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Abstract. Given an elliptic curve E over a number field k, the Galois action on the torsion points

of E induces a Galois representation, ρE : Gal(k/k) → GL2(bZ). For a fixed number field k, we
describe the image of ρE for a “random” elliptic curve E over k. In particular, if k 6= Q is linearly
disjoint from the cyclotomic extension of Q, then ρE will be surjective for “most” elliptic curves
over k.

1. Introduction

Fix a number field k and let E be an elliptic curve over k. For each positive integer m, we
denote the group of m-torsion of E(k) by E[m]. The group E[m] is non-canonically isomorphic
to (Z/mZ)2 and is equipped with a natural action of the absolute Galois group Gk := Gal(k/k),
which may be re-expressed in terms of a Galois representation

ρE,m : Gk → Aut(E[m]) ∼= GL2(Z/mZ).

Combining these representations for all m we obtain a single Galois representation

ρE : Gk → Aut(E(k)tors) ∼= GL2(Ẑ)

which encapsulates the Galois action on the torsion points of E. The main result concerning these
representations is the following renowned theorem of Serre [Ser72].

Theorem 1.1 (Serre). If E/k does not have complex multiplication, then ρE(Gk) has finite index
in GL2(Ẑ).

Serre’s theorem is a qualitative result and does not describe how large the image of ρE can be. In
particular, can the Galois representation ρE ever be surjective? In other words, can every possible
group automorphism of the torsion points of E arise as a Galois action?

The first example of a surjective representation ρE was given recently by A. Greicius in his Ph.D.
thesis (see [Gre07]). Let α ∈ Q be a root of the polynomial x3 + x + 1, and let E/Q(α) be the
elliptic curve given by the Weierstrass equation y2 + 2xy + αy = x3 − x2. Greicius shows that
ρE(GQ(α)) = GL2(Ẑ).

In this paper we shall describe how large ρE(Gk) can be for a “random” elliptic curve E over k.

1.1. Statement of results. Denote the ring of integers of k by Ok. For (a, b) ∈ O2
k, define

∆a,b = −16(4a3 + 27b2). If ∆a,b 6= 0, then let E(a, b) be the elliptic curve over k defined by the
Weierstrass equation

Y 2 = X3 + aX + b.

Now fix a norm ||·|| on R⊗Z O2
k
∼= R2[k:Q]. For each real number x > 0, we define the set

Bk(x) =
{

(a, b) ∈ O2
k : ∆a,b 6= 0, ||(a, b)|| ≤ x

}
.
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Thus to each pair (a, b) ∈ Bk(x), we can associate an elliptic curve E(a, b) over k. The set Bk(x)
is finite, and moreover

(1.1) |Bk(x)| ∼ κx2[k:Q]

as x → ∞, where κ > 0 is a constant depending on k and ||·||. The following theorem answers a
question of Greicius on the surjectivity of the ρE ([Gre07, §3.4 Problem 3]). Let Qcyc ⊆ k be the
cyclotomic extension of Q.

Theorem 1.2. Suppose that k ∩Qcyc = Q and k 6= Q. Then

lim
x→∞

|{(a, b) ∈ Bk(x) : ρE(a,b)(Gk) = GL2(Ẑ)}|
|Bk(x)|

= 1.

Intuitively, the theorem says that for a randomly chosen pair (a, b) ∈ O2
k, the corresponding

elliptic curve E(a, b) satisfies ρE(a,b)(Gk) = GL2(Ẑ). In particular, with k as in the theorem, there
exists an elliptic curve E over k with surjective ρE ; this was previously unknown except for the
case considered by Greicius.

Let χk : Gk → Ẑ× be the cyclotomic character of k. For each elliptic curve E over k, we have
det ◦ρE = χk. In particular, the assumption k ∩Qcyc = Q (equivalently χk(Gk) = Ẑ×) is necessary
for Theorem 1.2. For a number field k, we define the group

Hk := {A ∈ GL2(Ẑ) : det(A) ∈ χk(Gk)}.

Given an elliptic curve E over k, we certainly have ρE(Gk) ⊆ Hk. Our main theorem, which
generalizes Theorem 1.2, shows that this is the only general constraint for k 6= Q.

