ∈ M2(Aλ) satisfying B ̸≡ 0
(mod λ). After conjugating our representation ρϕ,λ2 , we may assume by Proposition 4.2(ii)
that

ρϕ,λ2(Ip) ⊆
{
( a b0 c ) : a ∈ (A/λ2)×, b ∈ A/λ2, c ∈ F×

q

}
.

Therefore, P ⊆ {( a b0 1 ) : a ∈ (A/λ2)× with a ≡ 1 (mod λ), b ∈ A/λ2} and hence B modulo λ
is of the form ( ∗ ∗

0 0 ). Since B ̸≡ 0 (mod λ), we find that B modulo λ is not a scalar matrix.
We have now verified the conditions of Proposition 2.1 with q > 2 and hence G = GL2(Aλ).

□

Set G := ρϕ(GalF ). We have det(G) = Â× by Lemma 11.1, so it remains to prove that

SL2(Â) is a subgroup of G. For each nonzero prime ideal λ of A, SL2(Aλ) is a subgroup of
Gλ = ρϕ,λ(GalF ) by Lemma 11.3. Take any two distinct nonzero prime ideals λ1 and λ2 of
A. Proposition 4.2(iii) implies that ρϕ,λ1λ2(Ip) has a subgroup of cardinality N(λ1)N(λ2). In
particular, G modulo λ1λ2 has a subgroup of cardinality N(λ1)N(λ2). Using Theorem 3.1

and q > 2, we deduce that the commutator subgroup of G is SL2(Â) and hence G ⊇ SL2(Â)
as desired.

11.2. Proof of Theorem 1.4 when q = 2. With q = 2, let ϕ : A → F{τ} be the Drinfeld
A-module for which

ϕt = t+ t3τ + (t2 + t+ 1)τ 2.

We will show that ρϕ(GalF ) = GL2(Â). Since q = 2, we have det(ρϕ(GalF )) = Â× by
Theorem 6.3(i).

Define the ideal p := (t2+ t+1) of A. Observe that p is the only nonzero prime ideal of A
for which ϕ has bad reduction. Moreover, ϕ has stable reduction of rank 1 at p. We let Ip be
an inertia subgroup of GalF for the prime p. We have jϕ = (t3)q+1/(t2+t+1) = t9/(t2+t+1)
and hence vp(jϕ) = −1.
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Lemma 11.4. The homomorphism GalF → GL2(Â)/[GL2(Â),GL2(Â)] obtained by compos-
ing ρϕ with the obvious quotient map is surjective.

Proof. This follows from Proposition 10.1 since v∞(jϕ) = −7. □

Lemma 11.5. We have ρϕ,λ(GalF ) = GL2(Fλ) for all nonzero prime ideals λ of A.

Proof. Assume that ρϕ,λ(GalF ) ̸= GL2(Fλ) for some λ. Proposition 4.2(iii) implies that
ρϕ,λ(Ip) contains a subgroup of order N(λ). The representation ρϕ,λ is thus reducible by
Proposition 2.2. After conjugating ρϕ,λ, we may assume that

ρϕ,λ(σ) =
(
χ1(σ) ∗

0 χ2(σ)

)
for all σ ∈ GalF , where χ1, χ2 : GalF → F×

λ are characters.
First assume that deg λ = 1 and hence λ = (t+ i) for some i ∈ F2. The nonzero elements

of ϕ[λ] are the roots of the separable polynomial

Q(x) := (t+ i) + t3x+ (t2 + t+ 1)x3 ∈ A[x].

We have χ1 = 1 since Fλ = F×
2 and hence there is a nonzero element of ϕ[λ] lying in F . In

particular, Q(x) has a root in F . Therefore, the image of Q(x) in Fq[x] has a root in Fq for
all nonzero prime ideals q ̸= (t2 + t + 1) of A. However, a computation shows that Q(x) is
irreducible modulo q for some prime q ∈ {(t+ 1), (t3 + t+ 1)}.
Therefore, deg λ > 1. Since ϕ has good reduction away from p, we find that χ1 and χ2

are unramified at all nonzero prime ideals of A except perhaps p and λ. When λ = p,
Proposition 4.2(i) and F×

q = {1} imply that χ1 or χ2 is unramified at p. When λ ̸= p,
Proposition 4.2(i) and F×

q = {1} imply that both χ1 and χ2 are unramified at p. When
λ ̸= p, ϕ has good reduction at λ and so Proposition 4.1, with the reducibility of ρϕ,λ,
implies that χ1 or χ2 is unramified at λ. In particular, we have verified that parts (i) and
(ii) of Lemma 7.1 hold with n := 1.

By Lemma 7.2 with n = 1, there is a ζ ∈ F×
λ such that Pϕ,q(ζ

deg q) = 0 in Fλ for all
nonzero prime ideals q ̸= λ of A for which ϕ has good reduction. Since deg λ > 1, we find
that Pϕ,(t)(x) and Pϕ,(t+1)(x) have a common root modulo λ. Therefore, the resultant r ∈ A
of Pϕ,(t)(x) and Pϕ,(t+1)(x) is divisible by λ. The polynomials Pϕ,(t)(x) and Pϕ,(t+1)(x) where
computed in Lemma 5.2(iii) and one finds that r = t+ 1. Therefore, r = t+ 1 ≡ 0 (mod λ)
which is a contradiction since deg λ > 1. □

Lemma 11.6. We have ρϕ,λ(GalF ) = GL2(Aλ) for all nonzero prime ideals λ of A.

