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Abstract. For a non-CM elliptic curve E defined over Q, the Galois action on its torsion points

gives rise to a Galois representation ρE : Gal(Q/Q) → GL2(Ẑ) that is unique up to isomorphism. A
renowned theorem of Serre says that the image of ρE is an open, and hence finite index, subgroup of

GL2(Ẑ). We describe an algorithm that computes the image of ρE up to conjugacy in GL2(Ẑ); this
algorithm is practical and has been implemented. Up to a positive answer to a uniformity question
of Serre and finding all the rational points on a finite number of explicit modular curves of genus

at least 2, we give a complete classification of the groups ρE(Gal(Q/Q)) ∩ SL2(Ẑ) and the indices

[GL2(Ẑ) : ρE(Gal(Q/Q))] for non-CM elliptic curves E/Q. Much of the paper is dedicated to the
efficient computation of modular curves via modular forms expressed in terms of Eisenstein series.

1. Introduction

1.1. Serre’s open image theorem. Consider an elliptic curve E defined over Q. For each integer
N > 1, let E[N ] be the N -torsion subgroup of E(Q), where Q is a fixed algebraic closure of Q.
The group E[N ] is a free Z/NZ-module of rank 2. There is a natural action of the absolute Galois
group GalQ := Gal(Q/Q) on E[N ] that respects the group structure and which we may express in
terms of a representation

ρE,N : GalQ → Aut(E[N ]) ∼= GL2(Z/NZ).
By choosing compatible bases and taking the inverse limit, we can combine these representations
into a single representation

ρE : GalQ → GL2(Ẑ)
that encodes the Galois action on all the torsion points of E. Here the ring Ẑ is the profinite
completion of Z. The representation ρE is uniquely determined up to isomorphism and hence the

image ρE(GalQ) is uniquely determined up to conjugacy in GL2(Ẑ).
With respect to the profinite topology, we find that ρE(GalQ) is a closed subgroup of the compact

group GL2(Ẑ). In [Ser72], Serre proved the following theorem which says that, up to finite index,
the image of ρE is as large as possible when E is non-CM (it was actually shown for elliptic curves
over a general number field, but we will restrict our attention to the rationals).

Theorem 1.1 (Serre’s open image theorem). Let E be a non-CM elliptic curve defined over Q.

Then ρE(GalQ) is an open subgroup of GL2(Ẑ). Equivalently, ρE(GalQ) is a finite index subgroup

of GL2(Ẑ).

The group ρE(GalQ), when known, will have a simple description since it is open in GL2(Ẑ),
i.e., it is given by its level N and a set of generators for its image modulo N in GL2(Z/NZ). For
a definition of the level and other conventions see §1.12. Unfortunately, Serre’s proof is in general
ineffective.

The goal of this work is to explain how, given a non-CM elliptic curve E/Q, we can compute the

group ρE(GalQ) up to conjugacy in GL2(Ẑ). The algorithm we obtain is practical. For example, we
have used it to compute the image of ρE , up to conjugacy, for all non-CM elliptic curves E/Q with
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conductor up to 500000 (on the machine we ran it on, it took on average 0.015 seconds per curve);
these images are publicly available in the L-Functions and Modular Forms Database (LMFDB)
[LMFDB]. Our algorithms are implemented in Magma [BCP97] and the code can be found in the
public repository [Zyw23].

A large part of Serre’s paper [Ser72] is dedicated to showing that ρE,ℓ is surjective for all suffi-
ciently large primes ℓ. Serre asked whether there is a constant C, not depending on E, such that
ρE,ℓ is surjective for all primes ℓ > C, cf. [Ser72, §4.3]. Moreover, he asks whether ρE,ℓ is surjective
for all ℓ > 37 [Ser81, p. 399]. We pose as a conjecture a slightly stronger version (it was conjectured
independently in [Zyw15b] and [Sut16]). We denote the j-invariant of E by jE .

Conjecture 1.2. If E is a non-CM elliptic curve over Q and ℓ > 13 is a prime, then either
ρE,ℓ(GalQ) = GL2(Z/ℓZ) or

(ℓ, jE) ∈
{
(17,−172 ·1013/2), (17,−17·3733/217), (37,−7·113), (37,−7·1373 ·20833)

}
.

Assuming Conjecture 1.2, one can show that the indices [GL2(Ẑ) : ρE(GalQ)] are uniformly
bounded as we vary over all non-CM elliptic curves E/Q, cf. [Zyw15a, Theorem 1.3]. Based on the
computations arising in this paper, we make the following prediction.

Conjecture 1.3. We have [GL2(Ẑ) : ρE(GalQ)] ≤ 2736 for all non-CM elliptic curve E over Q.

Remark 1.4. An elliptic curve E/Q with j-invariant −7·113 or −7·1373 ·20833 satisfies [GL2(Ẑ) :
ρE(GalQ)] = 2736. Such non-CM elliptic curves E/Q are special because they have an isogeny of
degree 37 defined over Q. In particular, the upper bound in Conjecture 1.3 would be best possible.

We now make a braver conjecture on the possible values of the index [GL2(Ẑ) : ρE(GalQ)]. This
conjecture holds assuming Conjecture 1.2 and assuming that we have not missed any rational points
on the high genus modular curves that arise in our computations.

Conjecture 1.5. If E is a non-CM elliptic curve defined over Q, then [GL2(Ẑ) : ρE(GalQ)] lies in
the set  2, 4, 6, 8, 10, 12, 16, 20, 24, 30, 32, 36, 40, 48, 54, 60, 72, 80, 84, 96, 108,

112, 120, 128, 144, 160, 182, 192, 200, 216, 220, 224, 240, 288, 300, 336,
360, 384, 480, 504, 576, 768, 864, 1152, 1200, 1296, 1536, 2736

 .

Remark 1.6. All of the integers in the set from Conjecture 1.5 actually occur as an index [GL2(Ẑ) :
ρE(GalQ)] for some non-CM elliptic curve E/Q.

In our arguments, it will often be convenient to work with the dual representation

ρ∗E : GalQ → GL2(Ẑ)

of ρE , i.e., ρ
∗
E(σ) is the transpose of ρE(σ

−1). Similarly, we can define ρ∗E,N (σ) to be the transpose

of ρE,N (σ−1). Of course, computing the images of ρ∗E and ρE are equivalent problems and their

images have the same index in GL2(Ẑ).
For a prime ℓ, let ρE,ℓ∞ : GalQ → GL2(Zℓ) be the representation obtained by taking the inverse

limit of the ρE,ℓn ; equivalently, ρE,ℓ∞ is the composition of ρE with the ℓ-adic projection.

1.2. The Kronecker–Weber constraint on the image. For a fixed non-CM elliptic curve E/Q,

consider the group GE := ρ∗E(GalQ) ⊆ GL2(Ẑ). The group GE is open in GL2(Ẑ) by Theorem 1.1.

We have det(GE) = Ẑ× since det ◦ρ∗E = χ−1
cyc, where χcyc : GalQ → Ẑ× is the cyclotomic character,

cf. §2.
We also have the following important constraint on GE that arises from the Kronecker–Weber

theorem. For a group G, we will denote its commutator subgroup by [G,G].
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Lemma 1.7. We have GE ∩ SL2(Ẑ) = [GE , GE ]. In particular,

[GL2(Ẑ) : GE ] = [SL2(Ẑ) : [GE , GE ]].

Proof. Let Qab ⊆ Q be the maximal abelian extension of Q. Since Gal(Q/Qab) is the commuta-
tor subgroup of GalQ, we have ρ∗E(Gal(Q/Qab)) = [GE , GE ]. By the Kronecker–Weber theorem,

Qab is the cyclotomic extension of Q. Since χ−1
cyc = det ◦ρ∗E , we deduce that GE ∩ SL2(Ẑ) =

ρ∗E(Gal(Q/Qab)). We obtain GE ∩ SL2(Ẑ) = [GE , GE ] by comparing our two descriptions of

ρ∗E(Gal(Q/Qab)). Since det(GE) = Ẑ×, we have [GL2(Ẑ) : GE ] = [SL2(Ẑ) : GE ∩ SL2(Ẑ)]. The
lemma is now immediate. □

Example 1.8. The commutator subgroup of GL2(Ẑ) is an index 2 subgroup of SL2(Ẑ), cf. Lemma 7.7,

so the index of [GE , GE ] in SL2(Ẑ) is even. Therefore, the index of GE in GL2(Ẑ) is even by

Lemma 1.7. In particular, GE ̸= GL2(Ẑ); this was first observed by Serre, cf. Proposition 22 of

[Ser72]. Moreover, the image of GE lies in a specific index 2 subgroup of GL2(Ẑ), cf. §1.6.

1.3. Modular curves. Let E/Q be a non-CM elliptic curve and set GE := ρ∗E(GalQ). Our main
tool for studying the group GE is the theory of modular curves.

Consider any open subgroup G of GL2(Ẑ) that satisfies det(G) = Ẑ× and −I ∈ G. Associated
to G, we will define a modular curve XG, cf. §3. The modular curve XG is a smooth, projective and
geometrically irreducible curve defined over Q that comes with a morphism

πG : XG → P1
Q = A1

Q ∪ {∞}.

For our applications to Serre’s open image theorem, the key property of the curve XG is that

GE is conjugate in GL2(Ẑ) to a subgroup of G if and only if the j-invariant jE of E lies in the set
πG(XG(Q)) ⊆ Q ∪ {∞}. We say that a point P ∈ XG(Q) is non-CM if πG(P ) ∈ Q ∪ {∞} is the
j-invariant of a non-CM elliptic curve.

The pairs (XG, πG), as we vary over all G, will thus determine the image of GE in GL2(Ẑ)/{±I}
up to conjugacy. However, this is an impractical approach for finding GE since there are infinitely

many groups G to consider. In fact, infinitely many open subgroups of GL2(Ẑ) can arise as GE as
we vary over all non-CM elliptic curve E/Q.

In §5, we will describe a method for computing an explicit model for the modular curve XG

given a group G. We are also interested in computing πG in terms of our model. Our approach
to computing modular curves is via related spaces of modular forms that we study in §4. Our
application involves computing thousands of modular curves, so we are especially interested in
finding efficient techniques.

1.4. Agreeable closures. Instead of computing GE = ρ∗E(GalQ) directly, we first find a larger

and friendlier group. We say that a subgroup G of GL2(Ẑ) is agreeable if it is open in GL2(Ẑ), has
full determinant, contains all the scalar matrices, and the levels of G and G ∩ SL2(Ẑ) in GL2(Ẑ)
and SL2(Ẑ), respectively, have the same odd prime divisors.

There is a unique minimal agreeable subgroup GE satisfying GE ⊆ GE which we call the agreeable
closure of GE , cf. §8. The group GE is normal in GE and the quotient group GE/GE is finite and
abelian, cf. Proposition 8.1.

We claim that [GE , GE ] = [GE ,GE ]. We have [GE ,GE ] ⊆ GE since GE/GE is abelian and hence

[GE ,GE ] ⊆ GE ∩ SL2(Ẑ). By Lemma 1.7, this gives the inclusion [GE ,GE ] ⊆ [GE , GE ]. The claim
follows since the other inclusion is a consequence of GE ⊆ GE .

In particular, the agreeable group GE determines GE ∩ SL2(Ẑ) = [GE ,GE ], up to conjugation

in GL2(Ẑ), and also determines the index [GL2(Ẑ) : GE ] = [SL2(Ẑ) : [GE ,GE ]]. The advantage of
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agreeable groups is that are far fewer of them to consider. In fact, if Conjecture 1.2 holds for E,

then any prime dividing the level of GE in GL2(Ẑ) must lie in the set

L := {2, 3, 5, 7, 11, 13, 17, 37},

cf. Lemma 10.1. From this, one can show that there are only finitely many agreeable groups of the
form GE as we vary over all non-CM elliptic curves E/Q for which Conjecture 1.2 holds.

The following theorem summarizes some details of our computations.

Theorem 1.9. We can compute a finite set A of agreeable subgroups that are pairwise non-

conjugate in GL2(Ẑ) and satisfy the following conditions:

(a) For every group G ∈ A , the level of G is not divisible by any prime ℓ /∈ L.
(b) Let G be any agreeable subgroup of GL2(Ẑ) for which the level of G is divisible only by

primes in the set L and for which XG(Q) has a non-CM point.

• If XG(Q) is infinite, then G is conjugate in GL2(Ẑ) to some group G ∈ A .

• If XG(Q) is finite, then G is conjugate in GL2(Ẑ) to a subgroup of some G ∈ A with
XG(Q) finite.

(c) If G ∈ A is a group for which XG(Q) is finite, then XG(Q) is infinite for all agreeable

groups G ⊊ G ⊆ GL2(Ẑ).
(d) If G ∈ A is a group for which XG has genus at most 1, then XG(Q) has a non-CM point.
(e) For any group G ∈ A for which XG has genus at most 1, we can compute a model for the

curve XG and, with respect to this model, compute the morphism πG from XG to the j-line.
(f) For any group G ∈ A and rational number j ∈ Q − {0, 1728}, we can determine whether

πG(P ) = j for some P ∈ XG(Q).

Our set A contains 315 groups G for which XG has genus 0 (and hence XG is isomorphic to P1
Q

since it has a rational point). Our set A contains 139 and 17 groups G for which XG has genus 1
and XG(Q) is infinite or finite, respectively.

Our original set A constructed contained thousands of groups G for which XG has genus at least
2. For each such group G, XG(Q) is finite by Faltings; unfortunately, XG(Q) can sometimes be
extremely difficult to compute. Observe that whenever one can show that XG(Q) has no non-CM
points, then we can remove G from A . In our set A , we know of 53 groups G for which XG has
genus at least 2 and XG(Q) has a non-CM point; these give rise to 81 exceptional j-invariants of
non-CM elliptic curves.

We will now outline how to compute GE , up to conjugacy in GL2(Ẑ), for a fixed non-CM elliptic

curve E/Q. Again recall that once we know GE , we can then compute GE ∩ SL2(Ẑ) = [GE ,GE ] up

to conjugacy in GL2(Ẑ) (see §7.3.1 for how to compute commutator subgroups). We can thus also

compute the index [GL2(Ẑ) : ρE(GalQ)] = [GL2(Ẑ) : GE ] = [SL2(Ẑ) : [GE ,GE ]].

Consider the case where Conjecture 1.2 holds for E/Q and jE is not in the finite set

J :=
⋃

G∈A , XG(Q) finite

πG(XG(Q)).(1.1)

We can verify whether E/Q satisfies these conditions by using the algorithm from [Zyw22] and
Theorem 1.9(f). (For non-CM elliptic curves over Q that do not satisfy these conditions, we will
take any alternate and more direct approach later.)

Let us now explain how Theorem 1.9 allows us to compute the group GE up to conjugacy; more
details can be found in §10. We have jE ∈ πGE

(XGE
(Q)) since ρ∗E(GalQ) ⊆ GE . In particular,

XGE
(Q) contains a non-CM point. Our assumption that Conjecture 1.2 holds for E implies that
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the level of GE is not divisible by any prime ℓ /∈ L, cf. §10.1. If GE is conjugate in GL2(Ẑ) to a
subgroup of some group G ∈ A with XG(Q) finite, then we have jE ∈ πG(XG(Q)) which contradicts

jE /∈ J . Therefore, GE is not conjugate in GL2(Ẑ) to a subgroup of any G ∈ A with XG(Q) finite.

Applying Theorem 1.9(b), we deduce that GE is conjugate in GL2(Ẑ) to a unique group G ∈ A . So

let G be a group in A with maximal index in GL2(Ẑ) amongst those that satisfy jE ∈ πG(XG(Q));

this can be found using Theorem 1.9(f). Then the explicit group G is conjugate in GL2(Ẑ) to the
agreeable closure GE of GE .

1.5. Finding the image of Galois. Let E be a non-CM elliptic curve over Q. Suppose that

we have found an agreeable subgroup G of GL2(Ẑ) such that, after possibly conjugating GE :=

ρ∗E(GalQ) in GL2(Ẑ), GE is a subgroup of G satisfying GE ∩SL2(Ẑ) = [G,G]. In particular, GE is a
normal subgroup of G and G/GE is finite and abelian. As noted in §1.4, the agreeable closure GE

of GE will satisfy these properties and is computable.

Choose an open subgroup G of G satisfying det(G) = Ẑ× and G ∩ SL2(Ẑ) = [G,G]. Note that
such a subgroup G exists since the (unknown) group GE will have these properties. In practice,
we choose G with minimal possible level. Note that G is a normal subgroup of G and that G/G is
finite and abelian.

Let αE : GalQ → G/G be the homomorphism that is the composition of ρ∗E : GalQ → GE ⊆ G
with the quotient map G → G/G. Since G/G is abelian, there is a unique homomorphism

γE : Ẑ× → G/G
satisfying γE(χcyc(σ)

−1) = αE(σ) for all σ ∈ GalQ. Now define

HE := {g ∈ G : g ·G = γE(det g)};(1.2)

it is a subgroup of GL2(Ẑ) and the following lemma shows that it is the image of ρ∗E up to conjugacy.

Lemma 1.10. The groups GE = ρ∗E(GalQ) and HE are conjugate in GL2(Ẑ).

Proof. For any σ ∈ GalQ, we have

ρ∗E(σ) ·G = αE(σ) = γE(χcyc(σ)
−1) = γE(det(ρ

∗
E(σ))).

In particular, GE is a subgroup of HE . By assumption, we have GE ∩ SL2(Ẑ) = [G,G] and hence

HE ∩ SL2(Ẑ) = G ∩ SL2(Ẑ) = [G,G] = GE ∩ SL2(Ẑ).

Since GE is a subgroup of HE with GE ∩ SL2(Ẑ) = HE ∩ SL2(Ẑ) and det(GE) = Ẑ×, we deduce
that GE = HE . □

Since GE is conjugate in GL2(Ẑ) to the group HE , computing the image of ρ∗E reduces to the
problem of finding γE .

Remark 1.11. The notation αE , γE and HE suppresses the dependence on the choice of conjugate

of ρ∗E for which ρ∗E(GalQ) ⊆ G. However, the group HE , up to conjugacy in GL2(Ẑ), depends only
on E.

We now give an alternate description of γE and an overview of how we will compute it.
Define the open subvariety UG := XG − π−1

G ({0, 1728,∞}) of XG . In §11, we shall describe a
particular étale cover ϕ : Y → UG that is Galois with group G/G. When −I ∈ G, we will have
Y = UG ⊆ XG and ϕ will be the natural morphism. The main task in §11 is computing models
for Y and UG , with the action of G/G on Y , and finding the corresponding ϕ with respect to these
models. Note that from §1.4, we need only consider a finite number of agreeable groups G if we
restrict to non-CM E/Q for which Conjecture 1.2 holds.
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Since GE is conjugate in GL2(Ẑ) to a subgroup of G and we have a model for UG , we can choose
an explicit rational point u ∈ UG(Q) such that πG(u) = jE . The fiber ϕ−1(u) ⊆ Y (Q) has a simply
transitive G/G-action. We also have a GalQ-action on ϕ−1(u) since ϕ and u are defined over Q.

The actions of G/G and GalQ on ϕ−1(u) commute. Fix an element y ∈ Y (Q) with ϕ(y) = u. For
each σ ∈ GalQ, we have

σ(y) = αu(σ) · y
for a unique αu(σ) ∈ G/G. In this manner, we obtain a homomorphism αu : GalQ → G/G. Since
G/G is abelian, αu does not depend on the choice of y. Our models produce an explicit description
of αu. For any sufficiently large prime p, by reducing our models modulo p we will be able to verify
that αu is unramified at p and also compute αu(Frobp) ∈ G/G.

After possibly replacing ρ∗E by an isomorphic representation that still satisfies GE := ρ∗E(GalQ) ⊆
G and GE ∩ SL2(Ẑ) = [G,G], we will show in §11.2 that αE = χd · αu, where χd : GalQ →
Gal(Q(

√
d)/Q) ↪→ {±1} is the quadratic character arising from a certain squarefree integer d

(the d is chosen so that the quadratic twist of E by d is isomorphic to an explicit elliptic curve over
Q with the same j-invariant). With this αE and any sufficiently large prime p, we can verify that
χd and αu are unramified at p and compute αE(Frobp) = χd(Frobp)αu(Frobp).

The homomorphism αE factors through ρ∗E,N , where N is the level of G. Therefore, αE is

unramified at all primes p ∤ M , where M is the product of N and the primes p for which E has
bad reduction. So the corresponding γE factors through a homomorphism

γE : Z×
M/(Z

×
M )e → G/G,

where e is the exponent of the group G/G and ZM =
∏

ℓ|M Zℓ. So to compute γE , it suffices to find

γE(p · (Z×
M )e) = αE(Frobp)

−1 ∈ G/G for a finite set of primes p ∤M that generate the finite group

Z×
M/(Z

×
M )e.

So by computing αE(Frobp) for enough primes p ∤M , we obtain γE and hence can compute the

group HE . This will complete the computation of ρ∗E(GalQ), up to conjugacy in GL2(Ẑ), since it
is conjugate to HE .

Remark 1.12. Let us make clear what we mean that HE is computable. That we have computed
γE means we have a positive integer D ≥ 1 such that γE factors through an explicit homomorphism
(Z/DZ)× → G/G. We also know the groups G and G, i.e., we have an integer N ≥ 1 that is divisible
by the levels of G and G, and we have a set of generators for the image in GL2(Z/NZ) of G and

G. Let N ′ be the least common multiple of N and D. Then HE is an open subgroup of GL2(Ẑ)
whose level divides N ′ and we can find explicit generators for the image of HE in GL2(Z/N ′Z)
under reduction modulo N ′.

1.6. Example: Serre curves. Let us consider the largest agreeable group G := GL2(Ẑ). The com-

mutator subgroup [G,G] is the unique subgroup of SL2(Ẑ) with level 2 and index 2, cf. Lemma 7.7.

Let G be the unique subgroup of G = GL2(Ẑ) with level 2 and index 2. We have G∩SL2(Ẑ) = [G,G],
det(G) = Ẑ×, and G/G is cyclic of order 2.

For a squarefree integer d, let γd : Ẑ× → G/G be the unique homomorphism for which GalQ →
G/G, σ 7→ γd(χcyc(σ)

−1) factors through Gal(Q(
√
d)/Q) ↪→ G/G. After fixing an isomorphism

G/G ∼= {±1}, γd factors through the Kronecker character of Q(
√
d). Define the group

Gγd := {g ∈ G : g ·G = γd(det g)}.

Observe that Gγd is an open subgroup of G = GL2(Ẑ) with index 2 that satisfies det(Gγd) = Ẑ×

and Gγd ∩ SL2(Ẑ) = G ∩ SL2(Ẑ) = [G,G]. We have Gγ1 = G.
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Now consider any non-CM elliptic curve E/Q and set GE := ρ∗E(GalQ). As noted in Remark 1.8,

the index of GE in GL2(Ẑ) is always divisible by 2. Moreover, we can show that GE is contained in

an explicit index 2 subgroup of GL2(Ẑ). Let αE : GalQ → G/G be the composition of ρ∗E with the

obvious quotient map. Let γE : Ẑ× → G/G be the homomorphism satisfying γE(χcyc(σ)
−1) = αE(σ)

for all σ ∈ GalQ. We have γE = γd for a unique squarefree integer d and hence

GE ⊆ Gγd

since ρ∗E(σ) · G = αE(σ) = γE(χcyc(σ)
−1) = γd(det ρ

∗
E(σ)). Since G has level 2, the integer d can

be found by studying the 2-torsion of E. A direct computation shows that d ∈ ∆ · (Q×)2, where ∆
is the discriminant of a Weierstrass model of E/Q. One can show that ∆ · (jE − 1728) is always a
square in Q so d ∈ (jE − 1728) · (Q×)2.

Following Lang and Trotter [LT76], we say that a (non-CM) E/Q is a Serre curve if [GL2(Ẑ) :
GE ] = 2. Thus Serre curves are elliptic curves E/Q for which the image of ρE is as “large as
possible”. Equivalently, a non-CM elliptic curve E/Q is a Serre curve if and only if GE = Gγd for
the unique squarefree integer d ∈ (jE − 1728) · (Q×)2. The first examples of such curves were given
by Serre, see the end of §5.5 of [Ser72].

Now consider a Serre curve E/Q. We have GE = Gγd for a unique squarefree integer d. If d is
divisible by an odd prime, then Gγd is not agreeable since the level of GE is divisible by an odd prime

and the level of GE ∩ SL2(Ẑ) = G ∩ SL2(Ẑ) is 2. So for d /∈ {±1,±2}, the agreeable closure of GE

is GL2(Ẑ). For d ∈ {±1,±2}, the group Gγd is agreeable (and so GE is its own agreeable closure).

However, we cannot have GE = Gγd for d ∈ {±1}, since in these cases [Gγd , Gγd ] ⊊ Gγd ∩ SL2(Ẑ).
Proposition 1.13. For a non-CM elliptic curve E/Q, let GE be the agreeable closure of GE. Then

E is a Serre curve if and only if GE is equal to GL2(Ẑ), Gγ2 or Gγ−2.

Proof. One direction we have already proved. Now suppose that GE is GL2(Ẑ), Gγ2 or Gγ−2 . In all

three cases, we have [GE ,GE ] = [G,G]. So [GL2(Ẑ) : GE ] = [SL2(Ẑ) : [G,G]] = 2. □

Remark 1.14.

(i) With notation as in §1.5, there should be a related étale cover ϕ : Y → UG of degree
|G/G| = 2. We have UG = A1

Q − {0, 1728} and Y = UG.

There is a model UG = {t ∈ A1
Q : t(t2+1728) ̸= 0} with morphism ϕ : UG → UG given by

ϕ(t) = t2+1728. For each j ∈ UG(Q) = Q−{0, 1728}, the fiber ϕ−1(j) ⊆ UG(Q) consists of

two points and the action of GalQ on it factors through a faithful action of Gal(Q(
√
d)/Q),

where d is the unique squarefree integer in (j − 1728) · (Q×)2.
(ii) “Most” elliptic curves over Q are Serre curves, cf. [Jon10].
(iii) For number fields K ̸= Q that contain no nontrivial abelian extension of Q, one can show

that there are elliptic curves E over K with ρ∗E(GalK) = GL2(Ẑ), cf. [Zyw10]. Note that
when K ̸= Q, the maximal abelian extension of K is strictly larger than the cyclotomic
extension and hence the constraint of Lemma 1.7 need not hold.

1.7. An example with the largest known index. Let E/Q be the non-CM elliptic curve defined
by the Weierstrass equation y2+xy+y = x3+x2−8x+6; it has j-invariant −7 ·113 and conductor
52 · 72. This curve E is special since it has an isogeny of degree 37 defined over Q. Without giving
all the details, we now explain what goes into computing the group GE := ρ∗E(GalQ). In particular,
this elliptic curve arises from a rational point on a modular curve of genus 2, i.e., X0(37).

For every prime ℓ ̸= 37, we have ρE,ℓ∞(GalQ) = GL2(Zℓ). After choosing bases appropriately,
the image of ρ∗E,37 will lie in the group of upper triangular matrices in GL2(Z/37Z). Therefore, GE

is a subgroup of

G :=
{
g ∈ GL2(Ẑ) : g ≡ ( ∗ ∗

0 ∗ ) (mod 37)
}
.
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Making use of our explicit modular curves from Theorem 1.9, we find that GE = G, i.e., G is the
agreeable closure of GE .

The commutator subgroup [G,G] is the level 2 · 37 subgroup of SL2(Ẑ) consisting of matrices
whose image modulo 2 lies in the unique index 2 subgroup of SL2(Z/2Z) and whose image modulo
37 is of the form ( 1 ∗

0 1 ). As noted in §1.4, since G is the agreeable closure of GE we will have

GE ∩ SL2(Ẑ) = [G,G] and

[GL2(Ẑ) : GE ] = [SL2(Ẑ) : [G,G]] = 2 · | SL2(Z/37Z)|/37 = 2736.

Let G be the open subgroup of GL2(Ẑ) of level 2 · 37 consisting of matrices whose image modulo
2 lies in the unique index 2 subgroup of GL2(Z/2Z) and whose image modulo 37 is of the form

( ∗ ∗
0 1 ). Note that G is an open subgroup of G that satisfies det(G) = Ẑ× and G ∩ SL2(Ẑ) = [G,G].
Let χ1 : G → {±1} be the homomorphism obtained by composing reduction modulo 2 with the

only nontrivial homomorphism GL2(Z/2Z) ↠ {±1}. Let χ2 : G → (Z/37Z)× be the homomorphism
that takes a matrix

(
a b
c d

)
to dmodulo 37. The kernel of the homomorphisms χ1 and χ2 both contain

G and together they induce an isomorphism

G/G ∼−→ {±1} × (Z/37Z)×.(1.3)

Let αE : GalQ → G/G be the homomorphism obtained by composing ρ∗E : GalQ → G with the

quotient map G/G. Since G/G is abelian, there is a unique homomorphism γE : Ẑ× → G/G satis-
fying γE(χcyc(σ)

−1) = αE(σ) for all σ ∈ GalQ. Once we have found γE , Lemma 1.10 implies that

GE is conjugate in GL2(Ẑ) to the explicit group HE := {g ∈ G : g ·G = γE(det g)}.

Let γ1 : Ẑ× → {±1} and γ2 : Ẑ× → (Z/37Z)× be the homomorphism obtained by composing γE
with χ1 and χ2, respectively.

We first describe γ1. The extension Q(E[2])/Q is a Galois extension with group isomorphic to

GL2(Z/2Z). SoQ(E[2]) contains a unique quadratic extension; it isQ(
√
∆), where ∆ = −5372 is the

discriminant of the Weierstrass model of E. Therefore, Q(
√
−5) is the unique quadratic extension of

Q in Q(E[2]). Using this, we find that γ1 ◦χcyc : GalQ → {±1} factors through Gal(Q(
√
−5)/Q) ↪→

{±1}. Therefore, γ1 is obtained by composing the reduction modulo 20 homomorphism Ẑ× →
(Z/20Z)× with the unique Dirichlet character (Z/20Z)× → {±1} of conductor 20.

We now describe γ2. There is a unique subgroup H ⊆ E[37] of order 37 that is stable under
the action of GalQ; the x-coordinates of the nonzero elements of H are the roots of a degree 18
polynomial f(x) ∈ Z[x] that can be found by factoring the 37-th division polynomial of E. Let
β : GalQ → (Z/37Z)× be the homomorphism for which σ(P ) = β(σ)·P for all P ∈ H and σ ∈ GalQ.
We have

ρ∗E,37(σ) =
( ∗ ∗
0 β(σ)−1

)
for σ ∈ GalQ. From this, we find that γ2(χcyc(σ)) = β(σ) for σ ∈ GalQ. The representation
ρ∗E,37, and hence also β, is unramified at all primes p ∤ 5 · 7 · 37 since the conductor of E is 52 · 72.
Therefore, γ2 factors through a homomorphism γ2 : (Z/(5 · 7 · 37)Z)× = (Z/1295Z)× → (Z/37Z)×
satisfying γ2(p) = β(Frobp) for all primes p ∤ 5 · 7 · 37. We can compute β(Frobp) for any prime

p ∤ 5 · 7 · 37 by working modulo p (for any point P ∈ E(Fp) whose x-coordinate is a root of f , we
have Frobp(P ) = β(Frobp) · P ). In particular, we find that:

β(Frob13) = 6, β(Frob19) = 26, β(Frob29) = 36.(1.4)

Since 13, 19 and 29 generate (Z/1295Z)×, the values (1.4) determine γ2 and hence also γ2.

The homomorphism γE : Ẑ× → G/G is thus the map a 7→ (γ1(a), γ2(a)) composed with the
inverse of (1.3). Now that we know G and γE , we can compute HE which gives the image of ρ∗E
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up to conjugacy. A direct calculation shows that HE has level 4 · 5 · 7 · 37 = 5180 and the image of
HE modulo 5180 is generated by the matrices:

( 1 38
0 1 ) , ( 1 1

37 38 ) , ( 13 0
0 2391 ) , ( 64 3737

37 2970 ) , ( 70 851
37 5038 ) , ( 42 1961

37 4318 ) .(1.5)

Note that the first two matrices generate the image of [G,G] modulo 5180 while the other matrices
are chosen to have determinants 3, 11, 13 and 19, respectively (these primes generate the group
(Z/5180Z)×).

1.8. An involved example. We now give a more complicated example involving the étale mor-
phism ϕ : Y → UG from §1.5; it will arise from our computations.

Let G be the open subgroup of GL2(Ẑ) of level 27 whose image modulo 27 is generated by the

matrices: ( 1 1
0 1 ), (

1 2
3 2 ), (

2 1
9 5 ). We have det(G) = Ẑ×, −I ∈ G, and [GL2(Ẑ) : G] = 36.

The curve XG is isomorphic to P1
Q and G is one of the agreeable groups in our set A from

Theorem 1.9. Moreover, Q(XG) = Q(t) for some t so that the map πG to the j-line is given by the
rational function

π(t) :=
(t3 + 3)3(t9 + 9t6 + 27t3 + 3)3

t3(t6 + 9t3 + 27)
.

We have π(t)− 1728 = (t18 + 18t15 + 135t12 + 504t9 + 891t6 + 486t3 − 27)2/(t3(t6 + 9t3 + 27)). So

UG = SpecQ[t, 1/f ] ⊆ SpecQ[t] = A1
Q,

where f := t(t3 + 3)(t9 + 9t6 + 27t3 + 3)(t18 + 18t15 + 135t12 + 504t9 + 891t6 + 486t3 − 27).