Theorem 1.3. Let k 6= Q be a number field. Then

|{(a, b) ∈ Bk(x) : ρE(a,b)(Gk) 6= Hk}|
|Bk(x)|

�k,||·||
log x√
x
.

Remark 1.4. Theorem 1.3 shows that the proportion of (a, b) in Bk(x) that satisfy ρE(a,b)(Gk) = Hk,
as a function of x, quickly approaches 1. The implicit constant in the theorem is effective and
depends only on k and the fixed norm.

Before continuing, let us introduce some more notation. Let E be an elliptic curve over a number
field k. For each positive integer m, denote the fixed field in k of ker(ρE,m) by k(E[m]).

1.2. The rationals. For completeness, we let us consider the case k = Q which was excluded from
Theorem 1.3. Let E be an elliptic curve over Q, and let ∆ be the discriminant of some Weierstrass
model of E over Q. There exists an integer n ≥ 1 such that Q(

√
∆) ⊆ Q(µn), where µn is the set

of n-th roots of unity (the assumption k = Q is important here!).
Using that the field Q(

√
∆) lies in both Q(E[2]) and Q(µn) ⊆ Q(E[n]), Serre deduced that the

index [GL2(Z/2nZ) : ρE,2n(GQ)] is even (for details, see [Ser72, pp. 310-311]) and in particular
ρE(GQ) 6= GL2(Ẑ). Following Lang and Trotter, we make the following definition.

Definition 1.5. An elliptic curve E over Q is a Serre curve if [GL2(Ẑ) : ρE(GQ)] = 2.

A Serre curve is thus an elliptic curve E over Q for which ρE(GQ) is as large as possible. For
a Serre curve E/Q, the group ρE(GQ) can be described explicitly in terms of the field Q(

√
∆).

N. Jones [Jon10] (building on work of Duke [Duk97]) has shown that “most” elliptic curves over Q
are Serre curves. The analogue of Theorem 1.3 is then the following.
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Theorem 1.6 (Jones). There is a constant β > 0 such that

|{(a, b) ∈ BQ(x) : E(a, b) is not a Serre curve}|
|BQ(x)|

�||·||
(log x)β√

x
.

Remark 1.7. Theorem 1.6 is a special case of [Jon10, Theorem 4] and will be proven in §7.2. Unlike
Jones’ version, the implicit constants in our proof will be effective.

A related theorem of D. Grant [Gra00] gives an asymptotic expression for the number of elliptic
curves E/Q (up to isomorphism) with ‘naive height’ at most X for which ρE,`(Gk) 6= GL2(Z/`Z)
for some prime `. The proof uses a theorem of Mazur which makes vital use of the assumption that
one is working over the rationals. In particular, it is not clear how to generalize Grant’s theorem
to number fields k 6= Q.

1.3. Overview of proof. Suppose that E is an elliptic curve over a number field k 6= Q. There is
an exact sequence

1→ SL2(Ẑ)→ GL2(Ẑ) det→ Ẑ× → 1,

and the representation det ◦ρE : Gk → Ẑ× is the cyclotomic character χk of k. Therefore,

ρE(Gk) ∩ SL2(Ẑ) = ρE(Gkcyc).

Thus the equality ρE(Gk) = Hk is equivalent to ρE(Gkcyc) = SL2(Ẑ). A group theoretic argument
will show that this in turn is equivalent to having ρE,m(Gkcyc) = SL2(Z/mZ) whenever m is equal
to 4, 9, or a prime at least 5.

For a prime m = ` ≥ 5, the condition ρE,`(Gkcyc) = SL2(Z/`Z) is equivalent to ρE,`(Gk) ⊇
SL2(Z/`Z). By considering the Frobenius endomorphism for the reduction of E modulo several
primes p ⊆ Ok, we can determine which conjugacy classes of GL2(Z/`Z) meet ρE,`(Gk). Combining
this modulo p information together, we will use the large sieve to give an asymptotic upper bound
for the growth of

|{(a, b) ∈ Bk(x) : ρE(a,b),`(Gk) 6⊇ SL2(Z/`Z)}|
as a function of x; see §5. To understand the distribution of reductions modulo p, we will use a
recent result of Jones; see §3. Of significant importance is a theorem of Masser and Wüstholz,
which is needed to bound the number of primes ` that must be considered.