Proof. Set G := ρϕ,λ(GalF ). We have det(G) = A×
λ since det(ρϕ(GalF )) = Â×. The image

of G modulo λ is equal to GL2(Fλ) by Lemma 11.5.
By Proposition 4.2(i) and (ii), ρϕ,λ2(Ip) has a subgroup of cardinality N(λ)2 that is con-

jugate in GL2(A/λ
2) to a subgroup of {( a b0 1 ) : a ∈ (A/λ2)×, b ∈ A/λ2}. So with a fixed

uniformizer π of Aλ, we find that G contains a matrix of the form I + πB with B ∈M2(Aλ)
and B modulo λ not a scalar matrix. When deg λ > 1 and hence |Fλ| > 2, Proposition 2.1
implies that G = GL2(Aλ).
We now assume that deg λ = 1 and hence Fλ = F2. Since λ ̸= p and gcd(v(jϕ), q) = 1,

Proposition 4.2(iii) implies that for any i ≥ 1, ρϕ,λi(Ip) contains a subgroup that is conjugate

in GL2(A/λ
i) to {( 1 b

0 1 ) : b ∈ A/λi}. Using that G is closed, we find that G has an element
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that is conjugate in GL2(Aλ) to a matrix of the form ( 1 b
0 1 ) with b ̸≡ 0 (mod λ). In particular,

G has an element with determinant 1 whose image modulo λ has order 2.
We will now show that G := ρϕ,λ2(GalF ) is equal to GL2(A/λ

2). Let S be the subgroup
of SL2(A/λ

2) consisting of matrices whose image modulo λ is equal to [GL2(Fλ),GL2(Fλ)].
Since Fλ = F2, we have |S| = 23 · 3 and [GL2(A/λ

2) : S] = 22. The quotient GL2(Fλ)/S
is abelian and hence the quotient map G → GL2(Fλ)/S is surjective by Proposition 10.1.
In particular, [GL2(A/λ

2) : G] = [S : S ∩ G]. We know that G contains a matrix g
that is conjugate in GL2(A/λ) to some ( 1 b

0 1 ) with b ̸≡ 0 (mod λ). Also g is not stable
under conjugation by G since the image of G modulo λ is GL2(Fλ). Therefore, |S ∩ G|
is divisible by 4. The group S ∩ G contains an element of order 3 since the image of G
modulo λ is GL2(Fλ) = GL2(F2) and [GL2(A/λ

2) : S] = 22. Since |S| = 23 · 3, we find
that [GL2(A/λ

2) : G] = [S : S ∩ G] is equal to 1 or 2. If [GL2(A/λ
2) : G] = 2, then G

is a normal subgroup of GL2(A/λ
2) with nontrivial abelian quotient; this would contradict

Proposition 10.1. Therefore, we have index 1, i.e., G = GL2(A/λ
2).

We have now verified the conditions need to apply Proposition 2.1 with |Fλ| = 2 to show
that G = GL2(Aλ). □

Lemma 11.7. We have ρϕ(GalF ) ⊇ [GL2(Â),GL2(Â)].

Proof. Define G := ρϕ(GalF ); it is a closed subgroup of GL2(Â). We have already observed

that det(G) = Â×. The group Gλ = ρϕ,λ(GalF ) is equal to GL2(Aλ) for all nonzero prime
ideals λ of A by Lemma 11.6.

Take any two distinct nonzero prime ideals λ1 and λ2 of A with deg λ1 = deg λ2. By
Proposition 4.2(iii), ρϕ,λ1λ2(Ip) ⊆ ρϕ,λ1λ2(GalF ) has a subgroup of cardinality N(λ1)N(λ2) =
N(λ1)

2.
Now suppose that deg λ1 = deg λ2 = 1 and hence p /∈ {λ1, λ2}. For any integer i ≥ 1,

Proposition 4.2(iii) implies that ρϕ,λi1λi2(Ip) ⊆ ρϕ,λi1λi2(GalF ) contains a subgroup conju-

gate in GL2(A/(λ
i
1λ

i
2)) to {( 1 b

0 1 ) : b ∈ A/(λi1λ
i
2)} . Therefore, the closed group Gλ1λ2 =

ρϕ,λ1λ2(GalF ) contains a subgroup that is conjugate in GL2(Aλ1λ2) to {( 1 b
0 1 ) : b ∈ Aλ1λ2}.

We have det(ρϕ,λ1λ2(GalF )) = A×
λ1λ2

since det(ρϕ(GalF )) = Â×.

We have verified the conditions of Theorem 3.1 forG and henceG ⊇ [G,G] = [GL2(Â),GL2(Â)].
□

Lemmas 11.4 and 11.7 now imply that ρϕ(GalF ) = GL2(Â).
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