Let G be the open subgroup of GL2(Ẑ) of level 54 whose image modulo 54 is generated by

the matrices: ( 7 0
36 1 ), (

7 16
0 25 ), (

16 7
3 5 ). We have det(G) = Ẑ×, −I /∈ G, G ⊆ G, and [G : G] = 36.

The group G is normal in G and G∩SL2(Ẑ) = [G,G]. The quotient group G/G is abelian of order 36.

As mentioned in §1.5, in §11 we describe a particular étale cover ϕ : Y → UG that is Galois
with group G/G; it is used for computing groups ρ∗E(GalQ) whose agreeable closure is conjugate in

GL2(Ẑ) to G. We now state ϕ with respect to the explicit models that occur in our computations.
For each 1 ≤ i ≤ 9, define a homogeneous polynomial Fi ∈ Z[x1, . . . , x8] and a polynomial

ci ∈ Z[t] as follows:

F1 := x21 + x1x4 + x22 + x2x5 + x23 + x3x6 + x24 + x25 + x26,

F2 := x1x3 − x1x5 + x2x4 − x2x6 + x3x4 + x3x5 + x4x6,

F3 := x1x2 − x1x6 + x2x3 + x2x4 + x3x4 + x3x5 + x4x5 + x5x6,

F4 := x21x4 + x1x
2
4 + x22x5 + x2x

2
5 + x23x6 + x3x

2
6,

F5 := x21x3 + x21x6 − x1x
2
2 + 2x1x3x4 + x1x

2
5 − x2x

2
3 + 2x2x4x5 + x2x

2
6 + 2x3x5x6 − x24x6 + x4x

2
5 + x5x

2
6,

F6 := x31 + 3x21x4 + x32 + 3x22x5 + x33 + 3x23x6 − x34 − x35 − x36,

F7 := x21x2 + x21x5 + 2x1x2x4 − x1x
2
3 + x1x

2
6 + x22x3 + x22x6 + 2x2x3x5 + 2x3x4x6 − x24x5 + x4x

2
6 − x25x6,

F8 := x27,

F9 := x28,
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c1 := 2(t6 + 9t3 + 27),

c2 := −(t6 + 9t3 + 27),

c3 := −(t6 + 9t3 + 27),

c4 := −(2t2 + 2t− 3)(t6 + 9t3 + 27),

c5 := 3(t− 1)(t+ 2)(t6 + 9t3 + 27),

c6 := −(2t− 3)(t2 + 3t+ 3)(t6 + 9t3 + 27),

c7 := (3t2 + 4t− 3)(t6 + 9t3 + 27),

c8 := t(t6 + 9t3 + 27),

c9 := −3t(t3 + 3)(t6 + 9t3 + 27)(t9 + 9t6 + 27t3 + 3)(t18 + 18t15 + 135t12 + 504t9 + 891t6 + 486t3 − 27).

Let Y be the closed subvariety of SpecQ[x1, . . . , x8, t, 1/f ] defined by the equations

Fi(x1, . . . , x8) = ci(t)

with 1 ≤ i ≤ 9. Let ϕ : Y → UG be the morphism given by (x1, . . . , x8, t) 7→ t.
We now describe an action of G/G on Y . Choose matrices g1, g2 and g3 in G that are congruent

modulo 54 to ( 31 44
36 25 ), (

28 27
27 28 ) and

(−1 0
0 −1

)
, respectively. We have a unique isomorphism of abelian

groups

ι : Z/9Z× Z/2Z× Z/2Z ∼−→ G/G

for which (1, 0, 0) 7→ g1G, (0, 1, 0) 7→ g2G and (0, 0, 1) 7→ g3G. So it suffices to describe the action
of each giG on Y . For any point y = (a1, . . . , a9) ∈ Y (Q), we have

g1G · y := (a2, a3, a4, a5, a6,−a1 − a4, a7, a8, a9),

g2G · y := (a1, a2, a3, a4, a5, a6,−a7, a8, a9),
g2G · y := (a1, a2, a3, a4, a5, a6, a7,−a8, a9).

The action of G/G on Y is faithful and does not affect the morphism ϕ. In fact, ϕ : Y → UG is an
étale morphism of degree 36 that is Galois with the action of G/G giving its Galois group. The
curve Y is defined over Q and is smooth and geometrically irreducible. This completes our explicit
description of ϕ : Y → UG .

As an example of how to use these equations, consider the elliptic curve E/Q give by the Weier-
strass equation

y2 + y = x3 + x2 + x.

The curve E has j-invariant 32768/19 and conductor 19. We have jE = π(−1) ∈ πG(XG(Q)), so

GE := ρ∗E(GalQ) is conjugate in GL2(Ẑ) to a subgroup of G. So after replacing ρ∗E by an isomorphic
representation, we may assume that GE ⊆ G. In particular, the agreeable closure GE of GE is a
subgroup of G. Using our groups and modular curves from Theorem 1.9, we find that GE = G.

Fix u := −1 ∈ UG(Q) = Q− {0}. The fiber ϕ−1(u) is the subscheme of A8
Q = SpecQ[x1, . . . , x8]

defined by the equations Fi(x1, . . . , x8) = ci(−1) with 1 ≤ i ≤ 9; it is reduced of dimension 0, has
degree 36, and G/G acts faithfully on the Q-points. Let αu : GalQ → G/G be the homomorphism

such that σ(y) = αu(σ) · y for any σ ∈ GalQ and any y ∈ Y (Q) with ϕ(y) = u.
Take any prime p ∤ 6 for which the Zp-subscheme Z ⊆ A8

Zp
= SpecZp[x1, . . . , x8] defined by the

equations Fi(x1, . . . , x8) = ci(−1) with 1 ≤ i ≤ 9, is smooth and ZFp has degree 36. The action of

G/G on Z(Fp) is simply transitive. Using Hensel’s lemma and the smoothness of Z, we find that

Frobp(y) = αu(Frobp) · y for all y ∈ Z(Fp). This gives our computable description of αu(Frobp);
10



find a point y ∈ Z(Fp), raise its coordinates to the p-th power and find the unique αu(Frobp) ∈ G/G
for which Frobp(y) = αu(Frobp) · y. In this way, one can show that:

αu(Frob5) = ι((2, 0, 1)), αu(Frob11) = ι((6, 0, 1)), αu(Frob13) = ι((4, 1, 1)).(1.6)

With notation as in §11.2, we define αE := χ · αu : GalQ → G/G, where χ : GalQ → {±1} is the
homomorphism that factors through Gal(Q(

√
−19)/Q) ↪→ {±1}. By Lemma 11.1, after replacing

ρ∗E by an isomorphic representation, we may assume that GE ⊆ G and that the composition of ρ∗E
with the quotient map G → G/G is αE .

Let
γE : Ẑ× → G/G

be the homomorphism such that γE(χcyc(σ)
−1) = αE(σ) for all σ ∈ GalQ. With M = 2 · 3 · 19 and

e = 18, we can argue as in §1.5 that γE factors through a homomorphism γE : Z×
M/(Z

×
M )e → G/G

such that p · (Z×
M )e 7→ αE(Frobp)

−1 for all primes p ∤M . In particular,

γE(5) = ι((7, 0, 1)), γE(11) = ι((3, 0, 1)), γE(13) = −ι((5, 1, 1)) = ι((5, 1, 0)).(1.7)

Since the primes 5, 11 and 13 generate Z×
M/(Z

×
M )e, we deduce that γE is determined by M and the

values (1.7). Using this, we can show that γE is the composition of the reduction homomorphism

Ẑ× → (Z/57Z)× with the unique homomorphism (Z/57Z)× → G/G for which 5 7→ ι((7, 0, 1)) and
13 7→ ι((5, 1, 0)).

Now that we know G and γE , we can compute the group HE from (1.2). The group HE is an

open subgroup of GL2(Ẑ) with level 2 · 27 · 19 = 1026 and its image modulo 1026 is generated by
the matrices:

( 31 198
10 97 ) , ( 1 0

18 1 ) , ( 28 729
27 703 ) , ( 149 681

271 448 ) , ( 994 9
689 790 ) ;

the first three matrices also generate the image of HE ∩SL2(Ẑ) modulo 1026. By Lemma 1.10, this
gives the image of ρ∗E up to conjugacy.

1.9. Some related results. There has been much research on modular curves and the image of
Galois representations associated to non-CM elliptic curves over Q. We now give a brief and in-
complete description of some related recent progress.

Given a fixed non-CM elliptic curve E/Q, we can determine the (finite) set of primes ℓ for
which ρE,ℓ(GalQ) ̸= GL2(Z/ℓZ) using the algorithm in [Zyw22] (it is based on Serre’s original proof
in [Ser72]). For each prime ℓ for which ρE,ℓ is not surjective, we can also compute the subgroup
ρE,ℓ(GalQ) ⊆ GL2(Z/ℓZ) up to conjugacy using [Zyw15b] or [Sut16] (the first reference uses explicit
modular curves while the second reference uses Frobenius matrices to give a probabilistic algorithm).

Consider primes ℓ > 13. There has been much progress towards Conjecture 1.2. If ρE,ℓ is not sur-
jective for a non-CM elliptic curve E/Q, then E gives rise to a rational non-CM point on a modular
curve XG with G a maximal subgroup of GL2(Z/ℓZ) satisfying det(G) = (Z/ℓZ)×. When G is the
subgroup of upper triangular matrices, Mazur [Maz78] has found the rational points ofX0(ℓ) := XG.
The curve X0(ℓ) has no non-CM rational points for ℓ > 17 and ℓ ̸= 37 (for ℓ ∈ {17, 37}, there are
non-CM rational points which lead to the j-invariants in the statement of Conjecture 1.2). When
G is the normalizer of a split Cartan subgroup, Bilu, Parent and Rebolledo [BPR13] have shown
that XG has no non-CM points. When the image of G in GL2(Z/ℓZ)/((Z/ℓZ)× · I) is isomor-
phic to S4, the modular curve XG(Q) has no non-CM points, see the remarks on page 36 of
[Maz77b]. The remaining modular curves to consider are the curves X+

ns(ℓ) := XG, where G is
the normalizer of a non-split Cartan subgroup of GL2(Z/ℓZ). There has been recent progress on
finding the rational points on X+

ns(ℓ) for small ℓ using generalized versions of Chabauty’s method,
cf. [BDM+19,BDM+23], but the general case remains open.

11



Now consider the images of the ℓ-adic representations ρE,ℓ∞ . If ρE,ℓ(GalQ) = GL2(Z/ℓZ) for a
non-CM elliptic E/Q and a prime ℓ ≥ 5, then we have ρE,ℓ∞(GalQ) = GL2(Zℓ), cf. §7.9. Taking
Conjecture 1.2 and our above discussion of modulo ℓ representations into account, it makes sense to
focus on ℓ-adic projections for the primes ℓ ∈ {2, 3, 5, 7, 11, 13, 17, 37}. For the prime ℓ = 2, Rouse
and Zureick-Brown [RZB15] gave a complete description of the images ρE,ℓ∞(GalQ) ⊆ GL2(Zℓ),
up to conjugacy, for all non-CM elliptic curves E/Q (they found models of all relevant modular
curves and computed their rational points). For each prime ℓ, Sutherland and Zywina [SZ17] de-
scribed all open subgroups G of GL2(Zℓ) with det(G) = Z×

ℓ for which XG(Q) is infinite and then
computed a model for XG along with the morphism to the j-line. In [RSZB22], Rouse, Sutherland
and Zureick-Brown gave a complete description of ℓ-adic images up to possible counterexamples to
Conjecture 1.2 and determining the rational points on a finite number of explicit modular curves
XG of genus at least 2.

Once one gets a handle on the ℓ-adic Galois images, it is natural to consider the image modulo
integers divisible by several distinct primes. There has been much recent work on understanding and
classifying “entanglements”; for example, see [DLRM23,DM22, JM22,Mor19, BJ16]. For relative
prime positive integersm and n, we say that E has a (m,n)-entanglement if Q(E[m])∩Q(E[n]) ̸= Q;
equivalently, ρE,mn(GalQ) can be viewed as a proper subgroup of ρE,m(GalQ) × ρE,n(GalQ). In
particular, entanglements describe constraints on the image ρE(GalQ).

While the work in this paper does give some information, we have avoided a general study of
possible entanglements. What may seem surprising at first, is that to compute the group ρE(GalQ)
we do not first compute the ℓ-adic projections ρE,ℓ∞(GalQ); even though they can be found using
[RSZB22]. The approach of computing the ℓ-adic images and then describing all the possible entan-
glements seems to lead to an excessive number of cases. Of course once we have found ρE(GalQ),
up to conjugacy, we can then easily compute the ℓ-adic projections ρE,ℓ∞(GalQ).

There has also been some more general study on the image of ρE . Jones has produced upper

bounds for the level of ρE(GalQ) in GL2(Ẑ) for non-CM elliptic curves E/Q, cf. [Jon20, Jon09].
The paper [Jon15] of Jones contains a lot of group theoretic information about the image of ρE ;
in particular, he generalizes the notion of a Serre curve, cf. Remark 14.3. The doctoral thesis of
Brau Avilo [BA15] appears to be the first place to explicitly point out that there is an algorithm to
compute ρE(GalQ). His algorithm first finds the levelm of ρE(GalQ) and then computes ρE,m(GalQ)
by making use of division polynomials; it it not practical in general.

Define the set of integers

I =

 2, 4, 6, 8, 10, 12, 16, 20, 24, 30, 32, 36, 40, 48, 54, 60, 72,
84, 96, 108, 112, 120, 144, 192, 220, 240, 288, 336, 360,

384, 504, 576, 768, 864, 1152, 1200, 1296, 1536

 .

In [Zyw15a], it is shown that there is a finite set J ⊆ Q such that for any elliptic curve E/Q with

jE /∈ J and ρE,ℓ(GalQ) = GL2(Z/ℓZ) for all primes ℓ > 37, we have [GL2(Ẑ) : ρE(GalQ)] ∈ I.
Moreover, I is the smallest set with this property. The results of this paper can be used to give an
elaborate alternate proof of this result (in [Zyw15a], modular curves are used but no models are
computed). Note that the only new integers that arise in Conjecture 1.5 are: 80, 128, 160, 182,
200, 216, 224, 300, 480, 2736.

Rakvi [Rak21] has recently given a description of the pairs (XG, πG), up to a suitable notion of

isomorphism, as we vary over all open subgroups G of GL2(Ẑ) satisfying det(G) = Ẑ×, −I ∈ G,
and XG

∼= P1
Q (see the end of §14 for details).
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The above results, and similar ones, are often phrased in the context of progress towards the
following overarching program:

Mazur’s Program B. [Maz77a] Given a number field K and a subgroup H of GL2(Ẑ) =
∏

pGL2(Zp)

classify all elliptic curves E/K whose associated Galois representation on torsion points map

Gal(K/K) into H ⊆ GL2(Ẑ).

1.10. Overview. We briefly outline the structure of the paper. In §2, we recall the connection
between ρ∗E with the cyclotomic character and explain how the image of ρ∗E changes when we replace
E by a quadratic twist.

Consider a subgroup G ⊆ GL2(Z/NZ) satisfying det(G) = (Z/NZ)× and −I ∈ G. In §3, we
give a quick definition of modular curves XG in terms of their function fields (which will be fields
consisting of modular functions). The curve comes with a non-constant morphism πG : XG → P1

Q =

A1
Q ∪ {∞} from XG to the j-line.
In §4, we will define a finite dimensional Q-vector space Mk,G consisting of modular forms for

each integer k ≥ 2. There will be a natural isomorphism Mk,G ⊗Q C ∼−→ Mk(ΓG), where ΓG is the
congruence subgroup of SL2(Z) consisting of matrices whose image modulo N lies in G andMk(ΓG)
is the usual space of weight k modular forms on ΓG. Much of §4 is dedicated to describing how to
compute an explicit basis of Mk,G; our approach makes use of Eisenstein series and a theorem of
Khuri-Makdisi. Our modular forms will be expressed in terms of their q-expansion at every cusp
(and for which we can compute arbitrarily many terms of each q-expansion).

In §5, we explain how to compute a model for the modular curve XG and in some cases compute
the morphism πG. The key observation is that our space of modular forms Mk,G is the global
sections of a line bundle on the modular curve XG for even k. For k even and sufficiently large,
this line bundle will be very ample and a basis for Mk,G will allow us to compute an explicit model
of XG in some projective space Pn

Q.

Let UG be the open subvariety XG − π−1
G ({0, 1728,∞}) of XG. In §6, we use modular functions

to construct an explicit representation ϱ : π1(UG) → G of the étale fundamental group of UG.
For each rational point u ∈ UG(Q), the specialization of ϱ at u will be a Galois representation
GalQ → G ⊆ GL2(Z/NZ) that is isomorphic to ρ∗E,N : GalQ → GL2(Z/NZ) for a certain elliptic

curve E/Q with j-invariant πG(u).

After recalling group theoretic results concerning subgroups and quotients of SL2(Ẑ) and GL2(Ẑ)
in §7, we will study agreeable groups in §8. In particular, in §8 we will prove the existence of
agreeable closures and we will also explain how to find the maximal agreeable subgroups of an
agreeable group.

In §9, we prove Theorem 1.9. In §10, we explain how to find the agreeable closure of GE :=
ρ∗E(GalQ), up to conjugacy, for a non-CM elliptic curve E/Q. In §12, we finally explain how to
compute GE , up to conjugacy, after understanding how to construct a certain homomorphism γE
in §11.

In §13, we give some insight into computing universal elliptic curves; this will follow quickly from
earlier sections but we state it separately for easy reference. Finally in §14, we make some remarks
concerning “families” of groups.

1.11. Implementation. As already noted, our algorithms have been implemented in Magma [BCP97]
and code can be found in the repository [Zyw23]:

https://github.com/davidzywina/OpenImage

This also includes files containing all the relevant groups and modular curves (unfortunately, the
number of cases makes it infeasible to express in a reasonable length table).
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This motivation to have a practical algorithm underlies much of the exposition and structure of
this paper. At the onset of the project, it was unclear if the approach presented here was going
to be computationally feasible; for example, some modular curves took hours to find models for,
using known approaches, and we had thousands of curves to study. The precomputation required
for our algorithms, which are not especially optimized, took less than half a day.

1.12. Notation. We now set some notation that will hold throughout. All profinite groups will
be viewed as topological groups with their profinite topology. In particular, finite groups will have
the discrete topology. For a topological group G, we define its commutator subgroup [G,G] to be
the smallest closed normal subgroup of G for which G/[G,G] is abelian. Equivalently, [G,G] is the
topological subgroup of G generated by the set of commutators {ghg−1h−1 : g, h ∈ G}.

For each integer N > 1, we let ZN be the ring obtained by taking the inverse limit of the

Z/N eZ with e ≥ 1. Let Ẑ be the ring obtained taking the inverse limit of Z/nZ over all positive

integers n. With the profinite topology, ZN and Ẑ are compact topological rings. We have natural
isomorphisms

ZN =
∏
ℓ|N

Zℓ and Ẑ = ZN ×
∏
ℓ∤N

Zℓ =
∏
ℓ

Zℓ,

where the product is over primes ℓ. The symbol ℓ will always denote a rational prime.

The level of an open subgroup G of GL2(Ẑ) is the smallest positive integer n for which G contains

the kernel of the reduction modulo n homomorphism GL2(Ẑ) → GL2(Z/nZ). The level of an open
subgroup G of GL2(ZN ) is the smallest positive integer n that divides some power of N and for
which G contains the kernel of the reduction modulo n homomorphism GL2(ZN ) → GL2(Z/nZ).
Similarly, we can define the level of open subgroups of SL2(Ẑ) and SL2(ZN ).

1.13. Acknowledgements. Thanks to Eray Karabiyik for his comments and corrections.

2. Cyclotomic constraints on the image of Galois

With a fixed non-CM elliptic curve E defined over Q, we consider the group GE := ρ∗E(GalQ)

which from Serre we know is an open subgroup of GL2(Ẑ).

2.1. Kronecker–Weber constraint. Let χcyc : GalQ → Ẑ× be the cyclotomic character, i.e., the

continuous homomorphism such that for every integer n ≥ 1 and every n-th root of unity ζ ∈ Q
we have σ(ζ) = ζχcyc(σ) mod n for all σ ∈ GalQ. By considering the Weil pairing on the groups E[n],
we know that det ◦ρE = χcyc and hence det ◦ρ∗E = χ−1

cyc. In particular, we have

det(GE) = χcyc(GalQ) = Ẑ×.

By Lemma 1.7, which makes use of the Kronecker–Weber theorem, we have

GE ∩ SL2(Ẑ) = [GE , GE ].(2.1)

and [GL2(Ẑ) : GE ] = [SL2(Ẑ) : [GE , GE ]]. One consequence of (2.1) is that it is possible to compute

the index of GE in GL2(Ẑ) using a group that is possibly larger than GE .

Lemma 2.1. Suppose G ⊆ GL2(Ẑ) is a group such that GE is a normal subgroup of G and G/GE is

abelian. Then GE and G have the same commutator subgroup. In particular, we have GE∩SL2(Ẑ) =
[G,G] and

[GL2(Ẑ) : GE ] = [SL2(Ẑ) : [G,G]].
14



Proof. We have [G,G] ⊆ GE since G/GE is abelian. Therefore, [G,G] ⊆ GE ∩ SL2(Ẑ) = [GE , GE ],
where the last equality uses Lemma 1.7. The opposite inclusion [G,G] ⊇ [GE , GE ] is clear since

G ⊇ GE . Therefore, [G,G] = [GE , GE ]. The final statement about GE ∩ SL2(Ẑ) and the index
follows from Lemma 1.7. □

2.2. Quadratic twists. Fix a squarefree integer d and let E′/Q be the quadratic twist of E by d.
In this section, we describe how the images of ρ∗E and ρ∗E′ are related.

Let χd : GalQ → {±1} be the homomorphism that factors through Gal(Q(
√
d)/Q) ↪→ {±1}.

There is a unique homomorphism ψ : Ẑ× → {±1} such that χd = ψ ◦ χ−1
cyc. Define

H := {ψ(det g) · g : g ∈ GE};

it is an open subgroup of GL2(Ẑ).

Lemma 2.2. The groups ρ∗E′(GalQ) and H are conjugate in GL2(Ẑ).

Proof. After replacing ρ∗E′ with an appropriate isomorphic representation, we may assume that
ρ∗E′ = χd · ρ∗E . For any σ ∈ GalQ, we have

ρ∗E′(σ) = χd(σ) · ρ∗E(σ) = ψ(χcyc(σ)
−1) · ρ∗E(σ) = ψ(det(ρ∗E(σ)) · ρ∗E(σ),

where we have used that det ◦ρ∗E = χ−1
cyc. Therefore, ρ

∗
E′(GalQ) = {ψ(det g) · g : g ∈ ρ∗E(GalQ)}. □

Now suppose that we know the group GE . More specifically,, we have an integer N ≥ 1 divisible
by the level of GE and a set of generators of GE modulo N . The homomorphism ψ is easy to find;
it factors through a Dirichlet character (Z/DZ)× → {±1}, where D is the discriminant of Q(

√
d).

Let N ′ be the least common multiple of N and D. Then the level of H divides N ′ and we can find
generators for the image of H modulo N ′. By Lemma 2.2, we have thus computed the image of ρ∗E′

up to conjugacy in GL2(Ẑ).
In particular, once we know the image of ρ∗E , we can easily obtain the image for any quadratic

twist of E (equivalently, any elliptic curve over Q with the same j-invariant). In practice, when
computing the image of ρ∗E , we will first replace E by a quadratic twist that has a minimal set of
primes of bad reduction.

3. The modular curve XG

The goal of this section is to give a quick definition of the modular curve XG, where G is either an

open subgroup of GL2(Ẑ) with det(G) = Ẑ× or a subgroup of GL2(Z/NZ) with det(G) = (Z/NZ)×.
While we could define XG as a coarse moduli space, we will instead define it by explicitly giving
its function field. Let ζN be the primitive N -th root of unity e2πi/N in C.

3.1. Modular functions. The group SL2(Z) acts by linear fractional transformations on the com-
plex upper half-plane H and the extended upper half-plane H∗ = H ∪Q ∪ {∞}.

Let Γ be a congruence subgroup of SL2(Z). The quotient XΓ := Γ\H∗ is a smooth compact
Riemann surface (away from the cusps and elliptic points, use the analytic structure coming from
H and extend to the full quotient). Denote by C(XΓ) the field of meromorphic functions on XΓ.

Fix a positive integer N . Every f ∈ C(XΓ(N)) gives rise to a meromorphic function on H that
satisfies

f(τ) =
∑
n∈Z

cn(f)q
n
N

for τ ∈ H, where qN := e2πiτ/N and the cn(f) are unique complex numbers that are nonzero for
only finitely many n < 0. This Laurent series in qN is called the q-expansion of f (at the cusp ∞).
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Let FN be the subfield of C(XΓ(N)) consisting of all meromorphic functions f such that cn(f)
lies in Q(ζN ) for all n ∈ Z. For example, F1 = Q(j), where j is the modular j-invariant.

Lemma 3.1. There is a unique right action ∗ of GL2(Z/NZ) on the field FN such that the following
hold for all f ∈ FN :

• For A ∈ SL2(Z/NZ), we have (f∗A)(τ) = f(γτ), where γ ∈ SL2(Z) is any matrix congruent
to A modulo N .

• For A =
(
1 0
0 d

)
∈ GL2(Z/NZ), the q-expansion of f ∗ A is

∑
n∈Z σd(cn(f))q

n
N , where σd is

the automorphism of the field Q(ζN ) that satisfies σd(ζN ) = ζdN .

Proof. This follows from Theorem 6.6 and Proposition 6.9 of [Shi94]. □

For a subgroup H of GL2(Z/NZ), let FH
N be the subfield of FN fixed by H under the action of

Lemma 3.1.

Lemma 3.2.

(i) The matrix −I acts trivially on FN and the right action of GL2(Z/NZ)/{±I} on FN is
faithful.

(ii) We have FGL2(Z/NZ)
N = F1 = Q(j) and FSL2(Z/NZ)

N = Q(ζN )(j).
(iii) The field Q(ζN ) is algebraically closed in FN .

Proof. This also follows from Theorem 6.6 and Proposition 6.9 of [Shi94]. □

3.2. Modular curves for finite groups. Let G be a subgroup of GL2(Z/NZ) that satisfies
det(G) = (Z/NZ)×. By Lemma 3.2 and our assumption det(G) = (Z/NZ)×, the field FG

N has
transcendence degree 1 and Q is algebraically closed in FG

N .

Definition 3.3. The modular curve XG is the smooth, projective and geometrically irreducible
curve over Q with function field FG

N .

3.3. Modular curves for open groups. Consider an open subgroup G of GL2(Ẑ) that satisfies
det(G) = Ẑ×. We define the modular curve associated to G to be the curve

XG := XG,

where N is a positive integer that is divisible by the level of G and G ⊆ GL2(Z/NZ) is the reduction
of G modulo N . Note that the function field Q(XG) = FG

N , and hence also XG, does not depend
on the choice of N .

Remark 3.4. We will make use of both descriptions XG and XG of a modular curve interchangeably.

Working with open groups G is more natural for our application and finite groups G is better when
dealing with computational issues.

In the special case G = GL2(Ẑ) and using Q(XG) = Q(j), we make an identification XG = P1
Q

and call it the j-line.

Consider a larger group G ⊆ G′ ⊆ GL2(Ẑ). The inclusion Q(XG) ⊇ Q(XG′) of fields induces

a morphism XG → XG′ of degree [±G′ : ±G]. In the special case G′ = GL2(Ẑ), we denote the
morphism by πG : XG → P1

Q (or πG : XG → P1
Q).

Let ΓG be the congruence subgroup SL2(Z)∩G of SL2(Z); equivalently, the group of A ∈ SL2(Z)
for which A modulo N lies in the group G above. We have an inclusion C · Q(XG) ⊆ C(XΓG

)
of fields that both have degree [GL2(Z/NZ) : ±G] = [SL2(Z) : ±ΓG] over C(j). Therefore,
C(XΓG

) = C(XG). Using this equality of function fields, we shall identify XG(C) with the Riemann

surface XΓG
. Taking complex points, πG gives rise to the morphism XΓG

→ XSL2(Z)
∼−→ P1(C) of
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Riemann surfaces obtained by composing the natural quotient map with the isomorphism given by
j.

The following property of XG is fundamental to our application to elliptic curves; it follows from
Proposition 6.4 which we will prove in §6.3.

Proposition 3.5. Let G be an open subgroup of GL2(Ẑ) that satisfies det(G) = Ẑ× and −I ∈ G.
Let E be any elliptic curve defined over Q with jE /∈ {0, 1728}. Then ρ∗E(GalQ) is conjugate in

GL2(Ẑ) to a subgroup of G if and only if jE is an element of πG(XG(Q)) ⊆ Q ∪ {∞}.

Remark 3.6. As a warning we observe that in the literature, the notation XG sometimes denotes
the modular curve that we call XGt , where Gt is the group obtained by taking the transpose of the
elements of G. The advantage of this alternate definition is that Proposition 3.5 could be stated
with ρE instead of the dual representation ρ∗E . Our definition is more natural when working with
the right actions of G on spaces of modular forms.

4. Modular forms

In this section, we recall what we need concerning modular forms. For a modular form, we
are particularly interested in computing arbitrarily many terms of the q-expansions at every cusp.
For the basics on modular forms see [Shi94]. For an overview on computing modular forms see
[BBB+21]; we will take our own approach using Eisenstein series that treats all the q-expansions
at each cusp with equal importance.

For a subgroup G of GL2(Z/NZ) with det(G) = (Z/NZ)× and an even integer k ≥ 2, we are
especially interested in computing the space of modular forms Mk,G from §4.6. We will see later
that Mk,G is the global sections of a line bundle on the modular curve XG. For k large enough, the
line bundle will be very ample and Mk,G will allow us to compute an explicit model of XG in Pn

Q
for some n.

Fix a congruence subgroup Γ of SL2(Z). For a positive integer N , define the primitive N -th root

of unity ζN := e2πi/N in C.

4.1. Setup and notation. The group SL2(Z) acts by linear fractional transformations on the
complex upper half-plane H and the extended upper half-plane H∗ = H ∪Q ∪ {∞}. The quotient
XΓ := Γ\H∗ is a smooth compact Riemann surface (away from the cusps and elliptic points use
the analytic structure coming from H and extend to the full quotient).

Let g be the genus of the Riemann surface XΓ. Let P1, . . . , Pr be the cusps of XΓ, i.e., the
Γ-orbits of P1(Q) = Q ∪ {∞}. Let Q1, . . . , Qs be the elliptic points of XΓ and denote their orders
by e1, . . . , es, respectively. Each ei is either 2 or 3. Let v2 and v3 be the number of elliptic points
of XΓ of order 2 and 3, respectively.

Consider an integer k ≥ 0. For a meromorphic function f on H and a matrix γ ∈ GL2(R) with
positive determinant, define the meromorphic function f |kγ on H by (f |kγ)(τ) := det(γ)k/2(cτ +
d)−kf(γτ); we call this the slash operator of weight k.

4.2. Modular forms. For an integer k ≥ 0, we denote byMk(Γ) the set of modular forms of weight
k on Γ; it is a finite dimensional complex vector space. Recall that each f ∈Mk(Γ) is a holomorphic
function of the upper half-plane H that satisfies f |kγ = f for all γ ∈ Γ with the familiar growth
condition at each cusp. For each modular form f ∈Mk(Γ), we have

f(τ) =

∞∑
n=0

an(f) q
n
w

17



for unique an(f) ∈ C, where w is the width of the cusp ∞ of Γ and qw := e2πiτ/w. We call this power
series in qw, the q-expansion of f (at the cusp ∞). For a subring R of C, we denote by Mk(Γ, R)
the R-submodule of Mk(Γ) consisting of modular forms whose q-expansion has coefficients in R.

Define the graded C-algebra of modular forms on Γ by

RΓ :=
⊕
k≥0

Mk(Γ),

where k varies over all nonnegative integers. The C-algebra RΓ is finitely generated.

4.3. q-expansion at cusps. We now consider q-expansions at all the cusps P1, . . . , Pr of XΓ. For
each 1 ≤ i ≤ r, choose a matrix Ai ∈ SL2(Z) so that Ai · ∞ ∈ Q ∪ {∞} is a representative of
the cusp Pi. Let wi and hi be the minimal positive integers m for which ( 1 m

0 1 ) lies in A−1
i ΓAi

and A−1
i (±Γ)Ai, respectively. We say that Pi is a regular cusp of Γ if wi = hi; otherwise, it is an

irregular cusp and we have wi = 2hi.
Consider a modular form f ∈Mk(Γ). For 1 ≤ i ≤ r, we have

(f |kAi)(τ) =

∞∑
n=0

an,i(f) q
n
wi

(4.1)

for unique an,i(f) ∈ C, where qwi = e2πiτ/wi . In particular, we can identify f |kAi with a power
series in C[[qwi ]]. The ring C[[qwi ]] is a discrete valuation ring and we denote the corresponding
valuation by ordqwi

: C[[qwi ]] ↠ Z ∪ {+∞}. Define the value

νPi(f) :=
hi
wi

ordqwi
(f |kAi).