The conditions at m = 4 or 9 are more involved. In particular, for m = 4 we will need to
impose the condition that

√
∆ is not in the cyclotomic extension of k (this avoids the obstruction

of §1.2 that always occurs for k = Q). In §6, we again use the large sieve to bound the number of
(a, b) ∈ Bk(x) for which

√
∆a,b (and 3

√
∆a,b if µ3 ⊆ k) lie in the cyclotomic extension of k.

Our main theorems will then be deduced in §7.

1.4. Hilbert irreducibility. It is useful to recast our theorem in terms of the philosophy of the
Hilbert irreducibility theorem. Treating a and b as variables, we obtain an elliptic curve E = E(a, b)
over k(a, b) and as before we have a Galois representation ρE : Gk(a,b) → GL2(Ẑ). It is easy to show
that ρE has image Hk. For each pair (a0, b0) ∈ O2

k with ∆a0,b0 6= 0, specialization induces an
inclusion ρE(a0,b0)(Gk) ⊆ ρE(Gk(a,b)) = Hk. For k 6= Q, our theorem shows that equality holds
for most specializations, which is what one would expect from Hilbert’s irreducibility theorem.
However, this is not a direct application of Hilbert’s theorem since Hk is an infinite group (the case
k = Q serves as a good warning).

For a fixed prime `, Hilbert’s irreducibility theorem implies that ρE(a0,b0),`(Gk) contains SL2(Z/`Z)
for ‘most’ pairs (a0, b0) ∈ O2

k. Lemma 5.11 gives a quantitative version of this statement (since we
will vary `, it is of particular importance that the constants do not depend on `). Quantitative
forms of Hilbert’s irreducibility theorem are discussed more generally in [Coh81].
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It would be interesting to consider more general families of abelian varieties, and we hope to
return to this in future work. See Cojocaru and Hall [CH05] for work on 1-parameter families of
elliptic curves over Q.

Acknowledgements. Many thanks to Bjorn Poonen for his careful reading of this paper, helpful
comments and assistance. Thanks also to Aaron Greicius, Nathan Jones, and the referee for their
useful suggestions.

Notation and conventions. For each field k, let k be an algebraic closure of k and let Gk :=
Gal(k/k) be the absolute Galois group of k. For each integer n ≥ 1, let µn be the group of n-th
roots of unity in k. Let kcyc (resp. kab) be the cyclotomic (resp. maximal abelian) extension of k
in k.

For a number field k, denote its ring of integers by Ok. Let Σk be the set of non-zero prime
ideals of Ok. For each p ∈ Σk, we have a residue field Fp = Ok/p whose cardinality we denote by
N(p). Let Σk(x) be the set of primes p in Σk with N(p) ≤ x. Let ordp : k× → Z be the surjective
discrete valuation corresponding to p. Denote the absolute discriminant of k by dk.

Fix a group G. Let G′ be the derived subgroup of G, i.e., the minimal normal subgroup of G for
which G/G′ is abelian. Equivalently, G′ is the group generated by the set {xyx−1y−1 : x, y ∈ G}.
The abelianization of G is Gab := G/G′. Profinite groups will always be considered with their
profinite topologies.

For a, b in a field k, define ∆a,b = −16(4a3 + 27b2). If ∆a,b 6= 0, then let E(a, b) be the elliptic
curve over k defined by the Weierstrass equation Y 2 = X3 + aX + b.

Suppose that f and g are real valued functions of a real variable x. By f � g (or g � f),
we mean that there are positive constants C1 and C2 such that for all x ≥ C1, |f(x)| ≤ C2|g(x)|.
We use O(f) to represent an unspecified function g with g � f . The dependencies of the implied
constants will always be indicated by subscripts. Also, all implicit constants occurring in this paper
are effective.

Finally, the symbols ` and p will always denote rational primes.

2. Criterion for maximal Galois action

Proposition 2.1. Let E be an elliptic curve over a number field k, and let ∆ be the discriminant
of a Weierstrass model of E over k. Suppose that the following conditions hold:

((a)) ρE,`(Gk) ⊇ SL2(Z/`Z) for every prime ` ≥ 5,
((b)) ρE,4(Gk) ⊇ SL2(Z/4Z) and ρE,9(Gk) ⊇ SL2(Z/9Z),
((c))

√
∆ 6∈ kcyc,

((d)) µ3 6⊆ k or 3
√

∆ 6∈ kcyc.
Then ρE(Gk) = Hk.

Remark 2.2.
((i)) The image of ∆ in k×/(k×)12 depends only on the isomorphism class of E/k. Thus for a

positive integer r dividing 12, the r-th root of ∆, up to a factor in µr · k×, is independent
of all choices. In particular, conditions (c) and (d) are well-defined.

((ii)) The Kronecker-Weber theorem says that Qcyc = Qab, so condition (c) never holds for k = Q.

Since det ◦ρE : Gk → Ẑ× is the cyclotomic character of k, we find that ρE(Gk) = Hk if and only
if ρE(Gkcyc) = SL2(Ẑ). Applying Lemma A.7 (see Appendix A) to ρE(Gkcyc), we have ρE(Gk) =
Hk if and only if ρE,m(Gkcyc) = SL2(Z/mZ) holds whenever m is 4, 9, or a prime at least 5.
Proposition 2.1 is then an immediate consequence of the following lemma.

Lemma 2.3. Let E be an elliptic curve over a number field k with discriminant ∆ ∈ k×/(k×)12.
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((i)) Let ` ≥ 5 be a prime. If ρE,`(Gk) ⊇ SL2(Z/`Z), then ρE,`(Gkcyc) = SL2(Z/`Z).
((ii)) If ρE,4(Gk) ⊇ SL2(Z/4Z) and

√
∆ 6∈ kcyc, then ρE,4(Gkcyc) = SL2(Z/4Z).

((iii)) If ρE,9(Gk) ⊇ SL2(Z/9Z) and 3
√

∆ 6∈ kcyc, then ρE,9(Gkcyc) = SL2(Z/9Z).
((iv)) If ρE,9(Gk) ⊇ SL2(Z/9Z) and µ3 6⊆ k, then ρE,9(Gkcyc) = SL2(Z/9Z).

Proof. Let m be a positive integer such that ρE,m(Gk) ⊇ SL2(Z/mZ). Since kcyc is an abelian
extension of k, we have inclusions

(2.1) SL2(Z/mZ)′ ⊆ ρE,m(Gk)′ ⊆ ρE,m(Gkcyc) ⊆ SL2(Z/mZ).

(i) Suppose that m = ` ≥ 5 is prime. By Lemma A.1 we have SL2(Z/`Z)′ = SL2(Z/`Z), so from
(2.1) we deduce that ρE,`(Gkcyc) = SL2(Z/`Z).
(ii) Our assumption ρE,4(Gk) ⊇ SL2(Z/4Z) implies that ρE,4(Gk(µ4)) = SL2(Z/4Z). Thus to prove
ρE,4(Gkcyc) = SL2(Z/4Z), it suffices to show that k(E[4]) ∩ kcyc = k(µ4).

In [LT76, Part III §11], it is shown that 4
√

∆ is an element of k(E[4]). Using
√

∆ 6∈ k(µ4), one
finds that k(µ4,

4
√

∆) ⊆ k(E[4]) is an abelian extension of k(µ4) of degree 4. By Lemma A.1 the
group SL2(Z/4Z)ab is cyclic of order 4, so k(E[4]) ∩ k(µ4)ab = k(µ4,

4
√

∆). Therefore

(2.2) k(E[4]) ∩ kcyc = (k(E[4]) ∩ k(µ4)ab) ∩ kcyc = k(µ4,
4
√

∆) ∩ kcyc = k(µ4),

where the last equality uses
√

∆ 6∈ kcyc.
(iii) The assumption ρE,9(Gk) ⊇ SL2(Z/9Z) implies that ρE,9(Gk(µ9)) = SL2(Z/9Z). By Lemma
A.1, the group SL2(Z/9Z)ab has order 3.