4.4. Modular forms as global sections. Fix an even integer k ≥ 0. Take any modular form
f ∈Mk(Γ). Using that f |kγ = f for all γ ∈ Γ, we find that the differential form

(2πi)k/2f(τ) (dτ)k/2 = wk/2

( ∞∑
n=0

an(f) q
n
w

)(
dqw
qw

)k/2

(4.2)

on H induces a meromorphic differential k/2-form ωf on XΓ.
Let div(ωf ) =

∑
P∈XΓ

nP · P be the divisor of ωf . We now describe the integer nP in terms

of f , cf. equations (2.4.4) and (2.4.5) of [Shi94]. If P is a cusp, then nP = νP (f) − k/2 and
hence nP + k/2 ≥ 0. Now suppose P ∈ XΓ is not a cusp. Choose a z ∈ H that lies over P
and let e be its order, i.e., the order of the cyclic group {γ ∈ Γ : γ · z = z}/(Γ ∩ {±I}). We have
nP = νz(f)/e−k/2·(1−1/e), where νz(f) is the order of vanishing of the meromorphic function f at
z. Since f is holomorphic at z, we have nP+⌊k/2·(1−1/e)⌋ ≥ −k/2·(1−1/e)+⌊k/2·(1−1/e) > −1.
So nP + ⌊k/2 · (1− 1/e)⌋ ≥ 0 since nP is an integer. Therefore, div(ωf ) +Dk ≥ 0 where Dk is the
divisor

r∑
i=1

k/2 · Pi +
s∑

i=1

⌊k/2 · (1− 1/ei)⌋ ·Qi.(4.3)

So we have an injective C-linear map

ψk : Mk(Γ) → H0(XΓ,Lk), f 7→ ωf ,

where Lk is the invertible sheaf Ω
⊗k/2
XΓ

(Dk) on the Riemann surface XΓ.

Moreover, ψk is an isomorphism. Indeed, given a differential form ω ∈ H0(XΓ,Lk), it lifts to a
differential form (4.2) on H, where f is a meromorphic function on H that satisfies f |kγ = f for
all γ ∈ Γ. That f is holomorphic on H and has the desired conditions at the cusps follows from
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div(ω) +Dk ≥ 0.

The invertible sheaf Lk has degree Bk,Γ := k/2 · (2g − 2) + k/2 · r + ⌊k/4⌋ · v2 + ⌊k/3⌋ · v3. We
have

Bk,Γ ≤ k/12 · [SL2(Z) : ±Γ](4.4)

since g − 1 + v2/4 + v3/3 + r/2 = [SL2(Z) : ±Γ]/12 by [Shi94, Proposition 1.40].
When k ≥ 2, we have degLk > 2g − 2, cf. [Shi94, §2.6] and use r ≥ 1. So if k ≥ 2, the

Riemann–Roch theorem implies that

dimCMk(Γ) = dimC deg(Lk)− g + 1 = (k − 1)(g − 1) + k/2 · r + v2 · ⌊k/4⌋+ v3 · ⌊k/3⌋.(4.5)

In the excluded case k = 0, we have M0(Γ) = C. We now describe how many terms of the
q-expansions of a modular form f are required to determine it.

Lemma 4.1 (Sturm bound). For any f, f ′ ∈ Mk(Γ), we have f = f ′ if and only if
∑r

j=1 νPj (f −
f ′) > Bk,Γ.

Proof. If f = f ′, then
∑r

j=1 νPj (f − f ′) = +∞. So take any distinct f, f ′ ∈ Mk(Γ). It remains to

show that
∑r

j=1 νPj (f − f ′) ≤ Bk,Γ. Without loss of generality, we may assume that f ̸= 0 and

f ′ = 0.
The coefficient of the divisor div(ωf )+Dk at the cusp Pi is (νPi(f)− k/2)+ k/2 = νPi(f). Since

div(ωf ) + Dk ≥ 0, we have
∑r

i=1 νPi(f) ≤ deg(div(ωf ) + Dk) = k/2 · (2g − 2) + degDk = Bk,Γ.
Therefore,

∑r
i=1 νPi(f) ≤ Bk,Γ as required. □

Now assume further that −I ∈ Γ and hence Mk(Γ) = 0 for odd k. Using that Lk ⊗ Lk′ ⊆ Lk+k′

for any even non-negative integers k and k′, we find that the isomorphisms ψk combine to give an
isomorphism of graded C-algebras:

ψ : RΓ
∼−→

⊕
k≥0 even

H0(XΓ,Lk).

4.5. Actions. Fix positive integers k and N . Since Γ(N) is normal in SL2(Z), the slash operator of
weight k gives a right action of SL2(Z) onMk(Γ(N)). Take any modular form f =

∑∞
n=0 an(f)q

n
N in

Mk(Γ(N)). For every field automorphism σ of C, there is a unique modular form σ(f) ∈Mk(Γ(N))
whose q-expansion is

∑∞
n=0 σ(an(f)) q

n
N . This defines an action of Aut(C) on Mk(Γ).

The following describes how these actions of SL2(Z) and Aut(C) interact; it is [BN19, Theo-
rem 3.3] (they give two proofs, one using Katz modular forms and another making use of a result
of Khuri-Makdisi on Eisenstein series, cf. Theorem 4.9).

Lemma 4.2. Take any modular form f ∈ Mk(Γ(N)). Take any σ ∈ Aut(C) and let m be the
unique element of (Z/NZ)× for which σ(ζN ) = ζmN . Take any γ =

(
a b
c d

)
∈ SL2(Z) and let γ′ be

any element of SL2(Z) congruent to
(

a mb
m−1c d

)
modulo N . Then σ(f |kγ) = σ(f)|kγ′.

Using Lemma 4.2 with σ ∈ Aut(C/Q(ζN )) and γ ∈ Γ(N), we find that the action of SL2(Z) on
Mk(Γ(N)) via the slash operator gives rise to a well-defined action on Mk(Γ(N),Q(ζN )).

We have an isomorphism (Z/NZ)× ∼−→ Gal(Q(ζN )/Q), d 7→ σd, where σd(ζN ) = ζdN . We now
recall an action of GL2(Z/NZ) on Mk(Γ(N),Q(ζN )) viewed as a Q-vector space.

Lemma 4.3. There is a unique right action ∗ of GL2(Z/NZ) on Mk(Γ(N),Q(ζN )) such that the
following hold:

• if A ∈ SL2(Z/NZ), then f ∗ A = f |kγ, where γ is any matrix in SL2(Z) that is congruent
to A modulo N ,

• if A =
(
1 0
0 d

)
, then f ∗A = σd(f).
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Proof. See [BN19, §3]; it is Lemma 4.2 that allows us to show that the actions in the two parts are
compatible. □

Remark 4.4. We obtain a right action ∗ of GL2(Z/NZ) on the graded ring
⊕

k≥0Mk(Γ(N),Q(ζN ))

that respects multiplication. If f and f ′ ̸= 0 are modular forms in Mk(Γ(N),Q(ζN )), then f/f ′ ∈
FN and for A ∈ GL2(Z/NZ), we have (f/f ′) ∗A = (f ∗A)/(f ′ ∗A) with the action from §3.1.

Now suppose that k ̸= 1. The natural map

Mk(Γ(N),Q(ζN ))⊗Q(ζN ) C →Mk(Γ(N))

is an isomorphism of complex vector spaces, cf. [Kat73, §1.7]. For any congruence subgroup Γ ⊆
SL2(Z) whose level divides N , taking Γ-invariants shows that the natural map

Mk(Γ,Q(ζN ))⊗Q(ζN ) C →Mk(Γ)(4.6)

is an isomorphism of complex vector spaces.

4.6. The spaces Mk,G. Fix a positive integer N and let G be a subgroup of GL2(Z/NZ) that
satisfies det(G) = (Z/NZ)×. For each integer k ≥ 0, we define the Q-vector space

Mk,G :=Mk(Γ(N),Q(ζN ))G,

where we are considering the subspace fixed by the G-action ∗ from Lemma 4.3. Let ΓG be the
congruence subgroup of SL2(Z) consisting of matrices that are congruent modulo N to an element
of H := G ∩ SL2(Z/NZ). Note that Mk,G ⊆Mk(Γ(N),Q(ζN ))H =Mk(ΓG,Q(ζN )).

Lemma 4.5. The natural homomorphisms

Mk,G ⊗Q Q(ζN ) →Mk(ΓG,Q(ζN )) and Mk,G ⊗Q C →Mk(ΓG)

are isomorphisms for k ̸= 1.

Proof. SinceH is normal inG, we have a right action ofG/H onMk(Γ(N),Q(ζN ))H =Mk(ΓG,Q(ζN )).
Let φ : G/H → Gal(Q(ζN )/Q) be the homomorphism satisfying φ(A)(ζN ) = ζdetAN ; it is an iso-
morphism since det(G) = (Z/NZ)×. Since G/H is abelian, the isomorphism φ induces a (left)
action • of Gal(Q(ζN )/Q) on Mk(ΓG,Q(ζN )). We have σ • (cf) = σ(c)(σ • f) for all c ∈ Q(ζN ),
f ∈Mk(ΓG,Q(ζN )) and σ ∈ Gal(Q(ζN )/Q). By Galois descent for vector spaces (see the corollary
to Proposition 6 in Chapter V §10 of [Bou03]), the natural homomorphism

Mk,G ⊗Q Q(ζN ) =Mk(ΓG,Q(ζN ))Gal(Q(ζN )/Q) ⊗Q Q(ζN ) →Mk(ΓG,Q(ζN ))

is an isomorphism of Q(ζN )-vector spaces. The lemma follows by tensoring this isomorphism up to
C and using (4.6). □

Later we will need the following which guarantees the existence of nonzero weight 3 modular
forms whenever we have −I /∈ G.

Lemma 4.6. If −I /∈ G, then M3,G ̸= 0.

Proof. We need only verify that M3(ΓG) ̸= 0 by Lemma 4.5. There is an explicit formula for the
dimension d of M3(ΓG) over C, cf. [Shi94, Theorem 2.25]. From this formula, we will clearly have
d ≥ 1 when ΓG has genus at least 1. In the genus 0 case, we verified that d ≥ 1 by using the
classification of genus 0 congruence subgroups from [CP03]. □

In §4.8, we will describe how to compute a basis of Mk,G using Eisenstein series when k ≥ 2.
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4.7. Eisenstein series. We now describe some explicit modular forms. See [Kat73, §3] for the
basics on Eisenstein series. For further information, we refer to §§2–3 of [BN19] where all the basic
results below are summarized and referenced (except for the explicit constant c0 in Lemma 4.7, see
[Bru17, Lemma 3.1] instead).

Fix positive integers k and N . Take any pair α ∈ (Z/NZ)2 and choose a, b ∈ Z so that α ≡ (a, b)
(mod N). With τ ∈ H, consider the series

E(k)
α (τ, s) =

(k − 1)!

(−2πi)k

∑
ω∈Z+Zτ

ω ̸=−(aτ+b)/N

(aτ + b

N
+ ω

)−k
·
∣∣∣aτ + b

N
+ ω

∣∣∣−2s
.(4.7)

The series (4.7) converges when the real part of s ∈ C is large enough. Hecke proved that E
(k)
α (τ, s)

can be analytically continued to all s ∈ C. Using this analytic continuation, we define the Eisenstein
series

E(k)
α (τ) := E(k)

α (τ, 0).

When k ≥ 3, we can also obtain E
(k)
α (τ) by simply setting s = 0 in the series (4.7).

For γ ∈ SL2(Z), we have

E(k)
α |kγ = E(k)

αγ ,

where αγ ∈ (Z/NZ)2 denotes matrix multiplication. In particular, E
(k)
α is fixed by Γ(N).

Lemma 4.7. Suppose that k ≥ 1 and k ̸= 2. Then E
(k)
α is a modular form of weight k on Γ(N)

with q-expansion

c0 +
∑

m,n≥1
m≡a mod N

nk−1ζbnN qmn
N + (−1)k

∑
m,n≥1

m≡−a mod N

nk−1ζ−bn
N qmn

N ,

where c0 is an element of Q(ζN ). When k = 1, we have

c0 =


0 if a ≡ b ≡ 0 (mod N),
1
2

1+ζbN
1−ζbN

if a ≡ 0 (mod N) and b ̸≡ 0 (mod N),

1
2 − a0

N if a ̸≡ 0 (mod N),

where 0 ≤ a0 < N is the integer congruent to a modulo N .

Remark 4.8. For the excluded case k = 2, one should instead consider E
(2)
α − E

(2)
(0,0) which belongs

to M2(Γ(N)) and has a computable q-expansion.

Remarkably, we can recover all higher weight modular forms from the Eisenstein series of weight
1.

Theorem 4.9 (Khuri-Makdisi). Suppose N ≥ 3. Let RN be the C-subalgebra of RΓ(N) =
⊕

k≥0Mk(Γ(N))

generated by the Eisenstein series E
(1)
α with α ∈ (Z/NZ)2. Then RN contains all modular forms

of weight k on Γ(N) for all k ≥ 2.

Proof. This particular formulation of results of Khuri-Makdisi [KM12] is Theorem 3.1 of [BN19]. □

For our applications, the important part of this theorem is we have an explicit set of modular
forms that span Mk(Γ(N),Q(ζN )) and that we understand the action ∗ of GL2(Z/NZ) on these
modular forms.

Corollary 4.10. Fix integers k ≥ 2 and N ≥ 3.
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(i) The Q(ζN )-vector space Mk(Γ(N),Q(ζN )) is spanned by the set{
E(1)

α1
· · ·E(1)

αk
: α1, . . . , αk ∈ (Z/NZ)2 − {0}

}
.

(ii) For α1, . . . , αk ∈ (Z/NZ)2 and A ∈ GL2(Z/NZ), we have

(E(1)
α1

· · ·E(1)
αk

) ∗A = E
(1)
α1A

· · ·E(1)
αkA

.

Proof. Let S be the set of modular forms E
(1)
α1 · · ·E(1)

αk with αi ∈ (Z/NZ)2. We have S ⊆
Mk(Γ(N),Q(ζN )) by Lemma 4.7. As noted in §4.5, the natural map Mk(Γ(N),Q(ζN ))⊗Q(ζN )C →
Mk(Γ(N)) is an isomorphism. Since S spans Mk(Γ(N)) by Theorem 4.9, we deduce that S spans

the Q(ζN )-vector space Mk(Γ(N),Q(ζN )). This proves part (i) after noting that E
(1)
(0,0) = 0.

We now prove (ii) for a fixed matrix A ∈ SL2(Z/NZ). Choose any γ ∈ SL2(Z) for which γ ≡ A

(mod N). We have E
(1)
αi |1γ = E

(1)
αiγ = E

(1)
αiA

for 1 ≤ i ≤ k and hence

(E(1)
α1

· · ·E(1)
αk

) ∗A = (E(1)
α1

· · ·E(1)
αk

)|kγ = (E(1)
α1

|1γ) · · · (E(1)
αk

|1γ) = E
(1)
α1A

· · ·E(1)
αkA

.

It thus suffices to prove (ii) for any matrix A =
(
1 0
0 d

)
∈ GL2(Z/NZ). If αi = (ai, bi) ∈ (Z/NZ)2,

the explicit q-expansion of E
(1)
αi in Lemma 4.7 gives us that σd(E

(1)
αi ) = E

(1)
(ai,bid)

= E
(1)
αiA

. Therefore,

(E
(1)
α1 · · ·E(1)

αk ) ∗A = σd(E
(1)
α1 · · ·E(1)

αk ) = E
(1)
α1A

· · ·E(1)
αkA

. □

Corollary 4.11. Fix integers k ≥ 2 and N ≥ 3. Let G be a subgroup of GL2(Z/NZ) that satisfies
det(G) = (Z/NZ)×. Then the Q-vector space Mk,G is spanned by the set of modular forms of the
form ∑

g∈G
ζj det gN E(1)

α1g · · ·E
(1)
αkg

(4.8)

with αi ∈ (Z/NZ)2 − {0} and 0 ≤ j < ϕ(N) := |(Z/NZ)×|.

Proof. Define the Q-linear map T : Mk(Γ(N),Q(ζN )) → Mk,G by f 7→
∑

g∈G f ∗ g. The map T is

surjective since it is multiplication by |G| when restricted to Mk,G.

Let S be the set of modular forms ζjNE
(1)
α1 · · ·E(1)

αk with αi ∈ (Z/NZ)2 − {0} and 0 ≤ j < ϕ(N).
By Corollary 4.10(i), we find that S spans Mk(Γ(N),Q(ζN )) as a Q-vector space. Therefore, the
Q-vector space Mk,G is spanned by the set T (S).

The corollary follows by noting that T (ζjNE
(1)
α1 · · ·E(1)

αk ) agrees with (4.8) by Corollary 4.10(ii). □

4.8. Finding a basis for Mk,G. Fix a positive integer N and let G be a subgroup of GL2(Z/NZ)
that satisfies det(G) = (Z/NZ)× and −I ∈ G. Let ΓG be the congruence subgroup of SL2(Z)
consisting of matrices whose image modulo N lies in G. Fix notation as in §4.1 with Γ := ΓG. In
particular, let P1, . . . , Pr ∈ Q∪{∞} be representatives of the cusps of XΓ. The cusps are all regular
since −I ∈ ΓG.

Fix an integer k ≥ 0. In this section, we describe how to compute a basis of Mk,G. A modular
form in our basis will be explicitly given by its q-expansions at each cusp of XΓG

with enough terms
computed to uniquely determine it. Moreover, we will be able to compute arbitrarily many terms
of these q-expansions.

We may assume that k is even since −I ∈ G implies that Mk,G = 0 when k is odd. We may
assume that k ≥ 2 since M0,G = Q. We can further assume that N ≥ 3 (when N ≤ 2, we can
replace G by its inverse image under the reduction map GL2(Z/4Z) → GL2(Z/NZ); this does not
change Mk,G).
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Let d be the dimension of Mk,G over Q; it agrees with the dimension of the complex vector space
Mk(ΓG) and hence is computable by (4.5). We may assume that d ≥ 1 since otherwise Mk,G = 0.
Set Bk,G := Bk,ΓG

and let bk,G be the smallest integer satisfying

bk,G > Bk,G ·N/[SL2(Z) : ΓG].(4.9)

Define m :=
∑r

i=1mi, where mi := ⌈wibk,G/N⌉.
For each 1 ≤ i ≤ r, we have chosen a matrix Ai ∈ SL2(Z) satisfying Ai · ∞ = Pi and this gives

rise to q-expansions (4.1). Define the Q-linear map

φk : Mk,G → Q(ζN )m,

f 7→
(
a0,1(f), . . . , am1−1,1(f), a0,2(f), . . . , am2−1,2(f), . . . , a0,r(f), . . . , amr−1,r(f)

)
.

Lemma 4.12. The map φk is injective.

Proof. Take any f ∈ kerφk. For each 1 ≤ i ≤ r, we have

νPi(f) = ordqwi
(f) ≥ mi ≥ wibk,G/N

and hence
∑r

i=1 νPi(f) ≥
∑r

i=1wi · bk,G/N . We have
∑r

i=1wi = [SL2(Z) : ΓG]; one way to see this
is to add the ramification indices of the cusps with respect to the natural morphism XΓG

→ XSL2(Z)
of degree [SL2(Z) : ±ΓG] = [SL2(Z) : ΓG]. Therefore,

∑r
i=1 νPi(f) ≥ [SL2(Z) : ΓG] · bk,G/N > Bk,G.

We have f = 0 by Lemma 4.1. □

Remark 4.13. Of course the map φ remains injective if we replace bk,G by any larger integer b. In
particular, any integer b > kN/12 will work by (4.4).

Algorithm 4.14. This algorithm computes a basis β of the Q-vector space φk(Mk,G).

(1) Compute the q-expansion E
(1)
α + O(qbN ) for all α ∈ (Z/NZ)2 − {0} using the explicit ex-

pression from Lemma 4.7.
(2) Let S be the set of all k-tuples (α1, . . . , αk) with αi ∈ (Z/NZ)2 − {0}. Set β := ∅.
(3) Choose a k-tuple (α1, . . . , αk) ∈ S. For each integer 0 ≤ j < ϕ(N), define the modular form

fj :=
∑
g∈G

ζj det gN E(1)
α1g · · ·E

(1)
αkg

;(4.10)

it lies inMk,G by Corollary 4.11. Using our approximations of the E
(1)
α from Step 1, compute

fj |kAi +O(qbN ) =
∑
g∈G

ζj det gN E
(1)
α1gAi

· · ·E(1)
αkgAi

+O(qbN )(4.11)

for all 1 ≤ i ≤ r. Since fj |kAi ∈ Q(ζN )[[qwi ]], this gives us fj |kAi + O(qmi
wi

) where mi =
⌈wib/N⌉. In particular, we can compute the vector φk(fj) ∈ Q(ζN )m.

Running over the integers 0 ≤ j < ϕ(N), if φk(fj) is not in the span of β in Q(ζN )m as
a Q-vector space, then adjoin φk(fj) to the set β.

(4) Remove from the set S all k-tuples of the form (ασ(1)g, . . . , ασ(k)g) for some σ ∈ Sk and
some g ∈ G. If |β| < d, then return to Step 3.

Since φk is injective and dimQMk,G = d, if the algorithm terminates, then it will produce a
basis β of the Q-vector space φk(Mk,G). The modular form (4.10) does not change if we replace
(α1, . . . , αk) with a k-tuple (ασ(1)g, . . . , ασ(k)g) with σ ∈ Sk and g ∈ G; this justifies the elements
removed from the set S in Step 4 (they would not produce new modular forms). Corollary 4.11
ensures that we will eventually find enough modular forms so that the algorithm halts with a set
β of cardinality d.
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This algorithm computes the basis of Mk,G in the sense that there is a unique basis F1, . . . , Fd

of Mk,G as a Q-vector space so that φk(F1), . . . , φk(Fd) is the ordered basis β. For each 1 ≤ e ≤ d,
the modular form Fe will be of the form (4.10) for explicit j and (α1, . . . , αk). By computing the
q-expansions of the relevant Eisenstein series to higher precision, one can compute an arbitrary
number of terms in the q-expansion of Fe at each cusp. By Lemma 4.5, F1, . . . , Fd is also a basis
of the complex vector space Mk(ΓG).

Remark 4.15.

(i) Since our basis of Mk,G is given by a q-expansion at each cusp, we can also compute
subspaces obtained by forcing vanishing conditions at the cusps. For example, let Sk,G be
the Q-subspace ofMk,G consisting of modular forms f ∈Mk,G that satisfy a0,i(f) = 0 for all
1 ≤ i ≤ r. Alternatively, the group GL2(Z/NZ) acts on the cusps forms Sk(Γ(N),Q(ζN ))
via ∗ and we have Sk,G = Sk(Γ(N),Q(ζN ))G. Thus φ(Sk,G) is an explicit subspace of
φ(Mk,G) and a basis can be computed.

(ii) Once you have a basis of Mk,G, you can construct a “nicer” one. We have (2N)k · φk(β) ⊆
Z[ζN ]m by considering the q-expansion in Lemma 4.7. Let

ι : Z[ζN ]m
∼−→ (Zϕ(N))m = Zϕ(N)m

be the isomorphism of Z-modules obtained by applying to the coordinates the map Z[ζN ] →
Zϕ(N),

∑ϕ(N)
i=1 aiζ

i−1
N 7→ (a1, . . . , aϕ(N)). Define C := ι((2N)k · φk(β)) ⊆ Zϕ(N)m.

Let L be the subgroup of Zϕ(N)m generated by C and let L′ be its saturation, i.e., the
group of a ∈ Zϕ(N)m such that da ∈ L for some positive integer d. Let C ′ be a basis of the
free abelian group L′; applying the LLL algorithm [Coh93, §2.6] will produce basis elements
with small entries. Define β′ := ι−1(C ′); it is also a basis of the Q-vector space φk(Mk,G)
but with integral (and in practice simpler) entries that the original basis β.

(iii) When some modular forms f ∈ Mk,G are already known, we can adjoin the vectors φk(f)
to the set β before beginning the algorithm (making sure the set β is linearly independent
over Q). For example, some modular forms in Mk,G can be obtained from modular forms
of lower weight or from a larger group.

(iv) Set H := G ∩ SL2(Z/NZ) and let R be a set of representatives of the cosets G/H. With
notation as above, we have

fj |kAi =
∑
g∈R

ζj det gN

( ∑
h∈H

E
(1)
α1ghAi

· · ·E(1)
αkghAi

)
.

The inner sums of this expression can be computed first and used for all j.
Another observation that makes computing fj |kAi quicker is that its q-expansion is a

power series in qwi = q
N/wi

N . Let Ui be the subgroup of A−1
i HAi generated by

(
1 wi
0 1

)
and

let Ri be a set of representatives of the cosets (A−1
i HAi)/Ui. We then have∑

h∈H
E

(1)
α1ghAi

· · ·E(1)
αkghAi

=
∑

h∈A−1
i HAi

E
(1)
α1gAih

· · ·E(1)
αkgAih

=
∑
u∈Ui

( ∑
h∈Ri

E
(1)
α1gAih

· · ·E(1)
αkgAih

)
∗ u.

An easy computation shows that for a modular form f =
∑∞

n=0 cnq
n
N of weight k, we have∑

u∈Ui

f ∗ u =
N

wi

∞∑
n=0

n≡0 (mod N/wi)

cnq
n
N .

(v) Consider a subgroup G ⊆ GL2(Z/NZ) that satisfies −I ∈ G. Let LG be the subfield of
Q(ζN ) fixed by the group {σd : d ∈ det(G)}. We have LG = Q if and only if det(G) =
(Z/NZ)×. We can define Mk,G as before. Now Mk,G is an LG-vector space of dimension d
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and hence a Q-vector space of dimension d · [LG : Q] = d[(Z/NZ)× : det(G)]. Some easy
changes in the above algorithm can be made to compute a basis of Mk,G over Q or LG.

(vi) Much of this section can be easily generalized to deal with odd weights k ≥ 3.
(vii) There are other methods for constructing a basis of Mk,G whose q-expansions at each cusp

we can compute arbitrarily many terms of.
In [Zyw20], we explained how to compute an explicit basis of Mk(Γ(N),Q(ζN )) and

express the right action of SL2(Z) with respect to this basis (we did numerical computations
and then identified the algebraic numbers that arose). From this, we can then compute
Mk,G. We did not take this approach since Mk(Γ(N),Q(ζN )) is often significantly large
than Mk,G. It should be possible to adapt the methods of [Zyw20] to be more appropriate,
but we instead have used Eisenstein series since they were more algebraic in flavour.

4.9. Explicit slash action. Fix a modular form f ∈ Mk,G with assumptions as in §4.8. Now
consider any matrix B ∈ GL2(Q) with positive determinant. We shall explain how the q-expansion
of f at all the cusps allows us to find the Fourier expansion for f |kB.

It is clear how scalar matrices act, so we may assume that B is in M2(Z) and that the greatest
common divisors of its entries is 1. There is a unique 1 ≤ j ≤ r and a matrix γ ∈ Γ such that
B · ∞ = (γAj) · ∞. Therefore,

B = εγAj

(
a b
0 d

)
for some ε ∈ {±1} and integers a, b, d ∈ Z with a and d positive and relatively prime. Since
f |k(−I) = (−1)kf and f |kγ = f , this implies that f |kB = εk(f |kAj)|k

(
a b
0 d

)
. Using (4.1), we

deduce that

(f |kB)(τ) = εk
( ∞∑

n=0

an,j(f) · qnwj

)∣∣∣
k

(
a b
0 d

)
= εk(a/d)k/2

∞∑
n=0

an,j(f)ζ
b
dwj

· qandwj
.

5. Computing modular curves

Fix a positive integer N and let G be a subgroup of GL2(Z/NZ) that satisfies det(G) = (Z/NZ)×
and −I ∈ G. In this section, using modular forms, we describe how to compute an explicit model
of the curve XG.

5.1. Modular forms revisited. The cusps of XΓG
= XG(C) are precisely the points lying over

∞ via πG. The elliptic points of XΓG
of order 2 and 3 are the points P ∈ XΓ for which πG is

unramified and πG(P ) is 1728 and 0, respectively. In particular, the cusps, elliptic points of order
2, and elliptic points of order 3 define subschemes of XG.

Fix an even integer k ≥ 0. Let Dk be the divisor of XΓG
= XG(C) given by (4.3) with Γ = ΓG.

Note that Dk is also a divisor of XG defined over Q. Define the invertible sheaf Lk := Ω
⊗k/2
XG

(Dk)

on XG. Note that Lk gives rise to the invertible sheaf Lk on XG(C) = XΓG
with notation as in

§4.4 with Γ = ΓG. In particular, we have an inclusion H0(XG,Lk) ⊆ H0(XΓG
,Lk) which induces

an isomorphism H0(XG,Lk)⊗Q C → H0(XΓG
,Lk).

Recall from §4.4, we have an explicit isomorphism

ψk : Mk(ΓG)
∼−→ H0(XΓG

,Lk).

Under the isomorphism ψk, we now show that H0(XG,Lk) corresponds to the Q-subspace Mk,G of
Mk(ΓG) from §4.6.

Lemma 5.1. The map ψk restricts to an isomorphism Mk,G
∼−→ H0(XG,Lk) of vector spaces over

Q.
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Proof. The isomorphism ψk induces an isomorphism Mk,G ⊗Q C ∼−→ H0(XG,Lk)⊗Q C of complex
vector spaces. Therefore, the Q-vector spaces Mk,G and H0(XG,Lk) have the same dimension.

Since ψk is an isomorphism, it thus suffices to prove that ψ−1
k (H0(XG,Lk)) ⊆Mk,G.

Take any differential form ω ∈ H0(XG,Lk) ⊆ H0(XΓG
,Lk). Choose an element u ∈ FG

N − Q.

Since Q(XG) = FG
N , there is a unique v ∈ FG

N such that ω = v (du)k/2. Via the quotient map

H → XΓG
, ω = v(du)k/2 pulls back to the differential form v(τ)u′(τ)k/2(dτ)k/2 on H. So f :=

ψ−1
k (ω) ∈Mk(ΓG) is given by f(τ) = (2πi)−k/2v(τ)u′(τ)k/2.
Taking the derivative of the q-expansion u =

∑
n∈Z cn(u)q

n
N gives u′(τ) =

∑
n∈Z 2πin/N cn(u)q

n
N .

Therefore, f(τ) =
(∑

n∈Z cn(v)q
n
N

)
·
(∑

n∈Z n/N cn(u)q
n
N

)k/2
. In particular, we find that f is an

element of Mk(ΓG,Q(ζN )) since the q-expansions of both u and v have coefficients in Q(ζN ).
Now take any A ∈ G. Set m := det(A) ∈ (Z/NZ)× and take any matrix γ =

(
a b
c d

)
∈ SL2(Z)

for which A ≡ γ ( 1 0
0 m ) (mod N). We have u|0γ = σ−1

m (u) and v|0γ = σ−1
m (v) since u ∗ A = u and

v ∗ A = v. The equality u|0γ = σ−1
m (u) is the same as u(γτ) =

∑
n∈Z σ

−1
m (cn(u))q

n
N and taking

derivatives of both sides gives u′(γτ)(cτ + d)−2 = 2πi
∑

n∈Z n/N σ−1
m (cn(u))q

n
N . Therefore,

f |kγ = (2πi)−k/2 v|0γ (u′|2γ)k/2

= (2πi)−k/2 σ−1
m (v)

(
2πi

∑
n∈Z

n
N σ−1

m (cn(u))q
n
N

)k/2

= σ−1
m

((∑
n∈Z

cn(v)q
n
N

)(∑
n∈Z

n
N cn(u)q

n
N

)k/2)
= σ−1

m (f).

Since f |kγ = σ−1
m (f), we have f ∗A = f . Since A was an arbitrary element of G, this implies that

f = ψ−1
k (ω) lies in Mk(ΓG,Q(ζN ))G = Mk,G. We have ψ−1

k (H0(XG,Lk)) ⊆ Mk,G since ω was an
arbitrary element of H0(XG,Lk). □

Combining the ψk, we obtain an isomorphism⊕
k

Mk,G
∼−→

⊕
k

H0(XG,Lk)

of graded Q-algebras, where the sums are over even integers k ≥ 0.

5.2. Galois action on the cusps. Let U be the group of upper triangular matrices in SL2(Z); it
is generated by −I and ( 1 1

0 1 ). Let UN ⊆ GL2(Z/NZ) be the image of U modulo N . Define the set
of double cosets CG := G\GL2(Z/NZ)/UN . In this section, we explain how to identify CG with
the set of cusps of XΓG

= XG(C) and describe the Galois action on it.
The map SL2(Z) → Q ∪ {∞} = P1(Q), A 7→ A · ∞ is surjective and induces a bijection

ι : SL2(Z)/U → P1(Q). The map ι respects the natural SL2(Z)-actions and hence gives a bi-
jection between the set of double cosets ΓG\ SL2(Z)/U and the set of ΓG-orbits of P1(Q), i.e., the
set of cusps of XΓG

. With notation as in §4.3, the matrices A1, . . . , Ar are representatives of the
double cosets ΓG\ SL2(Z)/U . Using that the level of ΓG divides N and det(G) = (Z/NZ)×, we find
that the map ΓG\ SL2(Z)/U → CG obtained from reduction modulo N is also a bijection. This
allows us to identify CG with the cusps of XΓG

= XG(C).
For an m ∈ (Z/NZ)× and a cusp P := G ·A ·UN ∈ CG ⊆ XG(C), define m ·P := G ·A ( 1 0

0 m ) ·UN .
This is well-defined and gives an action of (Z/NZ)× on UN .

Lemma 5.2. The cusps of XG are all defined over Q(ζN ). For a cusp P ∈ XG(Q(ζN )) and an
m ∈ (Z/NZ)×, we have σm(P ) = m · P .
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Proof. Take any m ∈ (Z/NZ)× and choose any automorphism σ of C for which σ(ζN ) = ζmN .
Take any cusp P ∈ CG ⊆ XG(C). Fix matrices A,A′ ∈ SL2(Z) for which A · ∞ and A′ · ∞ are
representatives of the cusps P and m · P , respectively. There are g ∈ G and u ∈ UN such that
A ( 1 0

0 m ) ≡ gA′u (mod N).
Consider a rational function f ∈ Q(XG) that does not have a pole at any of the cusps. Consider

the q-expansion f |0A =
∑

n∈Z cnq
n
N . We have cn = 0 for all n < 0 since f does not have a pole at

P and we have c0 = f(P ). We have

(f |0A′) ∗ u = f ∗ (gA′u) = f ∗
(
A ( 1 0

0 m )
)
= (f |0A) ∗ ( 1 0

0 m ) =
∑
n∈Z

σm(cn)q
n
N

and hence f(m · P ) = σm(c0) = σ(f(P )). So f(m · P ) = f(σ(P )) for all f ∈ Q(XG) that do not
have poles at any cusps. Therefore, m · P = σ(P ). Since σ|Q(ζN ) = σm, it remains to show that P
lies in XG(Q(ζN )).

Since m ∈ (Z/NZ)× is arbitrary, we have shown that for an automorphism σ of C, σ(P ) depends
only on the restriction of σ to Q(ζN ). Therefore, P ∈ XG(Q(ζN )). □

5.3. Constructing a model of XG. Fix notation as in §5.1 with an even integer k ≥ 2. Let
P1, . . . , Pr be the cusps of XG(C) = XΓG

.
Take any divisor E :=

∑r
i=1 eiPi of XG with integers ei ≥ 0 that is defined over Q. Note that

the divisor E is defined over Q if and only if the integer ei depends only on the Galois orbit of Pi

(such E can be constructed using the explicit Galois action on cusps from Lemma 5.2). Define the
Q-vector space

V := {f ∈Mk,G : νPi(f) ≥ ei for all 1 ≤ i ≤ r}

From §4.8, there is an algorithm to compute a basis of Mk,G with enough terms of the q-expansions
known in order to find an explicit basis of V . Each modular form in the basis is given by its
q-expansion at all the cusps of XG and we can compute arbitrarily many terms of each expansion.

We now assume that dimQ V ≥ 2. Set d := dimQ V − 1 and denote our basis of V by f0, . . . , fd.
For each 0 ≤ i, j ≤ d, we have fj/fi ∈ FG

N = Q(XG). Let

φ : XG → Pd
Q

be the morphism defined by φ(P ) = [f0(P ), . . . , fd(P )] for all but finitely many P . For a fixed
0 ≤ i ≤ d and all but finitely points P of XG, we have φ(P ) = [(f0/fi)(P ), . . . , (fd/fi)(P )]. Up to
composition with an automorphism of Pd

Q, φ does not depend on the choice of basis of V .

Set C := φ(XG) ⊆ Pd
Q; it is a curve since d ≥ 1 and hence f0/f1 is non-constant. Let I(C) be the

homogeneous ideal of Q[x0, . . . , xd] of C ⊆ Pd
Q. We have the usual grading I(C) =

⊕
n≥0 I(C)n,

where I(C)n consist of homogeneous polynomials of degree n. Note that for a homogeneous poly-
nomial F ∈ Q[x0, . . . , xd], the polynomial F lies in I(C) if and only if F (f0, . . . , fd) = 0.

For a fixed integer n ≥ 0, let us now explain how to compute a basis of the Q-vector space
I(C)n. Let Mn be the set of monic polynomials in Q[x0, . . . , xd] of degree n. With notation as
in §4.8, we have an injective Q-linear map φnk : Mnk,G ↪→ Q(ζN )h for an explicit integer h ≥ 1.

For each m ∈ Mn, we can compute vm := φnk(m(f0, . . . , fd)) ∈ Q(ζN )h assuming we have com-
puted enough terms of the q-expansions of the fi. We can then compute the Q-vector space
W := {(cm) ∈ QMn :

∑
m∈Mn

cmvm = 0}. The injectivity of φnk implies that the mapW → I(C)n,
(cm) 7→

∑
m∈Mn

cmm is an isomorphism of vector spaces over Q and we have found I(C)n. In prac-

tice, to produce a “nice” basis of W , we apply the LLL algorithm to W ∩ ZMn .
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Define the invertible sheaf F := Lk(−E) onXG. The isomorphism ψk restricts to an isomorphism

V
∼−→ H0(XG,F) of Q-vector spaces; use Lemma 5.1 and the description of ψk from §4.4. We have

degF = degLk −
∑r

i=1
ei = k/2 · (2g − 2) + k/2 · r + ⌊k/4⌋ · v2 + ⌊k/3⌋ · v3 −

∑r

i=1
ei.(5.1)

Using the Riemann–Roch theorem, we have d = degF − g when degF > 2g − 2.

5.3.1. Large degree case. Assume that degF ≥ 2g + 1. By the Riemann–Roch theorem, F is very
ample and hence φ is an embedding giving an isomorphism betweenXG and C. The homomorphism

Q[x0, . . . , xd]/I(C) →
⊕
n≥0

H0(XG,F⊗n)

of graded Q-algebras given by xi 7→ ψk(fi) is an isomorphism (the surjectivity follows from [Mum70,
Theorem 6] and our assumption degF ≥ 2g + 1). The ideal I(C) ⊆ Q[x0, . . . , xd] is generated by
I(C)2 and I(C)3, cf. [SD72]. If degF ≥ 2g + 2, then the homogenous ideal I(C) is generated by
just I(C)2, cf. [SD72].

Consider the special case where degF = 2g + 1. When g = 0, we have C = P1
Q. When g = 1,

the curve C ⊆ P2
Q is a plane cubic.

Remark 5.3. Suppose degF ≥ 2g + 2. Consider a fixed positive integer b. Suppose we have
computed the q-expansions fj |kAi+O(qbN ) for all 0 ≤ j ≤ d and 1 ≤ i ≤ r. From these expansions,

we can find a basis of the Q-vector space W := {F ∈ Q[x0, . . . , xd]2 : F (f0, . . . , fd) + O(qbN ) =

0 + O(qbN )}. Let C ′ be the subvariety of Pd
Q defined by a basis of W . We have C ′ ⊆ C since

I(C)2 ⊆ W and I(C) is generated by I(C)2. So if C ′ is not zero dimensional, we have C ′ = C
and I(C)2 = W . Of course, we will have I(C)2 = W by taking b sufficiently large. The benefit
of this approach is that we can often use a b that is significantly smaller that the one arising from
applying the Sturm bound.

5.3.2. Canonical map. Consider the special case where g ≥ 3, k = 2, and E =
∑r

i=1 Pi. We have

F := L2(−E) = ΩXG
(D2 − E) = ΩXG

.

So d = g − 1 and φ : XG → Pg−1
Q is the canonical map. Define C := φ(XG) ⊆ Pg−1

Q . We now recall

some basic details, see [Zyw20, §7] for further details and some computation details.
First suppose that XG is (geometrically) hyperelliptic. Then the curve C has genus 0 and the

morphism φ : XG → C has degree 2. The ideal I(C) is generated by I2(C) and dimQ I2(C) =
(g − 1)(g − 2)/2.

Suppose that XG is not hyperelliptic. Then φ is an embedding and in particular C is isomorphic
to XG. The dimension of I2(C) and I3(C) over Q are (g− 2)(g− 3)/2 and (g− 3)(g2 +6g− 10)/6,
respectively. If g ≥ 4, the ideal I(C) is generated by I2(C) and I3(C). If g = 3, then I(C) is
generated by I4(C) and dimQ I4(C) = 1.

We can compute I2(C) and its dimension over Q determines whether or not XG is hyperelliptic.
Assume XG is not hyperelliptic. Then by computing I3(C), and I4(C) when g = 3, we can find
equations for the curve C ⊆ P1

Q.

5.3.3. Computing a model for XG. If g ≥ 3, we can first compute the image of the canonical map
φ : XG → Pg−1

Q and find equations defining the image C := φ(XG), cf. §5.3.2. If C does not have

genus 0, i.e., C is not hyperelliptic, then C is a model of XG. If C has genus 0 and C(Q) = ∅, then
XG(Q) = ∅ (which in our application means we do not need to compute a model of XG).

Now consider the general case. Choose the smallest even integer k ≥ 2 such that

k/2 · (2g − 2) + k/2 · r + ⌊k/4⌋ · v2 + ⌊k/3⌋ · v3 ≥ 2g + 1.
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Such an integer k exists since g − 1 + v2/4 + v3/3 + r/2 = [SL2(Z) : ±ΓG]/12 by [Shi94, Proposi-
tion 1.40]. Choose an effective divisor E :=

∑r
i=1 eiPi of XG defined over Q so that the right hand

side of (5.1) is at least 2g + 1 and is as small as possible. By our choices, we have degF ≥ 2g + 1.
One can then compute a model as in §5.3.1.

5.3.4. Cusps of our model. With f0, . . . , fd ∈ Mk,G defining the morphism φ : XG → C ⊆ Pd
Q, we

now describe the image of the cusps of XG.
Take any 1 ≤ j ≤ r. From Lemma 5.2, we know that φ(Pj) will lie in C(Q(ζN )). There is an

0 ≤ m ≤ d such that for all 0 ≤ i ≤ d, the q-expansion of fi/fm at the cusp Pj is a power series for
all 0 ≤ i ≤ m; denote its constant term by ci ∈ Q(ζN ). Note that fi/fm ∈ Q(XG) is regular at Pj

and (fi/fm)(Pj) = ci. So we have φ(Pi) = [c0, . . . , cd] ∈ Pd(Q(ζN )).

5.4. Curves of genus 0 and 1. Assume that XG has genus at most 1. Such curves are important
in our application since they potentially could have infinitely many rational points.

Assume that we have found an explicit smooth projective model C ⊆ Pn
Q for the modular curve

XG as in §5.3. In particular, we have modular forms f0, . . . , fd in Mk,G for some even k ≥ 2 such
that C is defined by the homogeneous polynomials F ∈ Q[x0, . . . , xd] for which F (f0, . . . , fd) = 0.

5.4.1. Finding a simple model. Suppose we have found a rational point P ∈ C(Q). See §5.4.4 for
details on how we check if there is a rational point.

If XG has genus 0, then using the point P , we can compute an isomorphism ψ : C
∼−→ P1

Q. Using

the modular forms fi and ψ, we can then compute a modular function f for which Q(XG) = Q(f).
Note that f is given by its q-expansions at the cusps of XG and we can compute arbitrarily many
terms of each expansion.

If XG has genus 1, then using the point P , we can compute an isomorphism ψ : C
∼−→ E, where

E is an elliptic curve over Q and ψ(P ) = 0. Using the modular forms fi and ψ, we can compute
modular functions x and y for which Q(XG) = Q(x, y) and for which x and y satisfy a Weierstrass
equation with rational coefficients defining E. Note that x and y are given by their q-expansions
at the cusps of XG and we can compute arbitrarily many terms of each expansion.

5.4.2. Recognizing elements of the function field. Assume we have found a model for XG as in
§5.4.1. In particular, Q(XG) is Q(f) or Q(x, y) if XG has genus 0 or 1, respectively.

Now suppose we have a function h ∈ Q(XG) given by a q-expansion at each cusp of XG for which
we can compute arbitrarily many terms. Also suppose we also have an upper bound on the number
of poles, with multiplicity, of h. When h is a quotient of two elements of Mk′,G for some even k′,
then the number of poles of h is bounded above by k′/12 · [SL2(Z) : ±ΓG] = k′/12 · [GL2(Z/NZ) : G]
(the divisor of a nonzero modular form in Mk′,G, cf. [Shi94, §2.4], is effective and its degree can be
computed using Propositions 2.16 and 1.40 of [Shi94]).

We want to express h in terms of the generators of the field Q(f) or Q(x, y).
One approach is just to brute force search for an expression. Consider the genus 0 case. For a fixed

integer d ≥ 0, one can look for a relation h = F1(f)/F2(f) where F1 and F2 are polynomials in Q[t]
of degree at most d. For each cusp of XG, substituting our q-expansions in the expression F2(f)h−
F1(f) = 0, we obtain a homogeneous system of linear equations over Q(ζN ) whose unknowns
are the coefficients of the polynomials F1 and F2. For the minimal d for which such a relation
exists, these linear equations will have a 1-dimension space of solutions over Q(ζN ) and scaling will
produce a solution in rationals unique up to scaling by a nonzero rational. To rigorously verify
that F2(f)h = F1(f), with specific coefficients, is 0 it suffices to compute enough terms of the
q-expansions at the cusps so that we have more zeros at the cusps, with multiplicity, than poles
(we assumed we had a bound on the poles of h and f has a single simple pole). We can increase
d ≥ 0 until we find a relation.
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In the special case where there is a degree 1 rational function b ∈ Q(ζN )(t) such that b(h) ∈
Q(ζN )(XG) has all its poles at the cusps, we can take a more direct approach. Since we know the
q-expansions of f at the cusps, we can find a partial fractions decomposition of b(h) in Q(ζN )(f)
and then find the desired expression for h since b has degree 1.

Similar remarks hold when XG has genus 1 except now we are looking for a relation h = (F1(x)+
F2(x)y)/F3(x), where F1, F3 ∈ Q[t] have degree at most d and F2 ∈ Q[t] has degree at most d− 1.

5.4.3. Constructing the map to the j-line. We want to describe the natural morphism πG from XG

to the j-line. Since we are interested in rational points, we shall assume that XG has a rational
point and that we have found a model for XG as in §5.4.1. In particular, Q(XG) is Q(f) or Q(x, y)
when XG has genus 0 or 1, respectively.

For simplicity, suppose that XG has genus 0 and hence Q(XG) = Q(f). Since the modular j-
invariant j lies in Q(XG), the morphism πG is given by the unique π(t) ∈ Q(t) for which π(f) = j.
We can find π(t) using the methods from §5.4.2 and use that π(t) has degree [GL2(Z/NZ) : G].

In practice, it is more efficient to make use of intermediate fields lying between Q(j) and Q(f).
We can assume that G ̸= GL2(Z/NZ) since otherwise XG is the j-line. Choose a group G ⊊ G0 ⊆
GL2(Z/NZ) for which [G0 : G] is minimal. Then Q(XG0) = Q(f ′) and hence f ′ = φ(f) for a unique
rational function φ(t) ∈ Q(t) of degree [G0 : G]. We can then find φ using the methods from §5.4.2.
This reduces the computation to the curve XG0 and we can continue in this manner until we get
to the j-line. The advantage of working with intermediate subfields is that in the method of §5.4.2
we require less terms of the q-expansions.

Similar remarks hold when XG has genus 1 except now XG0 will have genus 0 or 1.

5.4.4. Determining whether there is a rational point. We are interested in determining whether XG,
equivalently C, has a rational point. We first check whether XG has a local obstruction to rational
points.

For real points this can be done without the model since we know that XG(R) ̸= ∅ if and
only if G contains an element that is conjugate in GL2(Z/NZ) to

(
1 0
0 −1

)
or

(
1 1
0 −1

)
, cf. [Zyw15a,

Proposition 3.5].
Using our explicit model, we can verify whether C(Qp) is empty for any given prime p. If

XG(R) = ∅ or C(Qp) = ∅ for some prime p, then we of course have XG(Q) = ∅.
When XG has genus 0 and XG(R) is nonempty, we know that we will either be able to find a

rational point on C or we will be able to find a prime p such that C(Qp) = ∅.

Remark 5.4. There is a more general definition of XG as a coarse moduli space that would realize
it as a smooth scheme over Z[1/N ]. For a prime p ∤ N , the reduction (XG)Fp would then be a
smooth projective and geometrically irreducible curve of genus at most 1 over Fp and hence have
an Fp-point. Hensel’s lemma would then implies that XG(Qp) ̸= ∅. So when looking for local
obstructions, we limit ourselves to primes p dividing N .

Now suppose that XG is genus 1 for which we have not found a rational point and we have
found no local obstructions. The Jacobian of C is an elliptic curve E over Q. Using our embedding
C ⊆ Pd

Q, we find that C is a principal homogeneous space of E that has order n := d + 1 in the
Weil–Châtelet group of E.

When n ≤ 5, there are explicit equations for E and for a covering map φ : C → E of degree n2

(when base extended to a field where C and E are isomorphic, it corresponds to multiplication by
n on E). When n ≤ 4 or n = 5, see [AKM+01] and [Fis08], respectively. Note that these construc-
tions have been implemented in Magma. If C has a rational point, then we find that φ(C(Q)) is a
coset of nE(Q) in E(Q). We can compute the weak Mordell–Weil group E(Q)/nE(Q). For points
P ∈ E(Q) that represent the elements of the finite group E(Q)/nE(Q), we can check whether
the fiber φ−1(P ) ⊆ C has any rational points. If not, then we have verified that C(Q) is empty
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(otherwise, we have found a point).

In our application, the above determines whether XG has a rational point for all but a few
cases we consider. In the cases where this does not apply (i.e., n > 5), there was always a group
G ⊆ G0 ⊆ GL2(Z/NZ) for which [G0 : G] = 2 and XG0

∼= P1
Q. In these cases, we could find an

alternate model C ′ of XG given as a hyperelliptic curve over Q. The above reasoning then applies
to check whether there are rational points; the relevant morphism φ : C ′ → E now has degree 22.

5.5. Some alternate models for curves. Assume that XG has genus at least 2 and choose a
group G ⊊ G0 ⊆ GL2(Z/NZ) for which XG0 has genus at most 1. In practice, one chooses G0 with
[G0 : G] minimal. We shall assume that XG0 has a rational point; we are interested in knowing
the rational points of XG and there are none if XG0(Q) = ∅. Assume we have found a model as in
§5.4.1 with Q(XG0) of the form Q(f) or Q(x, y).

5.5.1. Minimal polynomial. Let S be a set of matrices in SL2(Z) whose reductions modulo N
represent the cosets G\G0.

Consider a modular function h ∈ Q(XG) for which we have computed arbitrarily many terms of
the q-expansion at each of the cusps of XG. Using these expansions and §4.9, we can compute the
q-expansions of h|kA for all A ∈ S. Assume that h|kA ̸= h for all A ∈ S and hence Q(XG0)(h) =
Q(XG). To construct a suitable element h ∈ Q(XG), we can look at the quotient of nonzero
elements in Mk,G for even k ≥ 2; there will be such modular forms for k large enough by §5.3.3.

Define the polynomial

P (t) :=
∏
A∈S

(t− h|kA).

By our choice of S, P (t) is a polynomial of degree [G0 : G] with coefficients in Q(XG0) that satisfies
P (h) = 0. The coefficients of P (t) line in Q(XG0) and can be given explicitly in Q(f) or Q(x, y) by
the method described in §5.4.2 (the methods of §4.9 can be used to take the q-expansions, which
are in terms of the cusps of XG, to those at cusps of XG0).

Since Q(XG0)(h) = Q(XG), the polynomial P (t) gives rise to a possibly singular model of
the curve XG in P2

Q or P3
Q with a rational map to XG0 corresponding to the natural morphism

XG → XG0 . In many situations, a singular model of XG will be preferably to a model that
lies in some large dimensional ambient space. An important special case is when [G0 : G] = 2 and
XG0

∼= P1
Q since then we can use the singular model to find a smooth model of XG as a hyperelliptic

curve.

5.5.2. Serre type. Now suppose that N = N1N2 with N1 > 1 a power of 2 and N2 odd. Set
G1 = GL2(Z/N1Z). Suppose further that there is a subgroup G2 of GL2(Z/N2Z) such that G is an
index 2 subgroup of G0 := G1×G2 ⊆ GL2(Z/NZ) so that the projective map G→ Gi is surjective
for i ∈ {1, 2}.

The kernel of the projection maps G→ G1 and G→ G2 are of the form {I}×H2 and H1×{I},
where Hi is an index 2 subgroup of Gi. Note that H1 ×H2 ⊆ G ⊆ G1 ×G2.

Take any i ∈ {1, 2} and suppose that det(Hi) = (Z/NiZ)×. As in §5.5.1, we can find a h ∈ Q(XHi)
such that Q(XHi) = Q(XG0)(h) and compute an irreducible polynomial of degree 2 in Q(XG0)[x]
with root h. By taking the discriminant of the polynomial, we obtain an element ci ∈ Q(XG0) that
is a square in Q(XHi) but not in Q(XG0). Note that ci is unique up to multiplication by a nonzero
square in Q(XG0).

Take any i ∈ {1, 2} and suppose that det(Hi) ̸= (Z/NiZ)×. The group det(Hi) is an index
2 subgroup of (Z/NiZ)×. Let Ki ⊆ Q be the corresponding quadratic extension of Q, i.e., the

quadratic extension for which the image of χcyc(GalKi) ⊆ Ẑ× modulo Ni is the group det(Hi). Let
ci be the unique squarefree integer for which Ki = Q(

√
ci).
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When i = 1, a computation shows that ci can always be chosen to lie in the set {−1,±2,±(j −
1728),±2(j − 1728)}.

Putting everything together, we find that there is a y ∈ Q(XG) such that y2 = c1c2 and Q(XG) =
Q(XG0)(y). Therefore, y2 = c1c2 defines a singular model of XG. In the special case where
XG0

∼= P1
Q, this gives rise to a hyperelliptic model.

Remark 5.5. Though this might seem like a very niche case, groups with the above conditions arise
frequently in our application to Serre’s open image theorem and are often the slowest to deal with
using the strategy from §5.5.1.

6. A generic family and modular functions

Let E be the elliptic curve over Q(j) defined by the Weierstrass equation

y2 = x3 − 27 · j(j − 1728) · x+ 54 · j(j − 1728)2,(6.1)

where j is the modular j-invariant. The elliptic curve E has j-invariant j.
Fix an integer N ≥ 3 and a nonzero modular form f0 ∈ M3(Γ(N),Q(ζN )). Let FN be the

field of modular functions of level N whose q-expansions have coefficients in Q(ζN ), cf. §3.1. We
have f20 /E6 ∈ FN , where E6 is the usual Eisenstein series of weight 6 as given by (6.2). In a field
extension of FN , choose a β satisfying

β2 = j · f20 /E6.

Note that β need not be a modular function.
In §6.1, we will show that FN (β) is a minimal field extension of Q(j) for which all of the N -

torsion points of E are defined. Let GalQ(j) be the absolute Galois group of Q(j) for which the
implicit algebraic closure contains FN (β). With respect to a suitable basis of E [N ], we will show
that there is a surjective Galois representation

ρ∗E,N : GalQ(j) → GL2(Z/NZ)

that satisfies

σ(f) = f ∗ ρ∗E,N (σ)−1

for all σ ∈ GalQ(j) and f ∈ FN , where the ∗ action is described in §3.1. For details, see §6.2. In

particular, ρ∗E,N induces isomorphisms Gal(FN (β)/Q(j))
∼−→ GL2(Z/NZ) and Gal(FN/Q(j))

∼−→
GL2(Z/NZ)/{±I}.

6.1. N-torsion points of E. Define the usual Eisenstein series

E4(τ) = 1 + 240

∞∑
n=1

n3qn/(1− qn) and E6(τ) = 1− 504

∞∑
n=1

n5qn/(1− qn);(6.2)

they are modular forms on SL2(Z) of weight 4 and 6, respectively. Define the weight 12 modular
form ∆(τ) = q

∏∞
n=1(1 − qn)24 on SL2(Z). We have relations E3

4 − E2
6 = 1728∆, j = E3

4/∆
and j − 1728 = E2

6/∆. For τ ∈ H, let ℘(z; τ) be the Weierstrass elliptic function for the lattice
Zτ + Z ⊆ C. Let ℘′(z; τ) be the derivative of ℘(z; τ) with respect to z.

Take any nonzero α ∈ (Z/NZ)2 and choose integers r and s such that α is congruent to (r, s)
modulo N . Let xα and uα be the function of the upper half-plane defined by

xα(τ) := 36
E4(τ)E6(τ)

∆(τ)
· (2πi)−2℘( r

N τ +
s
N ; τ)

uα(τ) := 108
E6(τ)

2

f0(τ)∆(τ)
· (2πi)−3℘′( r

N · τ + s
N ; τ).
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These definitions do not depend on the choice of r and s since ℘(z; τ) and ℘′(z; τ) are unchanged
if we replace z by z + ω with ω ∈ Zτ + Z.

Lemma 6.1.

(i) For any nonzero α ∈ (Z/NZ)2, xα and uα are elements of FN .
(ii) The field FN is the extension of Q(j) generated by xα with nonzero α ∈ (Z/NZ)2.
(iii) Take any nonzero α ∈ (Z/NZ)2 and A ∈ GL2(Z/NZ). We have

xα ∗A = xαA and uα ∗A = f0
f0∗A uαA.

In particular, uα ∗A = uαA if f0 ∗A = f0.

Proof. Take any nonzero α ∈ (Z/NZ)2. Fix integers 0 ≤ r < N and s so that (r, s) is congruent
to α modulo N . Our function xα agrees with the function f(r/N,s/N) from §6.1 of [Shi94] up to
multiplication by a nonzero rational number. Part (ii) follows from Proposition 6.9(1) of [Shi94];
this implies (i) for the function xα.

Let hα be the function of the upper half-plane defined by (2πi)−3℘′( r
N · τ + s

N ; τ). We now

explain why hα lies in M3(Γ(N),Q(ζN )). Recall that for τ ∈ H, we have the notation q = e2πiτ

and qN = e2πiτ/N . We have

(2πi)−2℘(u; τ) =
1

12
− 2

∞∑
m=1

∞∑
n=1

nqmn +
∞∑
n=1

ne2πinu +
∞∑

m=1

∞∑
n=1

n
(
e2πinuqmn + e−2πinuqmn

)
;

see the proof of Proposition 6.9 on p. 140 in [Shi94] (with ω1 = τ , ω2 = 1, and v in loc. cit. should
be defined as u/ω2). Therefore,

(2πi)−3℘′(u; τ) =

∞∑
n=1

n2e2πinu +

∞∑
m=1

∞∑
n=1

n2
(
e2πinuqmn − e−2πinuqmn

)
.

With u = r/N · τ + s/N , we have e2πiu = ζsNq
r
N and hence

hα(τ) =
∞∑
n=1

n2ζsnN qrnN +
∞∑

m=1

∞∑
n=1

n2
(
ζsnN qrnN qmn − ζ−sn

N q−rn
N qmn

)
.(6.3)

Since 0 ≤ r < N , this shows that hα has a q-expansion that is a power series in qN with coefficients
in Q(ζN ).

Take any matrix γ =
(
a b
c d

)
∈ SL2(Z). Since ℘′(u; τ) =

∑
λ∈Zτ+Z−2/(u+ λ)3, we have

(hα|3γ)(τ) = (cτ + d)−3 · (2πi)−3
∑

λ∈Zγτ+Z

−2

( r
N · γτ + s

N + λ)3

= (2πi)−3
∑

λ∈Z(aτ+b)+Z(cτ+d)

−2

( r
N · (aτ + b) + s

N (cτ + d) + λ)3

= (2πi)−3
∑

λ∈Zτ+Z

−2

( ra+sc
N + rb+sd

N + λ)3
.

So hα|3γ = hαγ for all γ ∈ SL2(Z). In particular, hα|3γ = hα for all γ ∈ Γ(N). We conclude that
hα is an element of M3(Γ(N),Q(ζN )) since the q-expansions of hα|3γ = hαγ is a power series in qN
with coefficients in Q(ζN ) for all γ ∈ SL2(Z).

For any A ∈ GL2(Z/NZ), we claim that hα ∗ A = hαA. From our above proof, this holds when
A ∈ SL2(Z/NZ), so we need only prove the claim in the case where A =

(
1 0
0 d

)
. Applying σd to

the coefficients of the expansion (6.3) gives the expansion where we replace s by ds. Therefore,
hα ∗A = hαA as expected.
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That uα lies in FN is clear since it is the quotient of modular forms on Γ(N) with coefficients in
Q(ζN ) and it has weight 2 · 6 − 3 − 12 + 3 = 0. Take any A ∈ GL2(Z/NZ). Since E4 and E6 are
modular forms on SL2(Z) with coefficients in Q, we find that

uα ∗A = 108
E2

6

f0 ∗A · ∆
· hα ∗A =

f0
f0 ∗A

· 108 E2
6

f0∆
· hαA =

f0
f0 ∗A

· uαA.

We have proved the parts of the lemma concerning the functions uα.
Now take any nonzero α ∈ (Z/NZ)2. It remains to prove that xα ∗ A = xαA for all A ∈

GL2(Z/NZ). For A ∈ SL2(Z/NZ), this follows from equation (6.1.3) of [Shi94]. It remains to
prove it for A =

(
1 0
0 d

)
; this follows from the q-expansion of xα, see equation (6.2.1) of [Shi94]. □

Recall that we fixed a nonzero modular form f0 in M3(Γ(N),Q(ζN )) and chose a β satisfying
β2 = j · f20 /E6 ∈ FN . For each nonzero α ∈ (Z/NZ)2, define yα := β · uα ∈ FN (β) and the pair
Pα := (xα, yα).

Lemma 6.2.

(i) For every nonzero α ∈ (Z/NZ)2, Pα is a N -torsion point in E(FN (β)).
(ii) We have a group isomorphism

ιN : (Z/NZ)2 ∼−→ E [N ], α 7→ Pα,

where P(0,0) is defined as the identity of E.

Proof. Fix any τ ∈ H satisfying j(τ) /∈ {0, 1728} and f0(τ) ̸= 0. Let Eτ be the elliptic curve over
C defined by the Weierstrass equation y2 = 4x3 − g2(τ)x − g3(τ), where g2 and g3 are modular
invariants. Note that g2/(2πi)

4 = E4/12 and g3/(2πi)
6 = −E6/216. Let E ′

τ be the elliptic curve
over C defined by the equation

j(τ)f0(τ)
2/E6(τ) · y2 = x3 − 27 · j(τ)(j(τ)− 1728) · x+ 54 · j(τ)(j(τ)− 1728)2.(6.4)

Define c := 36(2πi)−2E4(τ)E6(τ)/∆(τ) and d := 108(2πi)−3E6(τ)/(∆(τ)f0(τ)). By using j =
E3

4/∆ and j − 1728 = E2
6/∆, and dividing (6.4) by c3/4, we find that

4

c3
· j(τ)f0(τ)

2

E6(τ)
· y2 = 4(x/c)3 − 27

4E4(τ)
3E6(τ)

2

c2∆(τ)2
(x/c) + 54

4E4(τ)
3E6(τ)

4

c3∆(τ)3

= 4(x/c)3 − (2πi)4E4(τ)/12 · (x/c) + (2πi)6E6(τ)/216

= 4(x/c)3 − g2(τ) · (x/c)− g3(τ).

Observing that

4

c3
· j(τ)f0(τ)

2

E6(τ)
=

4

c3
· E4(τ)

3f0(τ)
2

∆(τ)E6(τ)
=

((2πi)3∆(τ)f0(τ)

108E6(τ)

)2
=

1

d

2

,

we deduce that the map (x, y) 7→ (x/c, y/d) defines an isomorphism E ′
τ → Eτ of elliptic curves over

C. Using this isomorphism and properties of the Weierstrass function, we obtain an isomorphism
C/(Zτ + Z) ∼−→ E ′

τ (C) of complex Lie groups which maps a nonidentity element z + (Zτ + Z) to

(c℘(z; τ), d℘′(z; τ)). In particular, we have a group isomorphism Z2/NZ2 ∼−→ E ′
τ [N ] which away

from the identity is defined by

(r, s) +N2Z 7→
(
c℘( r

N τ +
s
N ; τ), d℘′( r

N τ +
s
N ; τ)

)
= (xα(τ), uα(t)),(6.5)

where α is the image of (r, s) modulo N .
We now view τ as a variable again. Letting E ′ be the elliptic curve defined by (6.4), say over the

field of meromorphic functions ofH, we find that (6.5) also defines an isomorphism Z2/NZ2 → E ′[N ]
(the points are torsion and satisfy the expected property since they hold for all but finitely many
specializations of τ).
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Now by our choice of β, we deduce that the points Pα = (xα, yα) lie in E(FN (β)) and that
(Z/NZ)2 → E [N ], α 7→ Pα is an isomorphism. Note that β is not a function of the upper half-
plane, so we avoided using it when we fixed specific values of τ . □

6.2. Galois representations of E. Fix an integer N ≥ 3. Fix notation as in §6.1; in particular,
we have a basis P(1,0) and P(0,1) of the Z/NZ-module E [N ] ⊆ E(FN (β)). With respect to the basis
{P(1,0), P(0,1)}, let

ρE,N : GalQ(j) → GL2(Z/NZ)
be the associated Galois representation, where the implicit algebraic closure of Q(j) used for the
absolute Galois group contains FN (β). So for α ∈ (Z/NZ)2 and σ ∈ GalQ(j), we have σ(Pα) = PαA

where A := ρE ,N (σ)t = ρ∗E ,N (σ)−1.