Note that 3
√

∆ is an element of k(E[3]) (see [Ade01, Proposition 5.4.3] for example). Arguing
as in part (ii), we find that k(E[9]) ∩ k(µ9)ab = k(µ9,

3
√

∆). Since 3
√

∆ 6∈ kcyc, we deduce that
k(E[9]) ∩ kcyc = k(µ9), and hence ρE,9(Gkcyc) = SL2(Z/9Z).
(iv) The assumptions imply that ρE,3(Gk) = GL2(Z/3Z). One checks that GL2(Z/3Z)′ equals
SL2(Z/3Z), and thus ρE,3(Gk)′ = SL2(Z/3Z). Using (2.1), with m = 3, gives ρE,3(Gkcyc) =
SL2(Z/3Z).

By Lemma A.1, the group SL2(Z/9Z)ab has order 3. So from (2.1), with m = 9, we find that
ρE,9(Gkcyc) is either SL2(Z/9Z)′ or SL2(Z/9Z). If ρE,9(Gkcyc) = SL2(Z/9Z)′, then Lemma A.1
implies that ρE,3(Gkcyc) 6= SL2(Z/3Z). Therefore, ρE,9(Gkcyc) = SL2(Z/9Z). �

We now state a criterion that applies to k = Q.

Lemma 2.4 (Jones). Let E be an elliptic curve over Q which satisfies the following properties:
((a)) ρE,`(GQ) ⊇ SL2(Z/`Z) for every prime ` ≥ 5,
((b)) ρE,72(GQ) ⊇ SL2(Z/72Z).

Then E is a Serre curve.

Proof. For each m ≥ 1, we have ρE,m(GQ) = GL2(Z/mZ) if and only if ρE,m(GQ) ⊇ SL2(Z/mZ).
The lemma is now [Jon10, Lemma 5]. �

3. Elliptic curves over finite fields

Fix a positive integer m and a prime p - m. Let E be an elliptic curve over the field Fp. As
before, one has a Galois representation ρE,m : Gal(Fp/Fp) → GL2(Z/mZ), which arises from the
Galois action on the m-torsion of E.

Let Frobp ∈ Gal(Fp/Fp) be the p-th power Frobenius automorphism. For a subset C of GL2(Z/mZ)
stable under conjugation, define the set

ΩC(p) :=
{

(r, s) ∈ F2
p : ∆r,s 6= 0, ρE(r,s),m(Frobp) ∈ C

}
.

The following theorem gives a good estimate on the cardinality of this set.
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Theorem 3.1 (Jones). Fix a positive integer m and a conjugacy class C of GL2(Z/mZ). Let d be
the element of (Z/mZ)× such that det(C) = {d}. Then for all primes p with p ≡ d mod m,

|ΩC(p)|
p2

=
|C|

|SL2(Z/mZ)|
+O

(
|C|
p1/2

)
.

Proof. This follows from Theorem 8 (and Theorem 7) of [Jon10]. A key ingredient is a generalization
of results of Hurwitz, see [Jon08]. �

4. The large sieve

Let K be a number field, Λ a free OK-module of rank n, and ||·|| a norm on ΛR = R⊗Z Λ. Fix a
subset Y of Λ. Let x ≥ 1 and Q > 0 be real numbers. For every prime ideal p ∈ ΣK , let ωp be a
real number in the interval [0, 1). Assume the following conditions hold:

(1) The set Y is contained in a ball of radius x; i.e., there is an a0 ∈ ΛR such that ||a− a0|| ≤ x
for all a ∈ Y .

(2) For every p ∈ ΣK(Q), the image Yp of Y in Λ/pΛ by reduction modulo p satisfies

|Yp| ≤ (1− ωp)|Λ/pΛ|.

Theorem 4.1 (Large sieve, [Ser97, §12.1] ). With assumptions as above, we have

|Y | �K,Λ,||·||
x[K:Q]n +Q2n

L(Q)

where
L(Q) :=

∑
a⊆OKsquarefree

N(a)≤Q

∏
p|a

ωp

1− ωp
.

In the special case where L(Q) = 0, we will interpret this as giving the trivial bound |Y | ≤ +∞.

Remark 4.2. We will apply the large sieve with Λ = O2
k and ||·|| our fixed norm on R⊗Z O2

k. In §5
and §6, we will take K to be k and Q, respectively.