Lemma 6.3.

(i) We have Q(j)(E [N ]) = FN (β).
(ii) We have ρ∗E,N (GalQ(j)) = GL2(Z/NZ) and ρ∗E,N (GalQ(j)) = SL2(Z/NZ).
(iii) For σ ∈ GalQ(j) and f ∈ FN , we have

σ(f) = f ∗ ρ∗E,N (σ)−1.

(iv) Composing ρ∗E,N with the quotient map to GL2(Z/NZ)/{±I} induces an isomorphism

Gal(FN/Q(j))
∼−→ GL2(Z/NZ)/{±I}.

(v) Let G be a subgroup of GL2(Z/NZ) that satisfies det(G) = (Z/NZ)× and −I ∈ G. Then
ρ∗E,N (GalQ(XG)) = G.

(vi) For σ ∈ GalQ(j), we have σ(β) = f0∗A
f0

· β, where A := ρ∗E,N (σ)−1.

Proof. Part (i) follows from Lemma 6.1 and the definition of our points Pα. Take any nonzero
α ∈ (Z/NZ)2 and σ ∈ GalQ(j). Define A := ρ∗E ,N (σ)−1 = ρE ,N (σ)t. By our choice of basis in

defining ρE ,N , we have σ(Pα) = PαA. We then have σ(xα) = xαA by considering x-coordinates. By
Lemma 6.1(iii), we have σ(xα) = xα ∗ A. Since α was an arbitrary nonzero element of (Z/NZ)2,
Lemma 6.1(ii) implies that σ(f) = f ∗A for all f ∈ FN . We have thus proved (iii).

Using σ(Pα) = PαA and taking y-coordinates, gives σ(β)σ(uα) = βuαA. Therefore, we have

σ(β) · uα ∗A = σ(β)σ(uα) = βuαA = β · f0∗A
f · uα ∗A,

where we have used part (iii) and Lemma 6.1(iii). Part (vi) follows by cancelling uα ∗A from both
sides.

By (iii), composing ρ∗E,N with the obvious quotient map gives an injective homomorphism

Gal(FN/Q(j)) ↪→ GL2(Z/NZ)/{±I}; it is an isomorphism since we know the degree of the exten-
sion FN/Q(j), cf. Lemma 3.2(i). Therefore, ±ρ∗E,N (GalQ(j)) = GL2(Z/NZ) and ±ρ∗E,N (GalQ(j)) =

SL2(Z/NZ) by Lemma 3.2. We have ρ∗E,N (GalQ(j)) = SL2(Z/NZ) since there is no proper subgroup

H of SL2(Z/NZ) for which ±H = SL2(Z/NZ), cf. Lemma 7.8. Part (ii) now follows.
Finally take G as in (v). From parts (i) and (iii) and −I ∈ G, the subfield of FN (β) fixed by

(ρ∗E,N )−1(G) is FG
N . Part (v) is now immediate since FG

N = Q(XG). □

6.3. Specializations. Define U := A1
Q − {0, 1728} = SpecQ[j, j−1, (j − 1728)−1] and view it as

an open subvariety of the j-line. Let π1(U, η) be the étale fundamental group of U , where η
is the geometric generic point of U corresponding to our choice of algebraic closure of Q(j). The
Weierstrass equation (6.1) has discriminant 212312j2(j−1728)3 and hence defines an elliptic scheme
E → U whose generic fiber is the elliptic curve E over Q(j).
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Let E [N ] be the N -torsion subscheme of E . We can identify the fiber of E [N ] → U at η with
E [N ]. We can view E [N ] as a rank 2 lisse sheaf of Z/NZ-modules over U and it thus corresponds
to a representation

ϱE ,N : π1(U, η) → Aut(E [N ]) ∼= GL2(Z/NZ).
By making an appropriate choice of basis, we may assume that the specialization of

ϱ∗E ,N : π1(U, η) → GL2(Z/NZ)

at the generic fiber of U gives our representation ρ∗E,N : GalQ(j) → GL2(Z/NZ). The representation
ϱ∗E ,N is surjective by Lemma 6.3(ii).

Take any subgroup G of GL2(Z/NZ) satisfying det(G) = (Z/NZ)× and −I ∈ G. Let πG : UG →
U be the étale cover corresponding to the subgroup (ϱ∗E ,N )−1(G) of π1(U, η). The function field

of UG is FG
N = Q(XG) by Lemma 6.3(v). So we can identify UG with an open subvariety of the

modular curve XG and the morphism πG extends to the morphism from XG to the j-line that we
had also denoted by πG. In particular, UG is the open subvariety of XG that is the complement of
π−1
G ({0, 1728,∞}). (When −I /∈ G, we will simply define UG to be XG − π−1

G ({0, 1728,∞}).)

Proposition 6.4. Let G be a subgroup of GL2(Z/NZ) satisfying det(G) = (Z/NZ)× and −I ∈ G.
Let E be an elliptic curve defined over a number field K with jE /∈ {0, 1728}. Then ρ∗E,N (GalK) is

conjugate in GL2(Z/NZ) to a subgroup of G if and only if jE = πG(u) for some u ∈ UG(K).

Proof. We may assume K ⊆ Q. Define the surjective homomorphism ϱ := ϱ∗E ,N : π1(U, η) →
GL2(Z/NZ). For each u ∈ U(K) = K − {0, 1728}, let ϱu : GalK → GL2(Z/NZ) be the specializa-
tion of ϱ at u; it is uniquely determined up to conjugation by an element of GL2(Z/NZ).

We claim that ϱu(GalK) is conjugate in GL2(Z/NZ) to a subgroup of G if and only if u = πG(P )
for some P ∈ UG(K). Let φ : Y → U be the étale cover corresponding to ϱ; the curve Y is defined
over Q but need not be geometrically irreducible. The group GL2(Z/NZ) acts on Y and acts simply
faithful on the fiber φ−1(u) := {P ∈ Y (Q) : φ(P ) = u}. The group GalK acts on φ−1(u) since
φ and u are defined over K. There is a point P0 ∈ φ−1(u) such that σ(P0) = ϱu(σ) · P0 for all
σ ∈ GalK (a different choice of P0 results in a conjugate of ϱu). The G-orbits of φ

−1(u) correspond
with the points P ∈ UG(Q) that satisfy πG(P ) = u via the natural morphism Y → UG. Since φ and
u are defined over K, those G-orbits of φ−1(u) that are stable under the GalK-action correspond
with the points P ∈ UG(K) that satisfy πG(P ) = u. Therefore, there is a point P ∈ UG(K) with
πG(P ) = u if and only if there is a point P0 ∈ φ−1(u) such that for each σ ∈ GalK , we have
σ(P0) = g ·P0 for some g ∈ G; equivalently, ϱu(GalK) is conjugate to a subgroup of G. This proves
the claim.

The specialization ϱu : GalK → GL2(Z/NZ) of ϱ at u is isomorphic to the representation
ρ∗Eu,N

: GalK → GL2(Z/NZ), where Eu is the elliptic curve over K defined by the Weierstrass

equation (6.1) with j replaced by u. Since Eu has j-invariant u, the above claim proves the lemma
in the case where E = Eu.

Since −I ∈ G, it now suffices to show that ±ρ∗E(GalK) and ±ρ∗Eu
(GalK) are conjugate in

GL2(Z/NZ) where u := jE ∈ K − {0, 1728} = U(K). The curve E and Eu are quadratic twists
of each other since they have the same j-invariant which is neither 0 or 1728. So after choosing
compatible bases, there is a quadratic character χ : GalK → {±1} such that ρ∗Eu,N

= χ · ρ∗E,N . In

particular, ±ρ∗Eu,N
(GalK) = ±ρ∗E,N (GalK). □

6.3.1. Elliptic scheme for the group G. Let G be a subgroup of GL2(Z/NZ) satisfying det(G) =
(Z/NZ)× and −I ∈ G. Let EG → UG be the elliptic scheme obtained by base extending E → U
by the étale morphism πG : UG → U . Then we can construct a representation ϱ∗EG,N : π1(UG, η) →
GL2(Z/NZ) as before, where now η denotes the geometric generic point of UG corresponding to
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our choice of algebraic closure of Q(j) (which contains Q(XG)). The morphism πG allows us to
view π1(UG, η) as a subgroup of π1(U, η); we may assume that our representation was chosen so
that the restriction of ϱ∗E ,N to π1(UG, η) agrees with ϱ∗EG,N . In particular, we have a surjective
homomorphism

ϱ∗EG,N : π1(UG, η) → G.

Take any number field K ⊆ Q and point u ∈ UG(K). Let (EG)u be the elliptic curve over K that
is the fiber of EG → UG over u; it is isomorphic to the elliptic curve over K defined by (6.1) with j
replaced by πG(u). The specialization of ϱ∗EG,N at u is a representation GalQ → G ⊆ GL2(Z/NZ)
that is isomorphic to ρ∗(EG)u,N

.

7. Some basic group theory

We now collect some basic group theoretic results that we will use. Most of it concerns the

groups SL2(Zℓ) and GL2(Zℓ), with ℓ prime, and the groups SL2(Ẑ) and GL2(Ẑ).

7.1. Goursat’s lemma. We will make frequent use of the following in §8.

Lemma 7.1 (Goursat’s lemma, [Rib76, Lemma 5.2.1]). Let G1 and G2 be two groups and let H
be a subgroup of G1 ×G2 so that the projection maps p1 : H → G1 and p2 : H → G2 are surjective.
Let N1 and N2 be the normal subgroups of G1 and G2, respectively, for which ker(p2) = N1 × {1}
and ker(p1) = {1} ×N2. Then the image of H in (G1 × G2)/(N1 ×N2) = G1/N1 × G2/N2 is the

graph of an isomorphism G1/N1
∼−→ G2/N2.

7.2. Determining closed subgroups by their reductions.

Lemma 7.2. Fix an integer N =
∏

p p
ep > 1 with e2 ̸= 1. For each prime ℓ dividing N , define the

integer

Nℓ := ℓeℓ
∏

p|N, p2≡1 mod ℓ

p;

it is a divisor of N . Let G be a closed subgroup of GL2(ZN ). For each prime ℓ dividing N , assume
that the image of G in GL2(Z/NℓℓZ) contains all matrices that are congruent to I modulo Nℓ. Then
G is an open subgroup of GL2(ZN ) with level dividing N .

Proof. We first consider the special case where N = ℓeℓ > 1 is a prime power (with eℓ ≥ 2 if ℓ = 2).
For i ≥ 1, define the group Hi := G ∩ (I + ℓiM2(Zℓ)). We have an injective homomorphism

ϕi : Hi/Hi+1 ↪→ g, 1 + ℓiA 7→ A mod ℓ,

where g :=M2(Fℓ).
We claim that ϕi is surjective for all i ≥ eℓ. We shall prove this by induction on i. We have

Nℓ = ℓeℓ and the homomorphism ϕeℓ is surjective by our assumption that the image of G in
GL2(Z/NℓℓZ) = GL2(Z/ℓeℓ+1Z) contains all matrices that are congruent to I modulo ℓeℓ . Now
consider any i ≥ eℓ for which ϕi is surjective. Take any B ∈ g. Since ϕi is surjective, there is a
matrix A ∈ M2(Zℓ) such that I + ℓiA ∈ G and A ≡ B (mod ℓ). Raising to the ℓ-th power, we

find that g := (I + ℓiA)ℓ is an element of G with g ≡ I + ℓi+1A (mod ℓi+2) (this uses that
(
ℓ
j

)
≡ 0

(mod ℓ) when 0 < j < ℓ and that i ≥ 2 when ℓ = 2). So g ∈ Hi+1 and ϕi+1(g · Hi+2) ≡ A ≡ B
(mod ℓ). Since B ∈ g was arbitrary, this proves that ϕi+1 is surjective. The claim follows by
induction.

For any i ≥ eℓ, the above claim implies that the image of G in GL2(Z/ℓiZ) contains all matrices
A ∈ GL2(Z/ℓiZ) with A ≡ I (mod ℓeℓ). Since G is a closed subgroup of GL2(Zℓ), we deduce that
G is an open subgroup of GL2(Zℓ) whose level divides ℓeℓ . This completes the proof in the special
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case where N is a prime power.

We now consider the general case. Take any prime ℓ|N and let

φ : G→
∏

p|N, p̸=ℓ

GL2(Zp)

be the projection homomorphism. We have ker(φ) = Hℓ × {I}, where Hℓ is a closed subgroup of
GL2(Zℓ).

Take any B ∈ g. By assumption, the image of G in GL2(Z/NℓℓZ) contains all matrices that are
congruent to I modulo Nℓ. So there is a g0 ∈ G such that g0 ≡ I + ℓeℓB (mod ℓeℓ+1) and g0 ≡ I
(mod p) for all p|N with p2 ≡ 1 (mod ℓ). Observe that if ℓ divides |GL2(Z/pZ)| = (p− 1)2(p+1)p
for a prime p ̸= ℓ, then p2 ≡ 1 (mod ℓ). So for any m ≥ 1, there is a positive integer f ≡ 1 (mod ℓ)

for which gf0 ≡ φ(g0)
f ≡ I (mod

∏
p|N,p̸=ℓ p

m). We have gf0 ≡ I + ℓeℓB (mod ℓeℓ+1). By taking

m larger and larger and using that G is a closed, and hence compact, subgroup of GL2(ZN ), we
deduce that there is a g ∈ ker(φ) for which g ≡ I + ℓeℓB (mod ℓeℓ+1). Since B ∈ g was arbitrary,
we deduce that the image of Hℓ in GL2(Z/ℓeℓ+1Z) contains all matrices that are congruent to I
modulo ℓeℓ .

By the prime power case of the lemma, which we have already proved, Hℓ is an open subgroup
of GL2(Zℓ) whose level divides ℓeℓ . Since ℓ was an arbitrary prime divisor of N , we deduce that∏

ℓ|N Hℓ is a subgroup of G and hence G is an open subgroup of GL2(ZN ) whose level divides∏
ℓ|N ℓeℓ = N . □

For an open subgroup G of GL2(ZN ), the following lemma is useful for finding its maximal
subgroups; the issue being that these maximal subgroups may have strictly larger level.

Lemma 7.3. Fix an integer N =
∏

p p
ep > 1 with e2 ̸= 1. Let G be an open subgroup of GL2(ZN )

whose level divides N . If M is a maximal open subgroup of G, then the level of M divides Nℓ for
some ℓ|N .

Proof. Let M be a maximal open subgroup of G. Take any prime ℓ|N . If the image of M and G
modulo Nℓ give different subgroups of GL2(Z/NℓZ), then the level of M divides Nℓ (using that
M is maximal, it agrees with the group of g ∈ G whose image modulo Nℓ lies in the image of M
modulo Nℓ).

So we can assume that M and G have the same image modulo Nℓ for all primes ℓ|N . Since
G has level N , we deduce that for each ℓ|N , the image of M modulo Nℓ contains all matrices
A ∈ GL2(Z/NℓZ) satisfying A ≡ I (mod N). Applying Lemma 7.2 to the group M , we deduce
that the level of M divides N . □

The following is an analogous version of Lemma 7.2.

Lemma 7.4. Fix an integer N =
∏

p p
ep > 1 with e2 ̸= 1. For each prime ℓ dividing N , define the

integer

Nℓ := ℓeℓ
∏

p|N, p2≡1 mod ℓ

p;

it is a divisor of N . Let G be a closed subgroup of SL2(ZN ). For each prime ℓ dividing N , assume
that the image of G in SL2(Z/NℓℓZ) has level which divides Nℓ. Then G is an open subgroup of
SL2(ZN ) with level dividing N .

Proof. This can be proved in the exact same way as Lemma 7.2 with GL2 replaced by SL2 and
with g = {A ∈M2(Fℓ) : tr(A) = 0}. □
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Lemma 7.5. Fix a prime ℓ. Let G be a closed subgroup of SL2(Zℓ) whose image modulo ℓe is
SL2(Z/ℓeZ), where e is 3, 2 or 1 when ℓ is 2, 3 or at least 5, respectively. Then G = SL2(Zℓ).

Proof. For ℓ ≥ 5, the lemma follows from [Ser98, IV, Lemma 3]. For ℓ ∈ {2, 3}, this follows from
Lemma 7.4. □

Many of the open subgroups G of GL2(ZN ) we consider will contain all the scalar matrices; the
following will be useful for computing levels.

Lemma 7.6. Fix an integer N > 1. Let H be a subgroup of GL2(ZN ) for which H ∩ SL2(ZN ) is
an open subgroup of SL2(ZN ) whose level divides N0. Assume that N0 ≡ 0 (mod 4) if N0 is even.
Define N1 := N0 if N0 is odd and N1 := 2N0 if N0 is even. Then Z×

N ·H is an open subgroups of
GL2(ZN ) whose level divides N1.

Proof. By considering the ℓ-adic projections, we reduce to the case where N is a power of a prime
ℓ and N0 = ℓe (with e ≥ 2 if ℓ = 2). Let f = e if ℓ is odd and f = e + 1 if ℓ = 2. One can check
that (1 + ℓeZℓ)

2 = 1 + ℓfZℓ; this uses that e ≥ 2 when ℓ = 2.
Take any matrix A ∈ I+ ℓfM2(Zℓ). We have det(A) ∈ 1+ ℓfZℓ = (1+ ℓeZℓ)

2, so det(A) = d2 for
some d ∈ 1+ℓeZℓ. The matrix d−1A ∈ GL2(Zℓ) has determinant 1 and is congruent to I modulo ℓe.
Since the level of H ∩ SL2(ZN ) in SL2(ZN ) divides N0 = ℓe, we must have d−1A ∈ H. Therefore,

A = d · d−1A is an element of Ẑ×H. The level of Ẑ×H divides ℓf = N1 since A was an arbitrary
element of I + ℓfM2(Zℓ). □

7.3. Commutator subgroups. We first consider some basic results about commutator subgroups.

Lemma 7.7.

(i) If ℓ ≥ 5, the group SL2(Zℓ) is perfect, i.e., it is equal to its commutator subgroup.
(ii) The commutator subgroup of SL2(Z3) has level 3 and index 3.
(iii) The commutator subgroup of SL2(Z2) has level 4 and index 4, and the quotient is a cyclic

group of order 4.
(iv) If ℓ ≥ 3, the commutator subgroup of GL2(Zℓ) is SL2(Zℓ).
(v) The commutator subgroup of GL2(Z2) is a subgroup of SL2(Z2) of level 2 and index 2.

(vi) The commutator subgroup of GL2(Ẑ) is an open subgroup of SL2(Ẑ) of level 2 and index 2.

Proof. Parts (i)–(iii) follow immediately from [Zyw10, Lemma A.1]. Now take any prime ℓ. We
have

[SL2(Zℓ), SL2(Zℓ)] ⊆ [GL2(Zℓ),GL2(Zℓ)] ⊆ SL2(Zℓ).

Part (iv) with ℓ ≥ 5 is now a consequence of (i).
When ℓ = 3, we deduce from (ii) that [GL2(Z3),GL2(Z3)] has level 1 or 3 in SL2(Z3). Part (iv)

with ℓ = 3 follows by verifying that [GL2(Z/3Z),GL2(Z/3Z)] = SL2(Z/3Z).
When ℓ = 2, we deduce from (iii) that the level of [GL2(Z2),GL2(Z2)] in SL2(Z2) divides 4. Part

(v) with ℓ = 2 follows by verifying that [GL2(Z/4Z),GL2(Z/4Z)] is a subgroup of SL2(Z/4Z) of
index 2 that contains all the matrices A ∈ SL2(Z/4Z) with A ≡ I (mod 2).

For the group GL2(Ẑ) =
∏

ℓGL2(Zℓ), part (vi) follows from (iv) and (v). □

Lemma 7.8. Take any integer N > 1. There are no proper subgroups H of SL2(Z/NZ) that satisfy
±H = SL2(Z/NZ).
Proof. Suppose that H is a proper subgroup of SL2(Z/NZ) that satisfies ±H = SL2(Z/NZ). The
group H has index 2 in SL2(Z/NZ) and contains the commutator subgroup of SL2(Z/NZ). Using
the description of commutator subgroups of SL2(Zℓ) with ℓ|N from Lemma 7.7, we find that N is
even and H is the unique index 2 subgroup of SL2(Z/NZ) containing all matrices A ∈ SL2(Z/NZ)
for which A ≡ I (mod 2). In particular, we have −I ∈ H since −I ≡ I (mod 2). This contradicts
that H is a proper subgroup of ±H. □
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Lemma 7.9. For a prime ℓ ≥ 5, let G be a closed subgroup of GL2(Zℓ) for which det(G) = Z×
ℓ

and G modulo ℓ is equal to GL2(Z/ℓZ). Then G = GL2(Zℓ).

Proof. The commutator subgroup [G,G] is a closed subgroup of SL2(Zℓ) whose image modulo ℓ
is [GL2(Z/ℓZ),GL2(Z/ℓZ)] = SL2(Z/ℓZ), where we have used our assumption on the image of
G modulo ℓ and Lemma 7.7(i). By Lemma 7.5, we have [G,G] = SL2(Zℓ). We conclude that
G = GL2(Zℓ) since G ⊇ [G,G] = SL2(Zℓ) and det(G) = Z×

ℓ . □

Lemma 7.10. Let G be an open subgroup of GL2(Ẑ) or SL2(Ẑ). Then the commutator subgroup

[G,G] is an open subgroup of SL2(Ẑ).

Proof. We obviously have [G,G] ⊆ SL2(Ẑ). We can always replace G by a smaller group since this
will make [G,G] smaller as well. So without loss of generality, we may assume that G is an open

subgroup of SL2(Ẑ) and that G =
∏

ℓGℓ with Gℓ an open subgroup of SL2(Zℓ). For ℓ ≥ 5 large
enough, we have Gℓ = SL2(Zℓ) and [Gℓ, Gℓ] = SL2(Zℓ) by Lemma 7.7(i). So for any fixed prime ℓ,
we need only show that [Gℓ, Gℓ] is an open subgroup of SL2(Zℓ).

Take any prime ℓ. By Lemma 7.6, there is an integer e ≥ 1 such thatW := Z×
ℓ ·Gℓ ⊇ 1+ℓeM2(Zℓ).

By Lemma 1 of [LT76, p.163], we have [Gℓ, Gℓ] = [W,W ] ⊇ (1 + ℓ2eM2(Zℓ)) ∩ SL2(Zℓ) and hence
[Gℓ, Gℓ] is an open subgroup of SL2(Zℓ). □

7.3.1. Computing commutator subgroups. Now let G be an open subgroup of SL2(Ẑ) or GL2(Ẑ).
Assume G is given explicitly, i.e., we have generators for the image of G modulo m for some positive
integer m divisible by the level of G.

We will need to be able to compute the commutator subgroup [G,G]; note the level of [G,G] in

SL2(Ẑ) may be strictly larger than m.

By Lemma 7.10, [G,G] is an open subgroup of SL2(Ẑ). By Lemma 7.7(i), we find that the level
of [G,G] is not divisible by any prime ℓ ≥ 5 for which ℓ ∤ m. For any positive integer n, we can
compute the image of [G,G] modulo n; it equals [G,G] ⊆ SL2(Z/nZ), where G is the image of G
modulo n. By computing [G,G] modulo n for suitable n that are not divisible by any prime ℓ ≥ 5
satisfying ℓ ∤ m, we can use the criterion of Lemma 7.4 to find a positive integer N that is divisible

by the level of [G,G] in SL2(Ẑ). Once we have such a N , we have explicitly found [G,G] since it is
determined by N and its image modulo N .

7.4. Full ℓ-adic images. The next lemma shows that if G is a proper closed subgroup of GL2(Zℓ)
with full determinant, then it is prosolvable.

Lemma 7.11. Take any prime ℓ and let G be a closed subgroup of GL2(Zℓ) with det(G) = Z×
ℓ . If

S is a nonabelian simple group that occurs as the quotient of some closed normal subgroup of G,
then ℓ ≥ 5, G = GL2(Zℓ) and S ∼= SL2(Fℓ)/{±I}.

Proof. The kernel of the reduction modulo ℓ homomorphism G → GL2(Fℓ) is prosolvable. So the
image G of G in GL2(Fℓ) satisfies det(G) = F×

ℓ and contains the nonabelian simple group S as a
factor in its composition series. Since GL2(F2) and GL2(F3) are solvable, we have ℓ ≥ 5.

First suppose that the cardinality of G is not divisible by ℓ. Since G is nonsolvable, we find
from §2.6 of [Ser72] that the image of G in PGL2(Fℓ) := GL2(Fℓ)/(F×

ℓ · I) is isomorphic to the

alternating group A5. Since A5 is nonabelian and simple, we must have det(G) ⊆ (F×
ℓ )

2 which is a
contradiction.

So the prime ℓ must divide the cardinality of G. Since G is nonsolvable, [Ser72, Proposition 15]
shows that G ⊇ SL2(Fℓ). The group SL2(Fℓ) is perfect since ℓ ≥ 5 and hence [G,G] is a closed
subgroup of SL2(Zℓ) whose image modulo ℓ is SL2(Fℓ). We have [G,G] = SL2(Zℓ) by Lemma 7.5.
We thus have G = GL2(Zℓ) since det(G) = Z×

ℓ . Finally S must be isomorphic to SL2(Fℓ)/{±I}
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since it is the only nonabelian simple group that occurs as a factor in a composition series of
G = GL2(Fℓ). □

Lemma 7.12. Let G be an open subgroup of GL2(Ẑ) satisfying det(G) = Ẑ×. Take any prime ℓ ≥ 5

and let Gℓ be the image of G under the projection map GL2(Ẑ) → GL2(Zℓ). Then the following are
equivalent:

(a) Gℓ = GL2(Zℓ),

(b) ℓ does not divide the level of [G,G] in SL2(Ẑ),
(c) ℓ does not divide the level of G ∩ SL2(Ẑ) in SL2(Ẑ).

Proof. First suppose that Gℓ = GL2(Zℓ). Let H be one of the groups [G,G] or G∩ SL2(Ẑ); it is an
open subgroup of SL2(Ẑ). Since G ∩ SL2(Ẑ) ⊇ [G,G], we have SL2(Zℓ) ⊇ Hℓ ⊇ [G,G]ℓ = [Gℓ, Gℓ],
where Hℓ and [G,G]ℓ are the images of H and [G,G], respectively, under the projection map

SL2(Ẑ) → SL2(Zℓ). By Lemma 7.7(iv), we deduce that Hℓ = SL2(Zℓ). Let H ′ be the image of H

under the projection SL2(Ẑ) →
∏

p ̸=ℓ SL2(Zp). So we may identify H with a closed subgroup of

Hℓ ×H ′. Let B and B′ be the normal subgroups of Hℓ and H
′, respectively, such that B × {I} is

the kernel of the projection H → H ′ and {I}×B′ is the kernel of the projection H → Hℓ. Since H

is open in SL2(Ẑ), the groups B and B′ are open in Hℓ and H
′, respectively. By Goursat’s lemma,

we have an isomorphism of (finite) groups Hℓ/B ∼= H ′/B′.
Suppose that Hℓ/B ̸= 1. There is a simple group S that is the quotient of both Hℓ and Hp for

some prime p ̸= ℓ. The groups Hℓ and Hp are normal subgroups of Gℓ and Gp, respectively, since
H is a normal subgroup of G. Since the groups SL2(Fℓ)/{±I} and SL2(Fp)/{±I} have different
cardinalities and Gℓ and Gp have full determinants, Lemma 7.11 implies that S is abelian. However,
Hℓ = SL2(Zℓ) has no nontrivial abelian quotients by Lemma 7.7(i). Therefore, Hℓ/B = 1.

The groups Hℓ/B and H ′/B′ are trivial. Therefore, H ⊇ B × B′ = Hℓ × H ′ and hence H =
Hℓ ×H ′ = SL2(Zℓ)×H ′. This description of H shows that ℓ does not divide its level. This shows
that (a) implies (b) and (c).

Now suppose that (b) or (c) holds. In either case, we have Gℓ ⊇ SL2(Zℓ). Since G has full
determinant, this implies (a). □

7.5. Some 3-adic computations. To study the prime ℓ = 3, we define a surjective homomorphism

φ3 : GL2(Z3) → GL2(F3) → GL2(F3)/[SL2(F3), SL2(F3)]
∼−→ S3,

where we compose reduction modulo 3, the natural quotient map, and a choice of isomorphism
with the symmetric group S3. Note that φ3(SL2(Z3)) is the alternating group A3.

Lemma 7.13. If H is a closed normal subgroup of GL2(Z3), then either φ3(H) = 1 or H ⊇
SL2(Z3).

Proof. If H ⊇ SL2(Z3), then φ3(H) ⊇ φ3(SL2(Z3)) = A3 ̸= 1. So we may now assume that
φ3(H) ̸= 1. We need to show that H ⊇ SL2(Z3).

We have φ3(H) ⊇ A3 since φ3(H) is a nontrivial normal subgroup of S3. So there is an
a ∈ H such that φ3(a) ∈ A3 − {1}. The two elements of A3 − {1} are conjugate in S3, so
there is a g ∈ GL2(Z3) such that φ3(ga

−1g−1) = φ3(g)φ3(a)
−1φ3(g)

−1 equals φ3(a). Therefore,
φ3(ga

−1g−1a) = φ3(a)
2 has order 3. Since H is normal in GL2(Z3), we deduce that φ3(ga

−1g−1a)
is an element of φ3(H ∩ SL2(Z3)) of order 3. So after replacing H by H ∩ SL2(Z3), we may assume
that H ⊆ SL2(Z3).

The image H of H modulo 3 is a normal subgroup of SL2(Z/3Z) that contains an element of
order 3. We have H = SL2(Z/3Z) since the only maximal normal subgroup of SL2(Z/3Z) is its
commutator subgroup which has order 8. A direct computation shows that there are no normal
subgroup of SL2(Z/9Z) whose image modulo 3 is the group SL2(Z/3Z) (however, there are such
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subgroups if we exclude the normal condition). So H is a closed subgroup of SL2(Z3) whose image
modulo 9 equals SL2(Z/9Z). By Lemma 7.5, we have H = SL2(Z3). □

8. Agreeable groups

We say that subgroup G of GL2(Ẑ) is agreeable if it is open in GL2(Ẑ), satisfies det(G) = Ẑ×,

contains the scalar matrices Ẑ× · I, and the levels of G ⊆ GL2(Ẑ) and G ∩ SL2(Ẑ) ⊆ SL2(Ẑ) have
the same odd prime divisors.

The following proposition, which we will prove in §8.3, shows that every open subgroup G of

GL2(Ẑ) with full determinant lies in a unique minimal agreeable group G ⊆ GL2(Ẑ). We call G the
agreeable closure of G.

Proposition 8.1. Let G be an open subgroup of GL2(Ẑ) with det(G) = Ẑ×. Then there is a unique

minimal agreeable subgroup G of GL2(Ẑ), with respect to inclusion, that satisfies G ⊆ G. We have
[G,G] = [G,G] and hence G is a normal subgroup of G with G/G finite and abelian.

Recall that for our application to Serre’s open image theorem, we will study the agreeable closure
GE of ρ∗E(GalQ) for non-CM elliptic curves E/Q. Since ρ∗E is defined up to isomorphism, the group

GE ⊆ GL2(Ẑ) is uniquely determined up to conjugacy in GL2(Ẑ).

8.1. Projection notation. We now introduce notation that we will use through §8.
Let G be a subgroup of GL2(Ẑ). For each positive integer n, we let Gn be the image of G

under the homomorphism GL2(Ẑ) → GL2(Zn) arising from the natural ring homomorphism Ẑ =

Zn×
∏

ℓ∤n Zℓ → Zn. For example, the level of an open subgroup G of GL2(Ẑ) is the smallest positive

integer n for which we have a natural identification G = Gn ×
∏

ℓ∤nGL2(Zℓ).

Let G be a subgroup of GL2(ZN ) for an integer N > 1. For a positive integer n that divides
some power of N , we denote by Gn the image of G under the homomorphism GL2(ZN ) → GL2(Zn)
arising from the projection ring homomorphism ZN = Zn ×

∏
ℓ|N, ℓ∤n Zℓ → Zn.

Suppose N = n1n2 with n1 and n2 positive integers that are relatively prime. Then any subgroup
G of GL2(ZN ) can be identified with a subgroup of Gn1×Gn2 ; the projections of G onto the first and
second coordinate are surjective. Note that we are now in a setting where we can apply Goursat’s
lemma (Lemma 7.1).

8.2. Finiteness of agreeable groups with given projections. An advantage of working with
agreeable groups is that there are only finitely many with given ℓ-adic projections.

Lemma 8.2. For each prime ℓ, fix an open subgroup Hℓ of GL2(Zℓ) satisfying det(Hℓ) = Z×
ℓ and

Z×
ℓ · I ⊆ Hℓ. Then there are only finite many agreeable subgroups G of GL2(Ẑ) such that Gℓ = Hℓ

for all ℓ.

Proof. Take any agreeable subgroup G of GL2(Ẑ) such that Gℓ = Hℓ for all ℓ. We may assume that
there are only finite many primes ℓ with Hℓ ̸= GL2(Zℓ) since otherwise it would contradict that G

is open in GL2(Ẑ). Let N be the product of primes ℓ for which ℓ ≤ 3 or Hℓ ̸= GL2(Zℓ).

For a groupH and an integer n ≥ 0, letH(n) be the group obtained fromH by taking commutator
subgroups n times, i.e., H(0) := H and H(n) := [H(n−1), H(n−1)] for n ≥ 1. Define B := G(4); it

is an open subgroup of SL2(Ẑ) since G is open in GL2(Ẑ), cf. Lemma 7.10. We have a natural
inclusion

B ⊆
∏
ℓ

H
(4)
ℓ

so that the projection map B → Bℓ = (Gℓ)
(4) = H

(4)
ℓ is surjective for all ℓ.
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Suppose that B =
∏

ℓH
(4)
ℓ . The primes dividing the level of B ⊆ SL2(Ẑ) divide N since

H
(4)
ℓ = SL2(Zℓ)

(4) = SL2(Zℓ) for ℓ ∤ N , where we have used Lemma 7.7(i). Since B ⊆ [G,G] and G
is agreeable, we find that the primes dividing the level of G divide N as well. Therefore, we have
an inclusion

W :=
∏
ℓ|N

(Z×
ℓ ·H(4)

ℓ )×
∏
ℓ∤N

GL2(Zℓ) ⊆ G.

Since W is an open subgroup of GL2(Ẑ), G is one of the finitely many groups that lies between W

and GL2(Ẑ).
Now suppose that B ̸=

∏
ℓH

(4)
ℓ . To finish the proof, it suffices to obtain a contradiction. By

Goursat’s lemma, we find that there is a finite simple group that is isomorphic to the quotient of

H
(4)
ℓ for two distinct primes ℓ. For ℓ ∤ N , we have H

(4)
ℓ = SL2(Zℓ) by Lemma 7.7(i) and its only

simple quotient is isomorphic to SL2(Fℓ)/{±I}.
For ℓ|N , we claim that H

(4)
ℓ is pro-ℓ and hence every simple quotient is isomorphic to Z/ℓZ.

By Lemma 7.11, the group Hℓ ⊆ GL2(Zℓ) is prosolvable. So to verify the claim, it suffices to

prove that M (4) = 1 for any solvable subgroup M ⊆ GL2(Z/ℓZ). For ℓ ∈ {2, 3} this holds since

a direct computation shows that GL2(Z/ℓZ)(4) = 1. Now assume ℓ ≥ 5. For a description of
the subgroups of GL2(Z/ℓZ), see §2 of [Ser72]. If M is contained in the normalizer of a Cartan

subgroup or a Borel subgroups, we have M (2) = 1. The remaining possibility is that the image of

M in GL2(Z/ℓZ)/((Z/ℓZ)× · I) is isomorphic to a subgroup of S4. So M (4) = 1 since S
(3)
4 = 1.

So we have proved that there is no simple group that is isomorphic to quotients of H
(4)
ℓ for two

distinct primes ℓ; this is the desired contradiction. □

8.3. Agreeable closure. Fix an open subgroup G of GL2(Ẑ) that satisfies det(G) = Ẑ×. Let N

be the product of primes that divide the level of [G,G] ⊆ SL2(Ẑ). Define the subgroup

G := (Z×
N ·GN )×

∏
ℓ∤N

GL2(Zℓ)(8.1)

of GL2(Ẑ). The rest of this section is devoted to showing that G is the agreeable group satisfying
the properties in Proposition 8.1.

We clearly have G ⊆ G and Ẑ× · I ⊆ G. The group G is open in GL2(Ẑ) with full determinant

since G has these properties. The integer N is even since the commutator subgroup of GL2(Ẑ) has
level 2 in SL2(Ẑ) by Lemma 7.7(vi). The commutator subgroups of Z×

N · GN and GN agree, and
GL2(Zℓ) has commutator subgroup SL2(Zℓ) for all ℓ ∤ N by Lemma 7.7(iv). Therefore,

[G,G] = [GN , GN ]×
∏
ℓ∤N

SL2(Zℓ) = [G,G],

where the last equality uses that N is the product of primes that divide the level of [G,G]. In
particular, G is a normal subgroup of G with G/G abelian.

Lemma 8.3.

(i) For an odd prime ℓ, we have Gℓ = GL2(Zℓ) if and only if Gℓ = GL2(Zℓ).
(ii) Suppose that 3 divides N and G3 = GL2(Z3). Then there is a surjective homomorphism

ψ : GN/3 → S3 such that

GN ⊆ {(a, b) ∈ GL2(Z3)× GN/3 : φ3(a) = ψ(b)},

with φ3 as in §7.5.
43



(iii) The levels of [G,G] and G ∩ SL2(Ẑ) in SL2(Ẑ) and the level of G in GL2(Ẑ) have the same
odd prime divisors as N .

Proof. We first prove (i). If Gℓ = GL2(Zℓ), then we have Gℓ = GL2(Zℓ) by the inclusion Gℓ ⊆ Gℓ.
We now may assume that Gℓ = GL2(Zℓ). Since Z×

ℓ · Gℓ ⊇ Gℓ, we have Gℓ ⊇ [Gℓ, Gℓ] ⊇ [Gℓ,Gℓ] =
[GL2(Zℓ),GL2(Zℓ)]. Since ℓ is odd, we have Gℓ ⊇ SL2(Zℓ) by Lemma 7.7(iv) and hence Gℓ =
GL2(Zℓ) since G has full determinant.

We now prove (ii). Assume that 3 divides N and G3 = GL2(Z3). Set m := N/3. We can identify
GN with a proper subgroup of GL2(Z3) × Gm so that the projection maps GN → GL2(Z3) and
GN → Gm are surjective. Let B be the subgroup of GL2(Z3) for which B × {I} is the kernel of
G → Gm. The group B is open and normal in GL2(Z3). By Goursat’s lemma, there is a surjective
homomorphism ψ′ : Gm → GL2(Z3)/B such that

GN = {(a, b) ∈ GL2(Z3)× Gm : aB = ψ′(b)}.

Suppose that B ⊇ SL2(Z3). Since B contains the scalar matrices Z×
3 · I, we deduce that B ⊇

Z×
3 ·SL2(Z3) :=W . The group W is the index 2 subgroup of GL2(Z3) consisting of matrices whose

determinant is a square in Z×
3 . Therefore, G3/B is cyclic of order 1 or 2. Fix an element c ∈ Gm

that generates Gm/ ker(ψ
′). Take any a, b ∈ G3 = GL2(Z3). There are integers i, j ∈ {0, 1} such

that (a, ci) and (b, cj) lie in GN ⊆ G3 × Gm. Taking the commutator of these two elements, we find
that (aba−1b−1, I) ∈ [GN ,GN ] = [GN , GN ]. Since the commutator subgroup of GL2(Z3) is SL2(Z3)
by Lemma 7.7(iv), we deduce that [GN , GN ] equals SL2(Z3)× [Gm, Gm]. However, this contradicts
that 3 divides N . Therefore, B ̸⊇ SL2(Z3).

Since B ̸⊇ SL2(Z3), Lemma 7.13 implies that φ3(B) = 1 and we thus have a surjective homo-
morphism φ3 : GL2(Z3)/B → S3. Let ψ : Gm → S3 be the surjective homomorphism obtained by
composing ψ′ and φ3. We have

GN ⊆ {(a, b) ∈ GL2(Z3)× Gm : φ3(a) = ψ(b)}.

This completes the proof of (ii).

Since [G,G] = [G,G], part (iii) is immediate for the group [G,G] from the definition of N . From

its construction, the level of G cannot be divisible by primes ℓ ∤ N . Since the level of G ∩ SL2(Ẑ)
divides the level of G, it suffices to prove (iii) for the group G ∩ SL2(Ẑ).

For a prime ℓ ≥ 5, Lemmas 7.12 and 8.3(i) imply that ℓ divides N if and only if Gℓ ̸= GL2(Zℓ).

So the integer N and the level of G ∩ SL2(Ẑ) have the same prime divisors ℓ ≥ 5 by Lemma 7.12.

It thus remains to prove (iii) for the group G ∩ SL2(Ẑ) and the prime ℓ = 3.

If 3 ∤ N , then from the definition of G we find that the level of G ∩ SL2(Ẑ) is not divisible by 3.

So we may assume that 3 divides N ; we need to prove that 3 also divides the level of G ∩ SL2(Ẑ).
Suppose that G3 ̸= GL2(Z3). We have (G ∩ SL2(Ẑ))3 ⊆ G3 ∩ SL2(Z3) ⊊ SL2(Z3) since G3 has

full determinant. This shows that G ∩ SL2(Ẑ) has level divisible by 3.
Finally suppose that 3 divides N and G3 = GL2(Z3). So there is a surjective homomorphism

ψ : GN/3 → S3 as in (ii). We thus have

(G ∩ SL2(Ẑ))N = GN ∩ SL2(ZN ) ⊆ {(a, b) ∈ SL2(Z3)× (GN/3 ∩ SL2(ZN/3)) : φ3(a) = ψ(b)}.

Since φ3(SL2(Z3)) = A3, we deduce that GN ∩ SL2(ZN ) is a proper subgroup of SL2(ZN ) whose

level is divisible by 3. Therefore, 3 divides the level of G ∩ SL2(Ẑ). □

Proof of Proposition 8.1. We have already shown that the group G defined by (8.1) contains G and

has the same commutator subgroup. We have already observed that G is open in GL2(Ẑ), contains
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the scalars Ẑ× · I and satisfies det(G) = Ẑ×. Lemma 8.3(iii) says that the levels of G and [G,G]
have the same odd prime divisors. Therefore, G is agreeable.

Now take any agreeable group H ⊆ GL2(Ẑ) that satisfies G ⊆ H. We have [G,G] ⊆ [H,H], so
the primes that divide the level of [H,H] must also divide N . Since N is even and H is agreeable,
the primes dividing the level of H all divide N . Therefore, H = HN ×

∏
ℓ∤N GL2(Zℓ). Since G and

Ẑ× · I are subgroups of H, we have Z×
N · GN ⊆ HN . Therefore, G ⊆ H from our definition of G.

This proves that G is the minimal agreeable group, with respect to inclusion, that contains G. □

8.4. Maximal agreeable subgroups. Fix an agreeable subgroup G of GL2(Ẑ). Amongst the
proper agreeable subgroups G of G that satisfy Gℓ = Gℓ for all primes ℓ, we define M(G) to be the
set of those that are maximal with respect to inclusion. The set M(G) is finite by Lemma 8.2.

In this section, we give information about the groups in M(G) and explain how they can be
computed. The results are straightforward but a little tedious due to the annoying nature of the
primes 2 and 3. Let φ3 : GL2(Z3) → S3 be the surjective homomorphism from §7.5.

Lemma 8.4. Take any group G ∈ M(G). Let M and N be the product of the primes that divide
the level of G and G, respectively.

(i) The integers M and N have the same prime divisors ℓ ≥ 5 and M is divisible by N . In
particular, we have M ∈ {N, 2N, 3N, 6N}.

(ii) Suppose M = 2N . Then there are surjective homomorphisms α : GL2(Z2) → {±1} and
β : GN → {±1} such that

GM = {(a, b) ∈ GL2(Z2)× GN : α(a) = β(b)}.
The level of G is 2, 4 or 8 times the level of G.

(iii) Suppose M = 3N . Then there is a surjective homomorphism ψ : GN → S3 such that

GM = {(a, b) ∈ GL2(Z3)× GN : φ3(a) = ψ(b)}.
The level of G is 3 times the level of G.

(iv) Suppose M = 6N . Then there is a surjective homomorphism ψ : GL2(Z2) → S3 such that

GM = {(a, b) ∈ GL2(Z2)×GL2(Z3) : ψ(a) = φ3(b)} × GN .

The level of G is 6 times the level of G.

Proof. Since Gℓ = Gℓ for all primes ℓ, Lemma 7.12 implies that the levels of G ∩ SL2(Ẑ) and

G ∩ SL2(Ẑ) have the same prime divisors ℓ ≥ 5. Since G and G are both agreeable, we deduce that
the levels of G and G have the same prime divisors ℓ ≥ 5. The inclusion G ⊆ G implies that N |M .
We have M ∈ {N, 2N, 3N, 6N} since M and N are squarefree. This proves (i).

Now suppose that M = 2N and hence N is odd.
We claim that GN = GN . Define W := GN ×

∏
ℓ∤N GL2(Zℓ). We have inclusions G ⊆ W ⊆ G

since G ⊆ G and N |M . The group W is open in GL2(Ẑ) and satisfies det(W ) = Ẑ× and Ẑ× ·I ⊆W

since G has these properties as well. Intersecting with SL2(Ẑ), we obtain inclusions G ∩ SL2(Ẑ) ⊆
W ∩ SL2(Ẑ) ⊆ G ∩ SL2(Ẑ). Since G and G are agreeable group whose levels have the same odd
primes divisors, these inclusions imply that W is also agreeable. For each prime ℓ, we have Gℓ = Gℓ

since G ∈ M(G) and henceWℓ = Gℓ. Since G ⊆W ⊆ G and G ∈ M(G), we haveW = G orW = G.
We have W = G since 2 divides the level of G but not the level of W . Therefore, GN =WN = GN

as claimed.
We have GN = GN and G2 = G2 = GL2(Z2), where the last equality uses that 2 ∤ N . So we can

identify GM with a proper subgroup of GL2(Z2) × GN so that the projection maps G → GL2(Z2)
and G→ GN are surjective. Let B be the subgroup of GL2(Z2) for which B × {I} is the kernel of
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G→ GN . The group B is open and normal in GL2(Z2). By Goursat’s lemma, there is a surjective
homomorphism ψ′ : GN → GL2(Z2)/B such that

GM = {(a, b) ∈ GL2(Z2)× GN : aB = ψ′(b)}.

We have GL2(Z2)/B ̸= 1 since 2 divides the level of G. The maximal abelian quotient of GL2(Z2) is
pro-2 by Lemma 7.7(v), so GL2(Z2)/B has a quotient isomorphic to {±1}. So there are surjective
homomorphisms α : GL2(Z2) → {±1} and β : GN → {±1} such that

GM ⊆ {(a, b) ∈ GL2(Z2)× GN : α(a) = β(b)} =:WM .

Define W :=WM ×
∏

ℓ∤M GL2(Zℓ) ⊆ GL2(Ẑ). We have inclusions G ⊆W ⊊ G, where W ̸= G since

the level of G is not divisible by 2. Since G and G are agreeable and M = 2N , we find that W is
also agreeable. We have G =W since G is in M(G) and hence GM =WM .

From our description of GM , we find that the level of G is equal to the product of the levels
of kerα and kerβ. The level of kerβ is the same as the level of GN , and hence also G, since N
is odd. So to complete the proof of (ii), it suffices to show that kerα has level 2, 4 or 8. We
have Z×

2 · I ⊆ kerα since G is agreeable. Therefore, kerα ⊇ Z×
2 · [GL2(Z2),GL2(Z2)] and this sec-

ond group has level dividing 8 by Lemmas 7.7(v) and 7.6. Since kerα ̸= 1, it must has level 2, 4 or 8.

Now suppose that M is 3N or 6N , and hence 3 ∤ N . Define N0 :=M/3 ∈ {N, 2N}.
We claim that GN0 = GN0 . Define W := GN0 ×

∏
ℓ∤N0

GL2(Zℓ). We have G ⊆ W since N0|M .

The group W is open in GL2(Ẑ) and satisfies det(W ) = Ẑ× and Ẑ× · I ⊆ W since G has these
properties as well. Since G ⊆ G and N |N0, we have inclusions G ⊆ W ⊆ G and hence also

G ∩ SL2(Ẑ) ⊆ W ∩ SL2(Ẑ). Since G and G are agreeable, we deduce that the levels of W and

W ∩ SL2(Ẑ) have the same prime divisors ℓ ≥ 5, i.e., the odd prime that divide N . Since 3 ∤ N0,

the levels of W and W ∩ SL2(Ẑ) are not divisible by 3 and hence they have the same odd prime
divisors. Therefore, W is agreeable. For each prime ℓ, we have Gℓ = Gℓ since G ∈ M(G) and hence
Wℓ = Gℓ. Since G ⊆ W ⊆ G and G ∈ M(G), we have W = G or W = G. We have W = G since 3
divides the level of G but not the level of W . So GN0 =WN0 = GN0 as claimed.

We have G3 = G3 = GL2(Z3) and GN0 = GN0 . So we can identify GM with a proper subgroup of
GL2(Z3)×GN0 so that the projection maps G→ GL2(Z3) and G→ GN0 are surjective. Let B be the
subgroup of GL2(Z3) for which B×{I} is the kernel of G→ GN0 . The group B is open and normal
in GL2(Z3). By Goursat’s lemma, there is a surjective homomorphism ψ′ : GN0 → GL2(Z3)/B such
that

GM = {(a, b) ∈ GL2(Z3)× GN0 : aB = ψ′(b)}.
If B ⊇ SL2(Z3), then 3 does not divide the level of G ∩ SL2(Ẑ). Since 3|M and G is agreeable,

the level of G ∩ SL2(Ẑ) must be divisible by 3. Therefore, B ̸⊇ SL2(Z3). By Lemma 7.13, we have
φ3(B) = 1. Let ψ : GN0 → S3 be the composition of ψ′ with φ3. Using that φ3(B) = 1, we deduce
that

GM ⊆ {(a, b) ∈ GL2(Z3)× GN0 : φ3(a) = ψ(b)} =:WM .

Define the subgroup W := WM ×
∏

ℓ∤M GL2(Zℓ) of GL2(Ẑ). We have inclusions G ⊆ W ⊆ G and

hence also G ∩ SL2(Ẑ) ⊆ W ∩ SL2(Ẑ) ⊆ G ∩ SL2(Ẑ). Since G and G are agreeable and their levels

have the same prime divisors ℓ ≥ 5, the inclusions imply that W and W ∩ SL2(Ẑ) have the same

prime divisors ℓ ≥ 5. Since the levels of W and W ∩SL2(Ẑ) are both divisible by 3, we deduce that
W is agreeable. Since G ⊆ W ⊆ G and G ∈ M(G), we have W = G or W = G. We have W = G
since 3 divides the level of W but not the level of G. So

GM =WM = {(a, b) ∈ GL2(Z3)× GN0 : φ3(a) = ψ(b)}.
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Consider the special case M = 3N , equivalently N0 = N . To prove part (iii), it remains to show
that the level of G is 3 times the level of G. From our description of GM , it suffices to show that
the level of kerψ is equal to the level of GN (and hence also the level of G). Let B be the subgroup
of GN consisting of matrices that are congruent modulo the level of G to the identity matrix. Since
B is a normal subgroup of GN that is the product of p-groups, ψ(B) is a normal subgroup of S3

whose p-Sylow subgroups are all normal. Therefore, ψ(B) = 1 and hence the level of kerψ equals
the level GN .

Finally, we are left with the special case M = 6N ; equivalently, N0 = 2N . Since 2 does not
divide the level of G, we have GN0 = GL2(Z2) × GN . Since ψ is surjective, ψ(GL2(Z2) × {I}) and
ψ({I}×GN )) are normal subgroup of S3 that commute with each other and generate S3; this can
only happen if one of these groups is trivial and the other is S3. From our description of GM , if ψ
is trivial on GL2(Z2)× {I}, then the level of GM (and also G) is not divisible by 2. Since 2|M , we
deduce that ψ is trivial on {I} × GN . So there is a surjective homomorphism ψ : GL2(Z2) → S3

such that

G6 = {(a, b) ∈ GL2(Z3)×GL2(Z2) : φ3(a) = ψ(b)}
and GM = G6 × GN . From this description of GM , the level of G is clearly 6 times the level of G.
This completes the proof of (iv). □

Lemma 8.4 gives a description of the groups G ∈ M(G) for which the levels of G and G have
different prime divisors (actually it gives a finite number of candidates for G for which one can
check directly if they are agreeable). We now want to say something about the case where the
prime divisors are the same. Let N be the product the primes that divide the level of G.

Take any proper divisor 1 < d1 ≤
√
N of N . Set d2 = N/d1; it is relatively prime to d1 and

d1 < d2. We may identify GN with a subgroup of Gd1 × Gd2 . The kernel of the projection maps
GN → Gd2 and GN → Gd1 are of the form B1 × {I} and {I} ×B2, respectively.

Let Cd1 be the set of pairs (C1, C2) with open subgroups C1 ⊊ B1 and C2 ⊊ B2 that satisfy the
following conditions:

• Ci is a normal subgroup of Gdi ,
• Ci is maximal amongst the closed normal subgroup H of Gdi that satisfy H ⊊ Bi,
• Ci contains the scalar matrices Z×

di
· I,

• B1/C1 and B2/C2 are isomorphic abelian groups,
• Gd1/C1 and Gd2/C2 are isomorphic groups.

For a pair (C1, C2) ∈ Cd1 , let A(C1, C2) denote an abelian group isomorphic to B1/C1 and B2/C2.

Lemma 8.5. Take any group G in M(G) and suppose that N and the level of G have the same

prime divisors. Then there is a proper divisor 1 < d1 ≤
√
N of N and a pair (C1, C2) ∈ Cd1 such

that

C1 × C2 ⊆ GN ⊊ GN

and [G : G] = |A(C1, C2)|.

Proof. We have G = GN ×
∏

ℓ∤N GL2(Zℓ) and G = GN ×
∏

ℓ∤N GL2(Zℓ) by our assumption on the

level of G. Therefore, GN ⊊ GN since G ⊊ G . In particular, [G : G] = [GN : GN ].
Let n ≥ 1 be the smallest divisor of N for which Gn ⊊ Gn. The integer n is composite since

Gℓ = Gℓ for all primes ℓ|N . Choose a proper divisor 1 < d1 ≤
√
n of n and set d2 = N/d1. By

the minimality of n, we have Gd1 = Gd1 and Gn/d1 = Gn/d1 . Let G′ be the inverse image of Gn

under the projection map G → Gn. For any prime ℓ, we have Gℓ ⊆ G′
ℓ ⊆ Gℓ and hence G′

ℓ = Gℓ.
We have G ⊆ G′ ⊊ G and hence the level of G′ has the same prime divisors as N . Since G and G
are agreeable, the inclusions G ∩ SL2(Ẑ) ⊆ G′ ∩ SL2(Ẑ) ⊆ G ∩ SL2(Ẑ) imply that the odd primes
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dividing the level of G′ ∩ SL2(Ẑ) are the same as those that divide N . Therefore, G′ is agreeable.
We must have G′ = G since G ∈ M(G). Therefore, Gd1 = Gd1 and Gd2 = Gd2 where N = d1d2 with

1 < d1 ≤
√
n ≤

√
N .

We may identify GN and GN with subgroups of Gd1 × Gd2 . The kernel of the projection maps
GN → Gd2 = Gd2 and GN → Gd1 = Gd1 are of the form C1 ×{I} and {I}×C2, respectively, where
Ci is a normal subgroup of Gdi . By Goursat’s lemma, the image of the natural homomorphism

GN/(C1 × C2) ↪→ (Gd1 × Gd2)/(C1 × C2) = Gd1/C1 × Gd2/C2

is the graph of an isomorphism f : Gd1/C1
∼−→ Gd2/C2.

The kernel of the projection maps GN → Gd2 and GN → Gd1 are of the form B1 × {I} and
{I} × B2, respectively, where Bi is a normal subgroup of Gdi . By Goursat’s lemma, the image of
the natural homomorphism

GN/(B1 ×B2) ↪→ (Gd1 × Gd2)/(B1 ×B2) = Gd1/B1 × Gd2/B2

is the graph of an isomorphism f : Gd1/B1
∼−→ Gd2/B2. Using that GN ⊆ GN , we find that Ci ⊆

Bi and that f induces f , i.e, composing f with the quotient map Gd2/C2 → Gd2/B2 gives a

homomorphism that factors through f . In particular, B1/C1 and B2/C2 are isomorphic.
For a fixed i ∈ {1, 2}, take any normal subgroup Di of Gdi satisfying Ci ⊆ Di ⊆ Bi. Using the

isomorphism f , we may assume that such a group Di exists for each i ∈ {1, 2} and that f induces

an isomorphism D1/C1
∼−→ D2/C2. Then W := {(g1, g2) ∈ Gd1 × Gd2 : f(g1D1) = g2D2} satisfies

GN ⊆ W ⊆ GN and [GN : W ] = [Bi : Di] and [W : GN ] = [Di : Ci]. The subgroup GN of GN is
maximal since G is a maximal agreeable subgroup of G and GN ̸= GN , so Di = Bi or Di = Ci.
Therefore, there are no normal subgroups Di of Gdi that satisfy Ci ⊊ Di ⊊ Bi. By considering the
special case where Di = Ci, we find that [G : G] = [Bi : Ci]. We have Ci ̸= Bi since G ̸= G.

Now suppose that the groups Bi/Ci are nonabelian. The group [Bi, Bi] ·Ci is a normal subgroup
of Gdi that lies between Ci and Bi, so it is either Ci or Bi. Since Bi/Ci is nonabelian by assumption,
we deduce that [Bi, Bi] · Ci = Bi and hence Bi/Ci is a nonabelian perfect group. So there is a
nonabelian simple group S that is isomorphic to the quotient of an open normal subgroup of Gp1

and Gp2 for some prime p1|d1 and p2|d2. Since p1 ̸= p2, Lemma 7.11 implies that SL2(Fp1)/{±I}
and SL2(Fp2)/{±I} are isomorphic which is impossible since they have different cardinalities. So
the groups B1/C1 and B2/C2 are both abelian

We have now verified that (C1, C2) is in Cd1 , GN ⊇ C1 × C2, and [G : G] = [GN : GN ] = [Bi :
Ci] = |A(C1, C2)|. □

8.4.1. Computing M(G). Fix an agreeable subgroup G of GL2(Ẑ). We now explain how to compute
the groups in the set M(G). We assume that G is given explicitly by its level and generators of its
image modulo its level. Let N be the product of the primes that divide the level of G.

Take any proper divisor 1 < d1 ≤
√
N of N and set d2 = N/d1. From G, we can compute the

corresponding subgroups B1 ⊆ Gd1 and B2 ⊆ Gd2 . The group Z×
di

· [Bi, Bi] is open in GL2(Zdi),

normal in Gdi and is computable using §7.3.1 and Lemma 7.6. For any pair (C1, C2) ∈ Cd1 , we have

Z×
di
· [Bi, Bi] ⊆ Ci ⊊ Bi(8.2)

for i ∈ {1, 2} since Bi/Ci is abelian and Ci contains the scalar matrices.
We can compute the finite number of pairs of groups (C1, C2) that satisfy (8.2). The group Ci

contains the scalars Z×
di
. The group Ci is normal in Bi and Bi/Ci is abelian since [Bi, Bi] ⊆ Ci.

For each pair, we can determine whether (C1, C2) lies in Cdi . So we can thus compute the set
Cdi . For each pair (C1, C2) ∈ Cdi , we can compute the groups G satisfying G ⊇ G ⊇ C1 × C2 and
[G : G] = |A(C1, C2)|, and determine which lie in M(G).
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By varying over all proper divisors 1 < d1 ≤
√
N of N , Lemma 8.5 says that the above method

will find all the groups G in M(G) for which the levels of G and G have the same prime divisors.
To compute the G ∈ M(G) for which the levels of G and G have different prime divisors, we can

check the finite number of possible groups G arising from parts (ii), (iii) and (iv) of Lemma 8.4.

9. Constructing agreeable groups

The goal of this section is to prove Theorem 1.9 and to explain how to construct all the relevant
groups and modular curves. Set L := {2, 3, 5, 7, 11, 13, 17, 37}.

9.1. ℓ-adic case. Fix any prime ℓ ∈ L. We want to construct an analogue of the set A in
Theorem 1.9 when we restrict to groups whose level is a power of ℓ. More precisely, we want a

finite set Sℓ of agreeable subgroups that are pairwise non-conjugate in GL2(Ẑ) and satisfy the
following conditions:

• For any group G ∈ Sℓ, the level of G is a power of ℓ.
• Let G be any agreeable group whose level is a power of ℓ and XG(Q) has a non-CM point.

– If XG(Q) is infinite, then G is conjugate in GL2(Ẑ) to some group G ∈ Sℓ.

– If XG(Q) is finite, then G is conjugate in GL2(Ẑ) to a subgroup of some G ∈ Sℓ with
XG(Q) finite.

• If G ∈ Sℓ is a group for which XG(Q) is finite, then XG(Q) is infinite for all agreeable

groups G ⊊ G ⊆ GL2(Ẑ).
• If G ∈ Sℓ is a group for which XG(Q) has genus at most 1, then XG(Q) has a non-CM
point.

In [SZ17], there is a classification of the open subgroups G of GL2(Ẑ) for which the level of

G is a power of ℓ, det(G) = Ẑ×, −I ∈ G, and XG(Q) is infinite. In the recent work of Rouse,
Sutherland and Zureick-Brown [RSZB22], they consider the more general problem of describing the
ℓ-adic images of elliptic curves over Q and they give a complete description up to a few modular
curves of high genus whose rational points they cannot determine.

By combining the results from [SZ17] and [RSZB22], it is easy to produce a finite set Sℓ of

agreeable groups that satisfy the desired properties. Note that our groups need to be open in GL2(Ẑ)
with ℓ-power level, have full determinant, and contain the scalars Ẑ×; the agreeable property is
then immediate.

For the groups G ∈ Sℓ of genus at most 1, we computed a model for XG and the morphism
πG : XG → P1

Q to the j-line using the methods outlined in §5.4. For these groups G and a rational

number j ∈ Q, it is a direct computation to check whether j = πG(P ) for some P ∈ XG (it will
reduce to finding roots of polynomials in Q[x]).

Now consider a group G ∈ Sℓ with XG having genus at least 2. In the cases where XG(Q) is
known in [RSZB22], they have computed the finite number of j-invariants of the non-CM points
(if there are no non-CM points, then G can be removed from the set A ). In the few cases, where
XG(Q) is not known, we can follow the method of §11 in [RSZB22] to use Frobenius matrices to
rule out rational points lying above any particular j-invariant j ∈ Q of a non-CM elliptic curve (or
in an incredibly unlikely case, you will find an unexpected rational point on their modular curves).

9.2. Constructions of A . For each prime ℓ ∈ L, let Sℓ be a set of agreeable groups as in §9.1.
Let S be the (finite) set of subgroups of GL2(Ẑ) that are of the form

⋂
ℓ∈LHℓ with Hℓ ∈ Sℓ.

Every group G ∈ S is of the form
∏

ℓGℓ where Gℓ is an open subgroup of GL2(Zℓ) that satisfies
det(Gℓ) = Z×

ℓ and Z×
ℓ · I ⊆ Gℓ for all ℓ, and Gℓ = GL2(Zℓ) for ℓ /∈ L. So each group G ∈ S is

agreeable and its level is not divisible by any prime ℓ /∈ L.
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The groups in S are pairwise non-conjugate in GL2(Ẑ). We define a partial ordering on the set

S by saying that G ⪯ G if G is conjugate in GL2(Ẑ) to a subgroup of G. We now construct a
subset B ⊆ S by applying the following algorithm.

• Set B := ∅ and S := S .
• Choose a maximal element G of S with respect to ⪯ and remove it from the set S.

When XG has genus at most 1, we can determine whether the set XG(Q) is infinite
and whether it has a non-CM point. As in §5.4, we can compute an explicit model of XG

and compute its rational points. When XG has a rational point, we can also compute the
morphism πG down to the j-line and then determine if XG(Q) has a non-CM point.

When XG has genus at least 2, then XG(Q) is finite by Faltings.
• If XG has genus at least 2 or XG(Q) has a non-CM point, then adjoin G to the set B.
• If XG(Q) is finite, then remove from S all the elements G for which G ⪯ G.
• If S is nonempty, we go back to the second step where we chose another maximal element
of S.

The above process eventually halts since S is finite and when it ends we will have our desired
set B.

Lemma 9.1. Let G be an agreeable subgroup of GL2(Ẑ) such that XG(Q) has a non-CM point.
Assume further that G =

∏
ℓGℓ, where Gℓ is an open subgroup of GL2(Zℓ) satisfying Gℓ = GL2(Zℓ)

for all primes ℓ /∈ L.
(i) If XG(Q) is infinite, then G is conjugate in GL2(Ẑ) to some group G ∈ B.

(ii) If XG(Q) is finite, then G is conjugate in GL2(Ẑ) to a subgroup of some G ∈ B with XG(Q)
finite.

Proof. For each ℓ ∈ L, define Hℓ := Gℓ ×
∏

p ̸=ℓGL2(Zp). The group Hℓ is agreeable and XHℓ
(Q)

has a non-CM point since G ⊆ Hℓ and XG(Q) has a non-CM point.
First suppose that XHℓ

(Q) is finite for some ℓ ∈ L and hence XG(Q) is finite. By the properties
of Sℓ, there is a group G ∈ Sℓ such that Hℓ is conjugate to a subgroup of G, XG(Q) is finite,

and XG′(Q) is infinite for all G ⊊ G′ ⊆ GL2(Ẑ). We have G ∈ S . Since XG′(Q) is infinite for

all G ⊊ G′ ⊆ GL2(Ẑ), we find that G is in the set B. Therefore, G is conjugate to a subgroup of
G ∈ B and XG(Q) is finite.

For the rest of the proof, we may assume that XHℓ
(Q) is infinite for all ℓ ∈ L. After replacing

G by a conjugate in GL2(Ẑ), we may assume by the properties of the sets Sℓ that Hℓ ∈ Sℓ for all
ℓ ∈ L. Therefore, G = ∩ℓ∈LHℓ is an element of S .

Suppose XG(Q) is infinite and hence XG(Q) is infinite for all groups G ∈ S with G ⪯ G. From
our construction of B and G ∈ S , we deduce that G is an element of B. This completes the proof
of part (i).

Finally suppose that XG(Q) is finite. Let G ∈ S be a group that is maximal, with respect to
⪯, amongst the groups for which XG(Q) is finite and G ⪯ G (such a group exists since G ∈ S
and XG(Q) is finite). For every group G′ ∈ S with G ⪯ G′ and G ̸= G′, XG′(Q) is infinite by
the maximality of G. From our construction of B, we deduce that G is an element of B. This
completes the proof of part (ii). □

Take any group H ∈ B; it is agreeable and satisfies H =
∏

ℓHℓ. From H, we now construct a
finite set AH of agreeable groups by applying the following algorithm.

• Set AH := {H} and S := {H}.
• Choose a group G in S with minimal index [GL2(Ẑ) : G] and remove it from the set S.
• We compute the set M(G), with notation as in §8.4, using the method outlined in §8.4.1.
• We now let G ⊆ GL2(Ẑ) vary over the elements of M(G).
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If XG has genus at least 2 and G is not conjugate in GL2(Ẑ) to a group in AH , then we
adjoin G to the set AH .

Now suppose that XG has genus at most 1 and G is not conjugate in GL2(Ẑ) to a group
in AH . As in §5.4, we can compute an explicit model of XG and compute its rational points.
When XG has a rational point, we can also compute the morphism from XG to XH and
then down to the j-line. We can then determine if XG(Q) has a non-CM point. If XG(Q)
has infinitely many points, then we adjoin G to the sets AH and S. If XG(Q) has finitely
many points and a non-CM point, then we adjoin G to the set AH .

• If S is nonempty, we go back to the second step where we chose another group G in S.
For each G ∈ AH , we will have Gℓ = Hℓ for all primes ℓ. The above process halts by Lemma 8.2.
Finally, define the (finite) set

A :=
⋃

H∈B

AH

of agreeable subgroups of GL2(Ẑ). From our descriptions of the sets B and AH , we have explained
how the set A is computable.

For any group G ∈ A , the level of G is divisible only by primes in L. For each G ∈ A with XG
having genus at most 1, XG(Q) has a non-CM point by construction; moreover, we will have found
a model of XG and the morphism from XG to the j-line.

Lemma 9.2. Take any agreeable group G for which XG(Q) has a non-CM point. Assume that the
level of G is not divisible by any prime ℓ /∈ L.

(i) If XG(Q) is infinite, then G is conjugate in GL2(Ẑ) to a group G ∈ A .

(ii) If XG(Q) is finite, then G is conjugate in GL2(Ẑ) to a subgroup of some group G ∈ A with
XG(Q) finite.

Proof. Define H :=
∏

ℓGℓ, where Gℓ ⊆ GL2(Zℓ) is the ℓ-adic projection of G; it is an agreeable
group whose level is only divisible by primes in L. Since G ⊆ H, we deduce that XH(Q) has a
non-CM point.

Suppose that XH(Q) is finite. By Lemma 9.1(ii), H is conjugate to a subgroup of some group
G ∈ B with XG(Q) finite. In particular, XG(Q) is finite and G is conjugate to a subgroup of G.
Part (ii) in this case follows since G ∈ B and hence G ∈ AG ⊆ A .

We may now assume that XH(Q) is infinite. After first replacing G by a conjugate in GL2(Ẑ), we
may assume by Lemma 9.1(i) that H ∈ B. Let G ∈ AH be a group with maximal index in GL2(Ẑ)
for which G is conjugate in GL2(Ẑ) to a subgroup of G (it exists since G ⊆ H and H ∈ AH). If G

is conjugate to G in GL2(Ẑ), then the lemma is immediate since G ∈ AH ⊆ A . If XG(Q) is finite,
and hence XG(Q) is finite as well, then the lemma also holds.

Finally, after replacing G by a conjugate in GL2(Ẑ), we are left to consider the case where G
is a proper subgroup of G and XG(Q) is infinite. Choose an agreeable group M that is maximal
amongst those that satisfy G ⊆ M ⊊ G. Since G ∈ AH , we have Gℓ = Gℓ and hence Mℓ = Gℓ

for all primes ℓ, where Gℓ and Mℓ are the ℓ-adic projections of G and M , respectively. Since M is
a maximal agreeable subgroup of G, we have M ∈ M(G). Since G ∈ AH and XG(Q) is infinite,
we have M ∈ AH ⊆ A . Since G ⊆ M ⊊ G, this contradicts the maximality in our choice of G.
Therefore, this final case does not occur. □

9.3. Proof of Theorem 1.9. Let A be the finite set of agreeable groups constructed in §9.2.
By construction, our set A satisfies (a). The set A satisfies (b) by Lemma 9.2. The set A

satisfies (d) and (e) since in our construction we computed a model of any modular curve of genus
at most 1 that occurred and ignored those with no non-CM points.
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For each group G ∈ A for which XG has genus at least 2, we can check whether there is a group

G ∈ A that is conjugate in GL2(Ẑ) to a proper subgroup of G. If any such group G exists, we
can remove it from the set A . Since condition (b) holds, our possibly smaller set A will satisfy
condition (c).

The set A we constructed may contain distinct subgroups of GL2(Ẑ) that are conjugate. To

obtain our final set, we replace A by a maximal subset of groups that are non-conjugate in GL2(Ẑ).
This does not affect the validity of conditions (a)–(e).

It remains to explain how to implement (f). Take any group G ∈ A . If XG has genus at most 1,
then from (e) we have an explicit model of XG and we have computed the map to the j-line. So
(f) can be done directly when XG has genus at most 1. We may now assume that XG has genus at
least 2.

As mentioned in §9.1, [RSZB22] explains how to check whether a given j ∈ Q − {0, 1728} is in

πG(XG(Q)) for an open subgroup G of GL2(Ẑ) with det(G) = Ẑ× and prime power level. So we
may further assume that the level of G is not a prime power.

For each prime ℓ, let Gℓ be the ℓ-adic projection of G. DefineH :=
∏

ℓ Gℓ ⊆ GL2(Ẑ); it is agreeable
and G ⊆ H. Suppose that G = H, i.e., G has no “entanglements”. Take any j ∈ Q − {0, 1728}.
Using Proposition 6.4 and G = H, we have j ∈ πG(XG(Q)) if and only if j ∈ πG′(XG′(Q)) with
G′ := Gℓ ×

∏
p̸=ℓGL2(Zp) for all ℓ dividing the level of G. So in this case, (f) reduces to the prime

power case covered in [RSZB22].
We are left to consider the case where also G is a proper subgroup of H =

∏
ℓ Gℓ. Choose an

agreeable group G ⊊ G ⊆ H with [G : G] minimal. Since XG has genus at least 2, and hence XG(Q)

is finite by Faltings, (c) implies that XG(Q) is infinite. By (b), G is conjugate in GL2(Ẑ) to a group
in A . After replacing G with a conjugate, we may assume without loss of generality that G ∈ A .

We are now in the setting of §5.5. So we can compute a singular model of XG and, with respect
to this model, we have the natural morphism π : XG → XG. Now take any j ∈ Q− {0, 1728}. By
(e), we have a model of XG and can compute the morphism πG : XG → P1

Q. So we can compute

the finite set of Q ∈ XG(Q) with πG(Q) = j. For each such Q, we can then compute if there are
any P ∈ XG(Q) with π(P ) = Q. This gives (f) since πG ◦ π = πG . (To deal with any singularities
we can either resolve them or compute another model of the curve with different choices.)

Remark 9.3. In practice, one wants to conjugate the groups in A so that for each G ∈ A −{GL2(Ẑ)},
there is another group G ∈ A with G ⊊ G and [G : G] as small as possible. We have πG = πG ◦ π,
where π : XG → XG is the natural morphism of degree [G : G]. Repeating, we can hope to express
πG as the composition of morphisms of relatively small degree. Having such an expression makes
it easier to compute the set of P ∈ XG(Q) with πG(P ) equal to a fixed j ∈ Q− {0, 1728}.

10. Finding the agreeable closure of the image of Galois

Fix a non-CM elliptic curve E defined over Q. We have defined a representation

ρ∗E : GalQ → GL2(Ẑ).

From Serre (Theorem 1.1), we know that the image GE of ρ∗E is an open subgroup of GL2(Ẑ). We

have det(GE) = Ẑ×. By Proposition 8.1, there is a minimal agreeable subgroup GE of GL2(Ẑ) for
which GE ⊆ GE , i.e., the agreeable closure of GE . The group GE , and hence also GE , is uniquely

determined up to conjugacy in GL2(Ẑ). In this section, we describe how to compute the group GE .
The hardest steps have already been completed by the proof of Theorem 1.9 in §9. Let A be

a finite set of agreeable subgroups of GL2(Ẑ) as in Theorem 1.9. Note that the set A can be
computed once and does not depend on the curve E/Q.
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For our algorithm, we want as input an elliptic curve E/Q given by a Weierstrass model with
output the level N of GE along with a set of generators of the image of GE modulo N . This
algorithm has been implemented [Zyw23] assuming that Conjecture 1.2 holds for E and that E
does not give rise to unknown rational points on a few explicit high genus modular curves (these
conditions are verified during the algorithm). For any remaining cases, which involve only a finite
number of j-invariants or a counterexample to Conjecture 1.2, we can compute the group GE using
ad hoc techniques like those in §10.2.

Once we know GE , we can compute the commutator subgroup [GE ,GE ], cf. §7.3.1, which is an

open subgroup of SL2(Ẑ). By Proposition 8.1 and Lemma 2.1, we have GE ∩ SL2(Ẑ) = [GE ,GE ]
and

[GL2(Ẑ) : GE ] = [SL2(Ẑ) : [GE ,GE ]].

In particular, we have an algorithm to compute the group GE∩SL2(Ẑ), up to conjugacy in GL2(Ẑ),
and to compute the index [GL2(Ẑ) : GE ] = [GL2(Ẑ) : ρE(GalQ)] occurring in Serre’s open image
theorem.

Lemma 10.1. Let E/Q be a non-CM elliptic curve over Q for which Conjecture 1.2 holds. Then

the level of GE in GL2(Ẑ) is not divisible by any prime ℓ /∈ L := {2, 3, 5, 7, 11, 13, 17, 37}.

Proof. By hypothesis on E/Q, we have ρE,ℓ(GalQ) = GL2(Z/ℓZ) for all primes ℓ /∈ L. By
Lemma 7.9, we have ρE,ℓ∞(GalQ) = GL2(Zℓ) for all primes ℓ /∈ L. So for each prime ℓ /∈ L,
we have GL2(Zℓ) = (GE)ℓ ⊆ (GE)ℓ and hence (GE)ℓ = GL2(Zℓ), where (GE)ℓ and (GE)ℓ are the
ℓ-adic projections of GE and GE , respectively. Since GE is agreeable, its level is not divisible by
any prime ℓ /∈ L by Lemma 7.12. □

10.1. Finding the agreeable closure in most cases. Throughout §10.1, we assume that jE /∈
πG(XG(Q)) for all groups G ∈ A for which XG is finite. This can be verified for the given jE
using Theorem 1.9(f). This excludes a finite number of j-invariants from consideration that we will
describe how to deal with in §10.2.

We can apply the algorithm in [Zyw22] to compute the finite set of primes ℓ > 13 for which
ρE,ℓ(GalQ) ̸= GL2(Z/ℓZ). For the rest of §10.1, we shall further assume that Conjecture 1.2 holds
for E, i.e., ρE,ℓ(GalQ) = GL2(Z/ℓZ) for all primes ℓ > 13 with

(ℓ, jE) ∈
{
(17,−172 ·1013/2), (17,−17·3733/217), (37,−7·113), (37,−7·1373 ·20833)

}
.

Any potential counterexample to Conjecture 1.2 can be dealt with using the methods from §10.2.

By Lemma 10.1, the level of GE is not divisible by any primes ℓ /∈ L := {2, 3, 5, 7, 11, 13, 17, 37}.
Since GE ⊆ GE , we know that XGE

has a rational non-CM point; in particular, there is a P ∈
XGE

(Q) such that πGE
(P ) = jE .

If XGE
(Q) is finite, then GE is conjugate in GL2(Ẑ) to a subgroup of some G ∈ A for which

XG(Q) is finite by Theorem 1.9(b). Therefore, XGE
(Q) is infinite by our assumption on E. By

Theorem 1.9(b), GE is conjugate in GL2(Ẑ) to a unique group G ∈ A . Since GE is the agreeable

closure of GE , we can characterize G as the group in A with maximal index in GL2(Ẑ) for which
jE ∈ πG(XG(Q)). So by making use of Theorem 1.9(f), we can find G which gives the group GE up

to conjugacy in GL2(Ẑ).

10.2. Finding the agreeable closure in exceptional cases. Now suppose that jE ∈ πG(XG(Q))
for some group G ∈ A with XG(Q) finite. There are only finitely many j-invariants jE that can
arise in this way but they are difficult to determine since finding rational points on high genus
curves can be very challenging. In §10.2, we shall make use of the notation from §8.1.
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However, we can compute the agreeable closure GE for any such E/Q that arises. The group GE ,

up to conjugacy in GL2(Ẑ), depends only on jE . So far, we have found 81 exceptional j-invariants
that needed to be considered specially. Any others that may arise can be dealt with in a similar
manner. For simplicity, let us assume that Conjecture 1.2 holds for E/Q; we can handle any coun-
terexamples that occur by similar techniques.

By assumption, there is an agreeable group G ∈ A such that jE ∈ πG(XG(Q)) and XG has only
finite many rational points. After conjugating ρ∗E , we may assume that GE ⊆ G.

We claim that we can compute the ℓ-adic projection (GE)ℓ, up to conjugacy in GL2(Zℓ), for
all primes ℓ. Using the explicit definition (8.1) of the agreeable closure, this is equivalent to
computing Z×

ℓ · ρ∗E,ℓ∞(GalQ) for all primes ℓ. When ρE,ℓ(GalQ) = GL2(Z/ℓZ) and ℓ ≥ 5, we have

ρ∗E,ℓ∞(GalQ) = GL2(Zℓ) by Lemma 7.9, and hence (GE)ℓ = GL2(Zℓ). For the finite number of ℓ

with ℓ ≤ 3 or ρE,ℓ(GalQ) ̸= GL2(Z/ℓZ), we can compute ρE,ℓ∞(GalQ), and hence also (GE)ℓ, by
using the results from [RSZB22].

Using GE ⊆ G, we can then check whether or not (GE)ℓ = Gℓ for all primes ℓ. Suppose that
(GE)ℓ ⊊ Gℓ for some prime ℓ. This will produce an explicit proper agreeable group G′ ⊊ G for which
jE ∈ πG′(XG′(Q)). We can replace G by G′ and then repeat the above process. We will eventually

end up with an explicit agreeable subgroup G of GL2(Ẑ) with XG(Q) finite, jE ∈ πG(XG(Q)), and
Gℓ and (GE)ℓ conjugate in GL2(Zℓ) for all primes ℓ.

As in §8.4, we can define M(G) to be the set of maximal proper agreeable subgroups G of G that
satisfy Gℓ = Gℓ for all primes ℓ. The set M(G) is finite and computable, cf. 8.4.1.

Take any of the groups G ∈ M(G) up to conjugacy in GL2(Ẑ). We want to know whether or
not jE ∈ πG(XG(Q)). The direct approach is to check after first computing a model for the curve
XG and the morphism πG to the j-line; this is doable using the techniques from §5. However,
these computations seem excessive to deal with a single j-invariant jE . We now explain our ad
hoc computations with traces of Frobenius, which can be found in [Zyw23], that allows to verify if
jE ∈ πG(XG(Q)) holds without computing any further modular curves.

Let N be the level of G and let M be the product of N with the bad primes of E/Q. Take
any prime p ∤ M and let ap(E) be the trace of Frobenius of the reduction of E mod p, i.e.,
ap(E) = p + 1 − |E(Fp)|, where we are using a model of E with good reduction at p. The rep-
resentation ρ∗E,N has good reduction at p and ρ∗E,N (Frobp)

−1 ∈ ρ∗E,N (GalQ) ⊆ GL2(Z/NZ) has

trace ap(E) and determinant p modulo N . Let ξp be the pair (ap(E), p) modulo N . Now suppose
we found a prime p ∤ M such that (tr(g), det(g)) ̸= ξp for all g in the image of G modulo N .
In particular, the group ρ∗E,N (GalQ) contains an element that is not conjugate in GL2(Z/NZ) to

any element of the image of G modulo N . Therefore, ρ∗E(GalQ) is not conjugate in GL2(Ẑ) to a
subgroup of G and thus jE /∈ πG(XG(Q)). So by computing ξp for many primes p ∤M , we hope to
be able to prove that jE /∈ πG(XG(Q)).

Now suppose that after computing ξp for many primes p ∤ M , we are unable to conclude that
jE /∈ πG(XG(Q)). In all the exceptional cases we considered, we then had [G : G] = 2. The group
G is normal in G and we obtain a quadratic character

χ : GalQ
ρ∗E−−→ GE ↪→ G → G/G ∼= {±1}.

For σ ∈ GalQ, χ(σ) depends only on ρ∗E,N (σ) since G has level N . Therefore, χ is unramified at

all primes p ∤M . In particular, there are only finite many possible quadratic characters that could
arise as χ. Take any prime p ∤M . If (tr(g), det(g)) ̸= ξp for all g in the image of G −G modulo N ,
then χ(Frobp) = 1.
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Suppose that we are able to show that χ(Frobp) = 1 for enough primes p ∤ M , to rule out all
possibilities for the characters χ except χ = 1. Since χ = 1, we deduce that ρ∗E(GalQ) is conjugate

in GL2(Ẑ) to subgroup G. Therefore, jE ∈ πG(XG(Q)) and we can replace G by G and repeat the
above process.

In the remaining cases, which occurred for three of our j-invariants, we are left with a unique

G ∈ M(G), up to conjugacy in GL2(Ẑ), for which we were not yet able to determine whether or
not jE lies in πG(XG(Q)). In these remaining cases, we found that for some prime p ∈ {3, 5}, we
have G2p = G2 × Gp and G2p ⊊ G2 × Gp = G2p. We computed the division polynomials for E at
2 and p, factored them into irreducible polynomials over Q, and computing the discriminants of
these polynomials. From this information, we found a quadratic extension K/Q with K ⊆ Q(E[2]),

K ⊆ Q(E[p]) and K not equal to Q(
√

(−1)(p−1)/2p). Since G2p = G2×Gp, this proves that G is not
the agreeable closure of ρ∗E(GalQ). Therefore, jE ∈ πG(XG(Q)) and we can replace G by G and
repeat the above process.

In all our cases, the above arguments eventually lead to an explicit minimal agreeable group G
with jE ∈ πG(XG(Q)) and hence we can take GE = G.

11. Abelian quotients

Let G be an open subgroup of GL2(Ẑ) satisfying det(G) = Ẑ× and −I ∈ G. Fix an open subgroup

G of G satisfying det(G) = Ẑ× such that G is a normal subgroup of G with G/G abelian. From the
openness, the abelian group G/G is also finite. Fix an integer N ≥ 3 divisible by the level of G and
let G and G be the images of G and G, respectively, in GL2(Z/NZ). Reduction modulo N induces

an isomorphism G/G ∼−→ G/G that we will use as an identification.

11.1. Setup.

11.1.1. Some representations. With notation as in §6.3, we have a surjective homomorphism

ϱ := ϱ∗EG ,N
: π1(UG , η) → G.

Recall that ϱ depends on a choice of a nonzero modular form f0 in M3(Γ(N),Q(ζN )) and a choice
of β in a field extension of FN that satisfies β2 = j · f20 /E6. When −I /∈ G, we shall further assume
that f0 is chosen to be a nonzero element of M3,G; the existence of such an f0 is a consequence

of Lemma 4.6. By composing ϱ with the quotient map G → G/G = G/G, we obtain a surjective
homomorphism

α : π1(UG , η) → G/G.
Let ϕ : Y → UG be the étale cover corresponding to α. The cover ϕ is Galois with Galois group
G/G. When −I ∈ G, we will have Y = UG and ϕ will be the natural morphism.

Now consider the representation ρ∗E,N : GalQ(j) → GL2(Z/NZ) as in §6.2. By Lemma 6.3,

ρ∗E,N is surjective and factors through an isomorphism Gal(FN (β)/Q(j))
∼−→ GL2(Z/NZ). We

let GL2(Z/NZ) act on the right of FN (β) via f ∗ ρ∗E ,N (σ)−1 := σ(f) for all f ∈ FN (β). By

Lemma 6.3(iii), this extends our earlier right action of GL2(Z/NZ) on FN . Since β /∈ FN , we have

β ∗ (−I) = −β by Lemma 6.3(vi). Define the subfield L := FN (β)G of FN (β). The representations

ρ∗E,N induces an isomorphism Gal(L/Q(XG))
∼−→ G/G = G/G.

Moreover, the representation ϱ in §6.3 is constructed so that the specialization at the generic
point of UG gives the representation GalQ(XG) → G ⊆ G ⊆ GL2(Z/NZ) that is the restriction of
the representation ρ∗E,N . We can thus identify L with the function field of Y and the field extension

55



L/Q(XG) corresponds to the morphism ϕ : Y → UG . Note that the curve Y is geometrically

irreducible since Q is algebraically closed in L by Lemma 6.3(ii) and our assumption det(G) = Ẑ×.

11.1.2. Specializations. Take any point u ∈ UG(Q). Specializing ϱ at u gives a homomorphism

ϱu : GalQ → G. The representations GalQ
ϱu−→ G ⊆ GL2(Z/NZ) and ρ∗(EG)u,N

: GalQ → GL2(Z/NZ)
are isomorphic, where (EG)u is the elliptic curve over Q defined by the Weierstrass equation y2 =
x3 − 27j(j − 1728) · x+ 54j(j − 1728)2 with j := πG(u). Let

αu : GalQ → G/G

be the homomorphism that is the specialization of α at u. Equivalently, αu is the composition of ϱu
with the quotient map G → G/G = G/G. Since G/G is abelian, αu is uniquely determined (while
the specialization ϱu is only uniquely determined up to conjugation by an element in G).

Let ϕ−1(u) ⊆ Y be the fiber of ϕ over u. The action of G/G on the Q-points of ϕ−1(u) is simply
transitive since ϕ is étale. The group GalQ acts on the Q-points of ϕ−1(u) since ϕ and u are defined

over Q. These actions of G/G and GalQ commute. For a fixed y0 ∈ Y (Q) with ϕ(y0) = u, we have

σ(y0) = αu(σ) · y0(11.1)

for all σ ∈ GalQ; note that this does not depend on the choice of y0 since G/G is abelian and it
commutes with the Galois action. In particular, the expression (11.1) determines αu(σ).

11.2. Defining αE using modular curves. Consider a non-CM elliptic curve E/Q for which

GE = ρ∗E(GalQ) is conjugate in GL2(Ẑ) to a subgroup of G. By Proposition 3.5, there is a point
u ∈ UG(Q) such that πG(u) = jE .

Since any two non-CM elliptic curves with the same j-invariant are quadratic twists of each other,
there is a unique squarefree integer d such that E/Q is isomorphic to the quadratic twist of E′ :=
(EG)u by d, where (EG)u is the elliptic curve over Q defined as in §11.1.2. Let χd : GalQ → {±1}
be the homomorphism that factors through Gal(Q(

√
d)/Q) ↪→ {±1}. Define the homomorphism

αE : GalQ → G/G

by αE = χd · αu with αu as in §11.1.2. The following lemma shows that this definition of αE is
consistent with our earlier definition in §1.5.

Lemma 11.1. After replacing ρ∗E by an isomorphic representation, we will have ρ∗E(GalQ) ⊆ G
and the composition of ρ∗E : GalQ → G with the quotient map G → G/G is αE.

Proof. Since E is a quadratic twist of E′ by d, we can choose bases so that ρ∗E′,N = ϱu and

ρ∗E = χd · ρ∗E′ . In particular, ρ∗E,N (GalQ) ⊆ ±ϱu(GalQ) ⊆ G and hence ρ∗E(GalQ) ⊆ G since the

level of G divides N . Take any σ ∈ GalQ. We have ρ∗E,N (σ) · G = χd(σ) · ϱu(σ) · G and hence

ρ∗E(σ) ·G = χd(σ) · αu(σ) = αE(σ). □

Lemma 11.2. The homomorphism αE is unramified at all primes p ∤ N for which E has good
reduction.

Proof. Using our isomorphism G/G = G/G, we could also view αE as the composition of ρ∗E,N with

the quotient map G → G/G = G/G. The lemma is immediate since ρ∗E,N is unramified at all primes

p ∤ N for which E has good reduction. □

Take any prime p ∤ 2Nd for which E has good reduction. The character χd is unramified at p
and χd(Frobp) = 1 if and only if d is a square modulo p. By Lemma 11.2, we deduce that αu is
unramified at p and that αE(Frobp) = χd(Frobp) · αu(Frobp).
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In §11.3.1, we will describe how to compute αu(Frobp) ∈ G/G for all sufficiently large primes p
under the additional assumptions that G/G is cyclic of prime power order, XG(Q) is infinite, and
u lies outside some explicit finite subset of XG(Q).

11.3. The function field L in a special case. We shall now assume further that G/G is a cyclic
group of prime power order pe0 > 1. In this section, we will describe a set of generators of the
extension L of Q(XG) with a simple and explicit action of G/G on them.

Fix a matrix g0 ∈ G ∩ SL2(Z/NZ) so that g0G generates the cyclic group G/G = G/G. For an
integer k ≥ 2, Mk,G has a right action by the group G/G. We can compute a basis of Mk,G using
the methods of §4.6 and we can compute the action of g0 with respect to this basis by using §4.9.
We can choose k ≥ 2 so that the action of G/G on Mk,G is faithful. When −I ∈ G, we further
assume that k is chosen to be even and large enough so that there is a nonzero h ∈Mk,G .

Suppose −I /∈ G. By Lemma 4.6, there is a nonzero f1 ∈M3,G. We claim that G/G acts faithfully

onM3,G. Since G/G is cyclic of order pe0 > 1, it suffices to show that the minimal nontrivial subgroup

of G/G acts faithfully. Since −I /∈ G, this group is (±G)/G and it acts faithfully on M3,G because

this space is nonzero and −I acts as multiplication by −1. So when −I /∈ G, we may always take
k = 3.

Since G/G is cyclic of prime power order, there is a Q-subspace V ⊆ Mk,G for which the right

action of G/G is faithful and irreducible. Moreover, we can find an explicit basis f1, . . . , fm of V
such that

fj ∗ g0 =
m∑
i=1

fi · Ci,j

for all 1 ≤ j ≤ m, where m = ϕ(pe0) = pe−1
0 (p0 − 1) and C ∈ GLm(Q) is the companion matrix of

the cyclotomic polynomial Φpe0
(x). Note that the matrix C has order pe0 in GLm(Q).

LetR be theQ-subalgebra ofQ[x1, . . . , xm] consisting of polynomials F for which F (x1, . . . , xm) =
F ((x1, . . . , xm)C). Take any homogeneous polynomial F ∈ R and denote its degree by d. When
−I /∈ G, a power of C is −I and hence d is even. The modular form F (f1, . . . , fm) has weight dk
and is fixed by G and g0. Therefore, F (f1, . . . , fm) is an element of Mdk,G . Define

cF :=


F (f1, . . . , fm)

hd
if −I ∈ G,

F (f1, . . . , fm) jd/2

E
d/2
6

if −I /∈ G.

Note that cF is in FG
N = Q(XG). The following lemma describes the extension L/Q(XG) in terms

of the cF .

Lemma 11.3. We have L = Q(XG)(y1, . . . , ym), where the yj can be chosen such that:

• yj ∗ g0 =
∑m

i=1 yi · Ci,j for all 1 ≤ m,
• F (y1, . . . , ym) = cF for all homogeneous polynomials F ∈ R.

Proof. First suppose that −I ∈ G. We define yj := fj/h for 1 ≤ j ≤ m. For a homogeneous

F ∈ R of degree d, we have F (y1, . . . , ym) = F (f1, . . . , fm)/hd = cF . Take any σ ∈ GalQ(XG) and

set A := ρ∗E,N (σ)−1 ∈ G. We have σ(yj) = yj ∗ A = (fj ∗ A)/(h ∗ A) = (fj ∗ A)/h, where the last

equality uses our choice of h. We have yj ∈ L since σ(yj) = yj when A ∈ G. Now suppose σ is
chosen such that A = g0. Then yj ∗ g0 = (fj ∗ g0)/h = (

∑m
i=1 fi · Ci,j)/h =

∑m
i=1 yi · Ci,j .
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Now suppose that −I /∈ G and hence k = 3. Define yi := β · fi/f0 for 1 ≤ i ≤ m. Take any
homogeneous F ∈ R of (even) degree d. Since β2 = j · f20 /E6, we have

F (y1, . . . , ym) =

(
β2

f20

)d/2

F (f1, . . . , fm) =

(
j

E6

)d/2

F (f1, . . . , fm) = cF .

Take any σ ∈ GalQ(XG) and set A := ρ∗E,N (σ)−1. By Lemma 6.3(vi), we have σ(β) = f0∗A
f0

β. Since

fj/f0 ∈ FN , we have

σ(yj) = σ(β) · σ( fjf0 ) =
f0∗A
f0

β · ( fjf0 ) ∗A = f0∗A
f0

β · fj∗A
f0∗A = β · fj∗A

f0
.

If A ∈ G, then σ(yj) = β · fj/f0 = yj . Therefore, y1, . . . , ym all lie in L. Now suppose σ is chosen
such that A = g0. Therefore,

yj ∗ g0 = σ(yj) = β · fj∗A
f0

= β
fj∗g0
f0

= β(
m∑
i=1

fi · Ci,j)/f0 =
m∑
i=1

yi · Ci,j .

In both cases, we have proved that Q(XG)(y1, . . . , ym) ⊆ L and that y1, . . . , ym have the desired
properties. In both constructions, we have shown that there is a σ ∈ GalQ(XG) whose action on

⊕m
j=1Qyj ⊆ L is given by the matrix C. Since the order of C ∈ GLm(Q) is equal to |G/G| = [L :

Q(XG)], we deduce that L = Q(XG)(y1, . . . , ym). □

11.3.1. Low genus setting. We now further assume that the curve XG has infinitely many rational
points; in particular, XG has genus at most 1 and a rational point. As outlined in §5.4, we can
compute an explicit model for XG . In particular, the function field Q(XG) will be of the form Q(f)
or Q(x, y) with x and y satisfying a Weierstrass equation of an elliptic curve over Q.

For any given homogeneous polynomial F ∈ R, we can express cF ∈ Q(XG) in terms of the
explicit generators of our function field Q(XG) using the methods from §5.4.2.

We now apply Lemma 11.3 to describe all but finite many fibers of ϕ. Since R is a finitely
generated Q-algebra, there are only finite many u ∈ UG(Q) for which cF has a pole at u for some
homogeneous F ∈ R. For a point u ∈ UG(Q) for which cF never has a pole at u, we let Zu ⊆ Am

Q
be the subscheme defined by the equations

F (x1, . . . , xm) = cF (u)

with F ∈ R homogeneous. The group G/G = G/G acts on Zu(Q) by g0G · (a1, . . . , am) :=
(a1, . . . , am) · C. For all but finitely many u, Zu is a reduced finite Q-scheme of degree |G/G| = pe0
with G/G acting transitively on Zu(Q); for such u, we have an isomorphism ϕ−1(u) ∼= Zu with
compatible G/G-actions.

Choose homogeneous polynomials F1, . . . , Fr ∈ R such that there is a point u ∈ UG(Q) for which
the equations

F1(x1, . . . , xm) = cF1(u), . . . , Fr(x1, . . . , xm) = cFr(u)(11.2)

define Zu as a variety (so it is finite of degree pe0 with a transitive G/G-action on its Q-points).
Recall that we can compute the functions cFj ∈ Q(XG). The equations (11.2) will also define Zu

for u ∈ UG(Q)− S, where S is a finite set that can be computed. So for any point u ∈ UG(Q)− S,
(11.2) gives an explicit model for the fiber ϕ−1(u) with the action of G/G upon it. So from (11.1),
we have

σ(z0) = αu(σ) · z0
for any fixed point z0 ∈ Zu(Q) and σ ∈ GalQ.

Fix a point u ∈ UG(Q) − S. For all primes p ∤ Np0 large enough, we can reduce the equations
(11.2) modulo p to obtain a variety Zu,p ⊆ Am

Fp
with an action of G/G so that the action of
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G/G on Zu,p(Fp) is simply transitive. For such a prime p, αu is unramified at p and we have

(zp1 , . . . , z
p
m) = αu(Frobp) · (z1, . . . , zm) for any (z1, . . . , zm) ∈ Zu,p(Fp). In particular, for any large

enough prime p, we can use this to compute αu(Frobp) ∈ G/G.

Remark 11.4. There are a finite number of excluded points u ∈ S ⊆ UG(Q). By changing variables,
adding more equations of the form Fi(x1, . . . , xm) = cFi(u), or making a different choice of h if
relevant, we can often find a model for the fiber ϕ−1(u) that allows us to compute αu(Frobp) for
any sufficiently large prime p.

For our application to Serre’s open image theorem, we work with a single choice of u ∈ UG(Q)
satisfying πG(u) = j for some fixed j ∈ Q− {0, 1728}. So for our application we can exclude from
consideration any u ∈ S for which there is another point u′ ∈ UG(Q)−S satisfying πG(u) = πG(u

′).

11.4. Precomputations. We now describe some one-time computations that will be required for
our algorithm for computing the image of ρ∗E , up to conjugacy, for any non-CM elliptic curve E/Q.

Consider any of the finite number of groups G ∈ A , with A from Theorem 1.9, that satisfy the
following properties:

(a) XG(Q) is infinite,

(b) if G is conjugate in GL2(Ẑ) to a proper subgroup of some G′ ∈ A , then [G,G] and [G′,G′]

are not conjugate in GL2(Ẑ).
From Theorem 1.9, we will already have computed a model for XG and the morphism πG to the
j-line. In particular, we have a model for UG .

Choose an open subgroup G0 of G satisfying det(G0) = Ẑ× and G0 ∩ SL2(Ẑ) = [G,G]. In our
cases, we choose G0 with minimal level; the levels of the groups G0 and G turn out to have the same
odd prime divisors. Note that G0 is a normal subgroup of G and that G/G0 is finite and abelian.
So we can choose proper normal subgroups G1, . . . , Gs of G containing G0 such that the quotient
maps G → G/Gi induce an isomorphism

G/G0
∼−→ G/G1 × · · · × G/Gs,(11.3)

where the groups G/Gi are all nontrivial and cyclic of prime power order. Moreover, we choose our
groups Gi, with 1 ≤ i ≤ s, so that at most one does not contain −I and so that the levels of the

groups are as small as possible. Since G0 ⊆ Gi ⊆ G, the group Gi is open in GL2(Ẑ), det(Gi) = Ẑ×

and −I ∈ Gi.
With notation as in §11.1 and G := G0, we have a homomorphism

α : π1(UG , η) → G/G0

with specializations αu : GalQ → G/G0 for u ∈ UG(Q). Taking instead G := Gi with 1 ≤ i ≤ s, we
obtain a homomorphism

αi : π1(UG , η) → G/Gi

with specializations αi,u : GalQ → G/Gi. Note that αi can also be obtained by composing α with
the isomorphism (11.3) and then projecting to the factor G/Gi.

Now take any 1 ≤ i ≤ s and consider the setting of §11.3 with G := Gi. With notation
as in §11.3 and §11.3.1, we compute homogeneous polynomials F1, . . . , Fr and rational functions
cF1 , . . . , cFr ∈ Q(XG) such that for all u ∈ UG(Q) away from an explicit finite set Si, the equations
(11.2) define a Q-scheme Zu with a transitive G/G-action on Zu(Q) such that

σ(z) = αi,u(σ) · z

for all z ∈ Zu(Q) and σ ∈ GalQ. As explained in §11.3.1, we can compute αi,u(Frobp) ∈ G/G = G/Gi

for any sufficiently large primes p by considering the reduction modulo p.
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Remark 11.5. For p large enough, the point u modulo p will be enough to determine αi,u(Frobp).
So that we can reuse computations when dealing with many elliptic curves over Q, we have pre-
computed these values for several primes p and Fp-points on a model of UG .

Define S := S1 ∪ · · · ∪ Ss; it is an explicit finite set. Consider any u ∈ UG(Q) − S. For each
1 ≤ i ≤ s, we noted that one can compute αi,u(Frobp) for all sufficiently large primes p. By
making use of the isomorphism (11.3), we can verify that αu is unramified at p and compute
αu(Frobp) ∈ G/G0 for any sufficient large primes.

12. Computing the image of ρE

Take any non-CM elliptic curve E/Q. We now combine the previous sections to explain how to

compute the image of ρE up to conjugacy in GL2(Ẑ). We assume that E is given explicitly as a
Weierstrass model. Let jE ∈ Q be the j-invariant of E.

12.1. Agreeable closure. As outlined in §10, we can compute the agreeable closure GE of GE :=

ρ∗E(GalQ), up to conjugacy in GL2(Ẑ), and determine whether XGE
(Q) is infinite or not. If XGE

(Q)
is infinite, we may choose GE so that it lies in our finite set A from Theorem 1.9.

As noted in §10, from GE we can already compute the index [GL2(Ẑ) : GE ] and the open subgroup

GE ∩ SL2(Ẑ) = [GE ,GE ] of SL2(Ẑ) up to conjugacy in GL2(Ẑ).

12.2. Computing the image of Galois in most cases. Fix a group G ∈ A with XG(Q) infinite

for which GE is conjugate in GL2(Ẑ) to a subgroup of G. If XGE
(Q) is infinite, we shall further

assume that G is chosen so that [GE ,GE ] and [G,G] are conjugate in SL2(Ẑ) (such a group exists in
this case since GE is conjugate to an element of A ). After possibly replacing G by a different group
in A , we may further assume that condition (b) of §11.4 holds; it already satisfies condition (a).

In §11.4, we chose (independent of E) an open subgroup G := G0 of G such that det(G) = Ẑ×

and G ∩ SL2(Ẑ) = [G,G]. In particular, G is a normal subgroup of G with G/G finite and abelian.
Let S ⊆ XG(Q) be finite set from §11.4. We now make the additional assumption on E/Q

that there is a rational point u ∈ UG(Q) − S for which jE = πG(u). For the models from our
computations, this assumption always holds; if not, it could be treated separately as we do in
§12.3. As in §11.4, we have a homomorphism

αu : GalQ → G/G
and for all sufficiently large primes p, we can verify that αu is unramified at p and actually compute
αu(Frobp) ∈ G/G.

Let d be the unique squarefree integer for which E is isomorphic to the quadratic twist of E′ by
d, where E′/Q is the elliptic curve defined by the Weierstrass equation y2 = x3 − 27jE(jE − 1728) ·
x+ 54jE(jE − 1728)2. As in §11.2, we can define a homomorphism

αE : GalQ → G/G, σ 7→ χd(σ) · αu(σ),

where χd : GalQ → {±1} is the character that factors through Gal(Q(
√
d)/Q) ↪→ {±1}. For p ∤ 2d,

χd is unramified at p and χd(Frobp) = 1 if and only if d is a square modulo p. Let M be the
product of those primes that divide N or for which E has bad reduction. The homomorphism
αE is unramified at all p ∤ M by Lemma 11.2. We can thus compute αE(Frobp) ∈ G/G for any
sufficiently large primes p ∤M .

By Lemma 11.1, we may assume that, after possibly replacing ρ∗E by an isomorphic represen-
tation, that ρ∗E(GalQ) ⊆ G and that αE is the composition of ρ∗E with the quotient map G/G.
Let

γE : Ẑ× → G/G
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be the unique homomorphism for which γE(χcyc(σ)
−1) = αE(σ) for all σ ∈ GalQ. Since αE is

unramified at all primes p ∤M , we find that γE factors through a homomorphism

γE : Z×
M/(Z

×
M )e → G/G,

where e is the exponent of the group G/G, and γE(p · (Z×
M )e) = αE(Frobp)

−1 ∈ G/G for all primes
p ∤ M . So we can find γE by computing αE(Frobp) for a finite set of primes p ∤ M that generate
the finite group Z×

M/(Z
×
M )e.

Remark 12.1. We have used the larger group G instead of GE since it leads to fewer cases to consider
in §11.4. There are 454 groups H ∈ A for which XH(Q) is infinite, but only 138 of these groups
H will arise as a group G like above.

Define the explicit subgroup

HE := {g ∈ G : g ·G = γE(det g)}

of GL2(Ẑ). In particular, note that HE is computable, cf. Remark 1.12. The group GE := ρ∗E(GalQ)
is a subgroup of HE since ρ∗E(σ) ·G = αE(σ) = γE(χcyc(σ)

−1) = γE(det(ρ
∗
E(σ))) for all σ ∈ GalQ.

Now consider the case where [GE ,GE ] and [G,G] are conjugate subgroups of SL2(Ẑ); this condition
is automatic when XGE

(Q) is infinite by our choice of G. We have GE ⊆ G so [GE ,GE ] ⊆ [G,G]
and hence [GE ,GE ] = [G,G] since they are conjugate open subgroups of SL2(Ẑ). In particular,

GE ∩ SL2(Ẑ) = [G,G] by Lemma 1.7 and Proposition 8.1. Therefore,

HE ∩ SL2(Ẑ) = G ∩ SL2(Ẑ) = [G,G] = GE ∩ SL2(Ẑ).

Since GE is a subgroup of HE with GE ∩ SL2(Ẑ) = HE ∩ SL2(Ẑ) and det(GE) = Ẑ×, we deduce
that GE = HE .

12.3. Computing the image of Galois in the remaining cases. We have already computed

GE , up to conjugacy in GL2(Ẑ), and we know if XGE
(Q) is infinite or not. If XGE

(Q) is infinite,

then §12.2 shows how to compute the group ρ∗E(GalQ) up to conjugacy in GL2(Ẑ).
We now restrict our attention to the case when XGE

(Q) is finite. If E/Q is not a counterexample
to Conjecture 1.2, then the j-invariant jE lies in the finite set

J :=
⋃

G∈A , XG(Q) finite

πG(UG(Q)) ⊆ Q

with A as in Theorem 1.9. We are aware of 81 rational numbers j ∈ J for which j is the j-invariant
of a non-CM elliptic curve. We will explain how to compute GE := ρ∗E(GalQ), up to conjugacy, in
these cases. Any other non-CM j-invariants in J , or counterexamples to Conjecture 1.2, can be
dealt with in a similar direct manner.

For the finite number of j-invariants under consideration, we need only consider a single elliptic
curve with that j-invariant (from Lemma 2.2, replacing E by a quadratic twist changes GE in an
explicit way).

12.3.1. Case 1: the previous approach works. For our 81 exceptional j-invariants, the group GE

can be computed for 28 of them using the method of §12.2. In particular, we can find an agreeable

groups G ∈ A so that GE is conjugate in GL2(Ẑ) to a subgroup of G, XG(Q) is infinite, and [GE ,GE ]

is conjugate to a subgroup of [G,G] in SL2(Ẑ).
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12.3.2. Case 2: intersections with relatively prime levels. Suppose that there are distinct primes
2 = ℓ1 < ℓ2 < · · · < ℓs and agreeable subgroups G1, . . . ,Gs ∈ A so that all the following hold:

• GE is conjugate in GL2(Ẑ) to a subgroup of Gi for all 1 ≤ i ≤ s,
• the level of Gi divides a power of ℓi for all 1 ≤ i ≤ s,
• XGi(Q) has infinitely many points for all 1 ≤ i ≤ s,

• [GE ,GE ] and
⋂s

i=1[Gi,Gi] are open subgroups of SL2(Ẑ) that are conjugate in GL2(Ẑ).
Since the levels of the groups Gi are pairwise relatively prime, we find that the group

⋂s
i=1[Gi,Gi],

up to conjugacy in GL2(Ẑ), does not change if we replace any Gi by a conjugate in GL2(Ẑ). Thus
we may assume further that the Gi are chosen so that they satisfy condition (b) of §11.4.

For each 1 ≤ i ≤ s, we choose an open subgroup Gi of Gi with det(Gi) = Ẑ× such that the

level of Gi is a power of ℓi and Gi ∩ SL2(Ẑ) = [Gi,Gi]. We have jE ∈ πGi(XGi(Q)) since GE is
conjugate to a subgroup of Gi. As in §11.4 and §12.2, we can compute an explicit homomorphism

γE,i : Ẑ× → Gi/Gi so that ρ∗E(GalQ) is conjugate in GL2(Ẑ) to a subgroup of

Hi := {g ∈ Gi : g ·Gi = γE,i(det(g))}.
This previous step uses that XGi(Q) is infinite.

Since the group G1, . . . , Gs have pairwise relatively prime levels, we find that after replacing ρ∗E
by an isomorphic representation we have GE := ρ∗E(GalQ) ⊆ Hi for all 1 ≤ i ≤ s. In particular,
GE ⊆ H :=

⋂s
i=1Hi.

We claim that GE = H; since H has an explicit description this will conclude our description of
how to compute GE up to conjugacy. We have

GE ∩ SL2(Ẑ) ⊆ H ∩ SL2(Ẑ) ⊆
s⋂

i=1

(Hi ∩ SL2(Ẑ)) =
s⋂

i=1

(Gi ∩ SL2(Ẑ)) =
s⋂

i=1

[Gi,Gi].(12.1)

We have GE∩SL2(Ẑ) = [GE ,GE ] by Lemma 1.7 and Proposition 8.1. So by assumption, GE∩SL2(Ẑ)
and

⋂s
i=1[Gi,Gi] are open subgroups of SL2(Ẑ) that are conjugate in GL2(Ẑ). From the inclusions

(12.1), we deduce that GE ∩ SL2(Ẑ) = H ∩ SL2(Ẑ). Since GE is a subgroup of H with full
determinant, we conclude that GE = H.

Of the 53 exceptional j-invariants not handled by Case 1, we use the method above to compute
GE , up to conjugacy, for an additional 24 j-invariants. Of the 29 remaining exceptional j-invariants,
20 of them arise in [RSZB22].

12.3.3. Case 3: check directly. We already know the agreeable closure GE of GE = ρ∗E(GalQ).

We can choose an open subgroup G of GE with minimal level that satisfies det(G) = Ẑ× and

G∩ SL2(Ẑ) = [GE ,GE ]. Let M be the product of the primes p so that p divides the level of G or E
has bad reduction at p; this is an integer we can compute. The homomorphism αE : GalQ → GE/G
obtained by composing ρ∗E with the obvious quotient map will be unramified at all primes p ∤ M .
Using Lemma 1.10, we deduce that the every prime that divides the level of GE must also divideM .

After replacing GE by a conjugate, we can find a group G ∈ A so that XG(Q) is infinite and
GE ⊆ G. We choose G so that [G : GE ] is minimal. Using §12.2, we can construct a computable

open subgroup H of GL2(Ẑ) for which H ∩ SL2(Ẑ) = [G,G], detH = Ẑ× and GE is conjugate in

GL2(Ẑ) to a subgroup of H.
So after possibly replacing ρ∗E by an isomorphic representation, we find that GE = ρ∗E(GalQ) is

an open subgroup of H with

[H : GE ] = [H ∩ SL2(Ẑ) : GE ∩ SL2(Ẑ)] = [[G,G], [GE ,GE ]] =: m
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So GE is an indexm open subgroup of H whose level in GL2(Ẑ) divides some power ofM . However,

there are only finitely many such groups, so we can compute them all up to conjugacy in GL2(Ẑ).
It remains to check which of these explicit candidates is actually conjugate to GE . Looking at
traces of Frobenius can be useful to rule out some possibilities and hope that one case remains.
In any remaining cases, one can directly compute division polynomials for the curve E and study
their Galois groups to determine GE . For example, §1.7 gives one of the exceptional elliptic curves
we dealt with directly using division polynomials.

12.4. Finding the image. From §12.2 or §12.3, we have found the following:

• an agreeable group G and an open and normal subgroup G of G satisfying det(G) = Ẑ and

G ∩ SL2(Ẑ) = [G,G],
• a homomorphism γE : Ẑ× → G/G such that, after replacing ρ∗E by an isomorphic represen-
tation, we have ρ∗E(GalQ) ⊆ G and the homomorphism

αE : GalQ → G/G

obtained by composing ρ∗E with the quotient map G → G/G satisfies γE(χcyc(σ)
−1) = αE(σ)

for all σ ∈ GalQ.

• the commutator subgroups of the two groups ρ∗E(GalQ) and G are conjugate in GL2(Ẑ).
We haveGE := ρ∗E(GalQ) ⊆ G and hence [GE , GE ] ⊆ [G,G]. We have [GE , GE ] = [G,G] since they

are open subgroups of SL2(Ẑ) that are conjugate in GL2(Ẑ). In particular, GE ∩ SL2(Ẑ) = [G,G]
by Lemma 1.7. By Lemma 1.10, ρ∗E(GalQ) is conjugate in GL2(Ẑ) to the explicit group

HE := {g ∈ G : g ·G = γE(det g)}

which is computable, cf. Remark 1.12.

Let Ht
E ⊆ GL2(Ẑ) be the group obtained by taking the transpose of all elements in HE . The

groups ρE(GalQ) and Ht
E are then conjugate in GL2(Ẑ).

13. Universal elliptic curves

Consider an open subgroup G of GL2(Ẑ) that satisfies det(G) = Ẑ× and −I /∈ G. Define the
group G := ±G. From our definition in §3, we have XG = XG. Recall that UG = UG is the open
subvariety XG − π−1

G ({0, 1728,∞}) of XG.
We will say that an elliptic scheme E → UG is a universal elliptic curve over UG if the following

hold for any number field K:

• for any point u ∈ UG(K), the j-invariant of Eu/K is πG(u), where the elliptic curve Eu is
the fiber of E → UG over u,

• for all u ∈ UG(K), ρ∗Eu
(GalK) is conjugate in GL2(Ẑ) to a subgroup of G.

In this section, we sketch some methods for computing such a universal elliptic curve. This will
follows directly from other parts of the paper, but we state it here for convenient reference. We
will not use this elsewhere.

Remark 13.1. In this paper, we have not taken a moduli point of view for modular curves. However,
such a viewpoint makes the existence of a universal elliptic curve obvious; the underlying moduli
space is fine since −I /∈ G (note that we are excluding elliptic curves with extra automorphisms by
focusing on UG). Moreover, using the moduli approach, one can also show that if E′ is an elliptic

curve over a number field K with jE′ ∈ K − {0, 1728}, then ρ∗E′(GalK) is conjugate in GL2(Ẑ) to
a subgroup of G if and only if E′/K is isomorphic to Eu for some u ∈ UG(K).
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Let N be the level of G. We have N ≥ 3 since −I /∈ G. Let G and G = ±G be the images of G
and G, respectively, in GL2(Z/NZ). By Lemma 4.6, there is a nonzero modular form f0 ∈ M3,G;
we can construct such an f0 by using Corollary 4.11. Define

δ := j · f20 /E6;

it is a nonzero element of FG
N = Q(XG). All poles of δ lie above the points 0, 1 and ∞ on the

j-line; recall that E2
6 = (j − 1728)∆. In particular, we can view δ and j as morphisms UG → A1

Q.
Consider the Weierstrass equation:

δ · y2 = x3 − 27 · j(j − 1728) · x+ 54 · j(j − 1728)2.(13.1)

Let U ′ be the maximal open subvariety of UG such that the valuation of δ at P is even for all
closed points P of UG. The equation (13.1) defines an elliptic scheme E → U ′. This is clear if we
instead restrict to the smaller open subvariety of UG for which δ is nonzero. For excluded points of
U ′, we can scale y appropriately and change coordinates, using our assumption on valuations, to
extend the model.

Proposition 13.2. We have U ′ = UG and E → U ′ = UG defined by (13.1) is a universal elliptic
curve over UG.

Proof. With notation as in §6.3, we have an elliptic scheme EG → UG and a surjective homomor-
phism

ϱ∗EG ,N
: π1(UG , η) → G.

Recall that ϱ∗EG ,N
depends on a choice of a nonzero modular form f0 in M3(Γ(N),Q(ζN )) and

a choice of β in a field extension of FN that satisfies β2 = j · f20 /E6. By Lemma 4.6, we can
assume that f0 ∈ M3,G since −I /∈ G. Let α : π1(UG , η) → G/G be the homomorphism obtained

by composing ϱ∗EG ,N
with the quotient map G → G/G. Let χ : π1(UG , η) → {±1} be the character

obtained by composing α with the isomorphism G/G ∼= {±1}.
Take any number field K ⊆ Q and point u ∈ UG(K). The fiber (EG)u above u is an elliptic curve

over K that is isomorphic to the curve given defined by (6.1) with j = πG(u) ∈ K − {0, 1728}.
In particular, (EG)u has j-invariant πG(u). The specialization of ϱ∗EG ,N

at u is a representation

GalK → G ⊆ GL2(Z/NZ) that is isomorphic to ρ∗(EG)u,N
. In particular, if E′/K is the quadratic

twist of (EG)u by the specialization χu : GalK → {±1} of χ at u, then E′ has j-invariant πG(u) and
ρ∗E′,N (GalK) is conjugate in GL2(Z/NZ) to a subgroup of G.

Since N is the level of G, we deduce that the elliptic scheme E → UG = UG obtained by taking
the quadratic twist of the elliptic scheme EG → UG by χ.

The homomorphisms α and χ correspond to an étale cover ϕ : Y → UG of degree 2. With
notation as in §11.1.1, ϕ corresponds to a quadratic extension L/Q(XG) with L ⊆ FN (β). Since
β2 = δ ∈ Q(XG), it suffices to prove that L = Q(XG)(β). That U ′ = UG = UG is a consequence of
L/Q(XG) arising from an étale cover of UG .

The group G/G is cyclic of order 2 and −I /∈ G. With notation and definitions as in §11.3, we
can assume that m = 1, C = (−1), g0 = −I, k = 3 and f1 := f0. Moreover, with F (x1) := x21 we
have cF = j · f20 /E6 = δ. By Lemma 11.3, we find that L = Q(XG)(y1) where y

2
1 = δ. Since β2 = δ,

we conclude that L = Q(XG)(β). □

14. Families of modular curves

We now discuss a point of view that may be of use for further study of modular curves and
Mazur’s Program B; these remarks will not be used elsewhere in the paper.
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14.1. Families and twists. Let G be an open subgroup of GL2(Ẑ) satisfying det(G) = Ẑ× and
−I ∈ G. Fix a closed subgroup B of G satisfying [G,G] ⊆ B.

Definition 14.1. The family of groups associated to the pair (G, B) is the set F (G, B) of subgroups

H of G that satisfy det(H) = Ẑ× and H ∩ SL2(Ẑ) = B ∩ SL2(Ẑ).

Suppose that F (G, B) ̸= ∅. Fix a group G ∈ F (G, B). Note that F (G, B) = F (G, G). Since
G ⊇ [G,G] and G is open, we find that G is a normal subgroup of G and that the group G/G is

finite and abelian. For each homomorphism γ : Ẑ× → G/G, define the subgroup

Gγ := {g ∈ G : g ·G = γ(det g)}

of GL2(Ẑ).

Lemma 14.2. With notation as above, the set F (G, B) consists of the groups Gγ with γ : Ẑ× →
G/G a homomorphism.

Proof. First take any γ. We have Gγ ∩ SL2(Ẑ) = G ∩ SL2(Ẑ) = B. The natural map (G ∩
SL2(Ẑ))/B → G/G is an isomorphism since G ∩ SL2(Ẑ) = B and det(G) = Ẑ×. Using this

isomorphism, we find that det(Gγ) = Ẑ×. Therefore, Gγ ∈ F (G, B).
Conversely, take any H ∈ F (G, B). The quotient map H → G/G induces a homomorphism

f : H/(H ∩ SL2(Ẑ)) → G/G since H ∩ SL2(Ẑ) = B = G ∩ SL2(Ẑ). Let γ : Z× → G/G be the

homomorphism obtained by composing the inverse of the determinant map H/(H ∩SL2(Ẑ))
∼−→ Ẑ×

with f . For each h ∈ H, we have h ·G = γ(deth). Therefore, H ⊆ Gγ . Since H and Gγ both have

full determinant and have the same intersection with SL2(Ẑ), we conclude that H = Gγ . □

Remark 14.3. We saw a family of groups in §1.6 when discussing Serre curves. In fact, one can show

that E/Q is a Serre curve if and only if ρE(GalQ) is an element of F (GL2(Ẑ), [GL2(Ẑ),GL2(Ẑ)]).
With terminology from [Jon15], E/Q is a “G-Serre curve” if and only if ρE(GalQ) is conjugate in

GL2(Ẑ) to some group in F (G, [G,G]).

Let us loosely reinterpret some our results from §1.4 and §1.5 in terms of families.
We have proved that there are finitely many pairs G1, . . . ,Gm such that for any non-CM elliptic

curve E/Q for which Conjecture 1.2 holds, ρ∗E(GalQ) is conjugate in GL2(Ẑ) to a group in the
family F (Gi, [Gi,Gi]) for some 1 ≤ i ≤ m. The agreeable closure of ρ∗E(GalQ), computed as in §1.4,
determines which of our explicit families F (Gi, [Gi,Gi]) our group lies in. Once we know the specific
family of groups, the results from §1.5 allow us to identify ρ∗E(GalQ) in the family by constructing

the appropriate homomorphism γE : Ẑ× → Gi/Gi, where Gi is a fixed group in F (Gi, [Gi,Gi]).

So that we can talk about modular curves and groups interchangeably, let us now consider the
case a nonempty family F (G, B) for which −I ∈ B. As before, fix G ∈ F (G, B); we have −I ∈ G.

Let π : XG → XG be the morphism of modular curves induced by the inclusion G ⊆ G. Since G
is a normal subgroup of G, the group G acts on the modular curve XG with G acting trivially. This
induces an isomorphism G/G ∼−→ Aut(XG/XG), where Aut(XG/XG) is the group of automorphisms
f of the curve XG that satisfy π ◦ f = π.

For a fixed homomorphism γ : Ẑ× → G/G, we obtain a homomorphism

ξ := γ ◦ χ−1
cyc : GalQ → G/G ∼= Aut(XG/XG).

In particular, we can view ξ as a 1-cocycle of XG. Twisting XG by ξ gives a curve (XG)ξ and a
morphism πξ : (XG)ξ → XG that are both defined over Q. A straightforward computation shows
that we can in fact take (XG)ξ = XGγ with πξ : XGγ → XG being the morphism induced by the

65



inclusion Gγ ⊆ G. So our family of groups F (G, B) = F (G, G) corresponds to a family of twists
{(XG)ξ}ξ as we vary over 1-cocycles ξ : GalQ → Aut(XG/XG).

Note that the modular curve XGγ need not have a rational non-CM point for every γ (moreover,
there are families where XGγ (Q) = ∅ for all γ).

Consider two pairs (C1, π1) and (C2, π2), where Ci is a curve over Q and πi : Ci → P1
Q is a

morphism. We say that the pairs (C1, π1) and (C2, π2) are isomorphic if there is an isomorphism
f : C1 → C2 defined over Q so that π2 ◦ f = π1. Rakvi [Rak21] has recently classified the pairs

(XG, πG), up to isomorphism, for which G is an open subgroup of GL2(Ẑ) satisfying det(G) = Ẑ×,
−I ∈ G, and XG

∼= P1
Q. She accomplishes this by showing that all such group G lie in a finite

number of families and then identifying which curves arising from these families are isomorphic to
P1
Q.

14.2. A conjecture on non-CM points of high genus modular curves. The modular curve
X0(37) has exactly two rational points that are not cusps, cf. [Maz78]. These rational points of
X0(37) map to the values −7·113 and −7·1373 ·20833 in the j-line. Let G1 and G2 be the group
±ρ∗E(GalQ), where E/Q is an elliptic curve with j-invariant −7·113 and −7·1373·20833, respectively.
Note that the subgroups G1 and G2 of GL2(Ẑ) are uniquely defined up to conjugacy. From §1.7,
we find that G1 is conjugate to the open subgroup of GL2(Ẑ) whose level divides 5180 and whose
image modulo 5180 is generated by −I and the matrices (1.5). One can check that G2 is conjugate

in GL2(Ẑ) to the group Gt
1 obtained by taking the transpose of the elements of G1.

One can show that the modular curves XG1 and XG2 both have genus 97 and clearly XG1(Q)
and XG2(Q) both have a non-CM point. The following conjecture predicts that XG1 and XG2 are
the highest genus modular curves with a rational non-CM point; we will motivate it in the next
section.

Conjecture 14.4. Let G be an open subgroup of GL2(Ẑ) with det(G) = Ẑ× and −I ∈ G. Assume

that XG has genus at least 54 and that G is not conjugate in GL2(Ẑ) to G1 or G2. Then XG(Q)
has no non-CM points.

Remark 14.5. It can be shown that there are infinitely many groups G ⊆ GL2(Ẑ) with det(G) = Ẑ×

and −I ∈ G such that XG has genus at least 53 and XG(Q) has a non-CM point. So the value 54
in Conjecture 14.4 would be best possible.

14.3. Motivation for our conjectures. In this section, we give some brief motivation behind
Conjectures 1.5 and 14.4. We shall assume throughout that that Conjecture 1.2 holds. Let

G1, . . . ,Gm

be the subgroups of GL2(Ẑ), up to conjugacy, that are the agreeable closures of ρ∗E(GalQ) for some
non-CM E/Q. Using Theorem 1.9 (with Lemma 10.1), we find that there are indeed only finitely
many groups Gi.

Take any 1 ≤ i ≤ m. Consider any group G ∈ F (Gi, [Gi,Gi]). Let gi be the genus of the curve XG

and let ni be the index of G∩SL2(Ẑ) in SL2(Ẑ). Since gi and ni depend only on G∩SL2(Ẑ) = [Gi,Gi],
we find that gi and ni are independent of the choice of G.

We now prove a version of Conjecture 1.5 (assuming Conjecture 1.2). We define I to be the set
of integers ni with 1 ≤ i ≤ m.

Lemma 14.6. If E/Q is a non-CM elliptic curve, then [GL2(Ẑ) : ρE(GalQ)] lies in the set I.
Proof. Take any non-CM elliptic curve E/Q and let G be the agreeable closure of GE := ρ∗E(GalQ).

After conjugating in GL2(Ẑ), we may assume that GE ⊆ G = Gi for some 1 ≤ i ≤ m. We

have GE ∩ SL2(Ẑ) = [G,G] = [Gi,Gi] and hence GE is in the family F (Gi, [Gi,Gi]). Therefore,

[GL2(Ẑ) : GE ] = [SL2(Ẑ) : GE ∩ SL2(Ẑ)] = ni. In particular, [GL2(Ẑ) : GE ] ∈ I. □
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We now prove a version of Conjecture 14.4 (assuming Conjecture 1.2). We define β to be the
maximum value of gi as we vary over all 1 ≤ i ≤ m for which the image of Gi modulo 37 is not
conjugate in GL2(Z/37Z) to a group of upper triangular matrices.

Lemma 14.7. Let G be an open subgroup of GL2(Ẑ) with det(G) = Ẑ× and −I ∈ G. Assume that

XG has genus strictly greater than max{β, 49} and that G is not conjugate in GL2(Ẑ) to G1 or G2.
Then XG(Q) has no non-CM points.

Proof. Let G be an open subgroup of GL2(Ẑ) with det(G) = Ẑ× and −I ∈ G. Assume that the
genus g of XG is strictly greater than max{β, 49} and that XG(Q) has a non-CM point. We need
to show that G is conjugate to G1 or G2.

SinceXG(Q) has a non-CM point, there is a non-CM elliptic curve E/Q so that, after conjugating,
we have an inclusion GE := ρ∗E(GalQ) ⊆ G. After conjugating our groups appropriately, we may
further assume that Gi is the agreeable closure of GE for some 1 ≤ i ≤ m. We have GE ∈
F (Gi, [Gi,Gi]) since GE∩SL2(Ẑ) = [GE , GE ] = [Gi,Gi]. Therefore, XGE

has genus gi. The inclusion
GE ⊆ G implies that gi ≥ g. Since gi ≥ g > β, we deduce that Gi modulo 37 is conjugate to a
group of upper triangular matrices. From the inclusions GE ⊆ G ⊆ Gi, we deduce that the modular
curve X0(37) has a rational non-CM point arising from E/Q.

From the beginning of §14.2, we find that ±GE is conjugate to G1 or G2 in GL2(Ẑ). So after
conjugating G appropriately, we may now assume that Gj ⊆ G for some j ∈ {1, 2}. A computation

shows that XGj has genus 97 and that XG′ has genus at most 49 for every group Gj ⊊ G′ ⊆ GL2(Ẑ).
Since XG has genus g > 49, we deduce that G = Gj (after conjugation). □

We now explain how we made a conjecture for the list of groups G1, . . . ,Gm. By Theorem 1.9,
we can explicitly determine all the groups Gi for which XGi(Q) is infinite.

Let J be the set (1.1) and let J ′ be the subset of J consisting of rational numbers that are
the j-invariants of non-CM elliptic curves. Equivalently, J ′ is the set of j-invariants of non-CM
elliptic curves E/Q for which XG(Q) is finite, where G is the agreeable closure of ρ∗E(GalQ). Using
Lemma 10.1 and Theorem 1.9, the groups Gi for which XGi(Q) is finite are all obtained by taking
the agreeable closure of ρ∗E(GalQ) with E/Q an elliptic curve whose j-invariant lies in J ′.

So to find the groups G1, . . . ,Gm, it would suffice to first compute J ′. Note that the set J ′ is finite
by Faltings theorem (which is ineffective). Unfortunately, J ′ is extremely difficult to compute. As
noted in §1.4, we have found 81 elements of J ′; this was done by searching for low height rational
points on models of the relevant modular curves. We conjecture that J ′ actually has cardinality
81 and hence we conjecturally know J ′. In particular, this conjecture would allow us to compute
our sequence of agreeable groups G1, . . . ,Gm. With this explicit list of groups, direct computations
lead to the predictions that I is the set from the statement of Conjecture 1.5 and that β is 53.
These conjectural values of I and β along with Lemmas 14.6 and 14.7 give rise to Conjectures 1.5
and 14.4, respectively.
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