5. Most elliptic curves have large `-adic Galois images

Throughout this section, fix a number field k.

Definition 5.1. For each positive integer m, define the set

Bk,m(x) := {(a, b) ∈ Bk(x) : ρE(a,b),m(Gk) 6⊇ SL2(Z/mZ)}.

The main goal of this section is to prove the following bound.

Proposition 5.2. There is an absolute constant β ≥ 1 such that

|Bk,4(x) ∪Bk,9(x) ∪
⋃
`≥5Bk,`(x)|

|Bk(x)|
�k,||·||

(log x)β

x[k:Q]/2
.

Remark 5.3. For an elliptic curve E over k, we have Galois representations ρE,`∞ : Gk → GL2(Z`)
coming from the action on the `-power torsion. Proposition 5.2 (with Lemma A.2) shows that
for a “random” elliptic curve E over k, we have ρE,`∞(Gk) ⊇ SL2(Z`) for all primes `. Since
det ◦ρE,`∞ : Gk → Z×` is the `-adic cyclotomic character of k, we find that ρE,`∞(Gk) is as “large
as possible” for all `.

6



Remark 5.4. Our proof of Proposition 5.2 is clearly based on Duke’s paper [Duk97], which proves
the k = Q case (with Jones [Jon10] handling 4 and 9).

Unlike Duke’s result, the implicit constants in Proposition 5.2 are effective. The source of non-
effective constants in [Duk97] is the use of the Siegel-Walfisz theorem. We avoid this by applying
the pigeonhole principle in the proof of Lemma 5.11 and then sieving only by conjugacy classes
with a fixed determinant.

5.1. Sieving elliptic curves by Frobenius conjugacy classes. For a positive integer m and a
conjugacy class C of GL2(Z/mZ), define the set

YC(x) := {(a, b) ∈ Bk(x) : ρE(a,b),m(Gk) ∩ C = ∅
}
.

For d ∈ (Z/mZ)×, let Σ1
k(Q; d,m) be the set of p ∈ Σk(Q) with degree 1 (i.e., N(p) prime) and

N(p) ≡ d mod m.

Proposition 5.5. Let m be a positive integer and C a conjugacy class of GL2(Z/mZ). Let d be
the unique element of (Z/mZ)× such that det(C) = {d}, and assume that d ∈ χk(Gk) mod m ⊆
(Z/mZ)×. Then

|YC(x)|
|Bk(x)|

�k,||·||
| SL2(Z/mZ)|

|C|

(
|Σ1
k(x

[k:Q]/2; d,m)|+Ok(m3x[k:Q]/4)
)−1

.

Remark 5.6. The assumption d ∈ χk(Gk) mod m is important since otherwise we would be the
uninteresting case where YC(x) = Bk(x) (observe that det(ρE(a,b),m(Gk)) = χk(Gk) mod m) and
Σ1
k(Q; d,m) = ∅.

of Proposition 5.5. Let Λ be the Ok-module O2
k. We have already chosen a norm ||·|| on ΛR :=

R⊗Z O2
k, and the set Bk(x) ⊆ ΛR lies in a ball of radius x. Let Q := x[k:Q]/2.

For each p ∈ Σ1
k(Q; d,m), define

Ωp = {(r, s) ∈ F2
p : ∆r,s 6= 0, ρE(r,s),m(FrobN(p)) ∈ C}

and ωp = |Ωp|/N(p)2. Let Yp be the image of YC(x) in F2
p via reduction modulo p.

Suppose that (a, b) ∈ Bk(x) satisfies (a, b) mod p ∈ Ωp; then E(a, b) has good reduction at p and
ρE(a,b),m(Frobp) ⊆ C. So ρE(a,b),m(Gk) ∩ C 6= ∅, and thus (a, b) /∈ YC(x). This shows that

Yp ⊆ F2
p − Ωp,

and hence |Yp| ≤ (1− ωp)|Λ/pΛ|.
For p /∈ Σ1

k(Q; d,m), define ωp = 0. By the large sieve (Theorem 4.1),

(5.1) |YC(x)| �k,||·||
x2[k:Q]

L(Q)
,

where

L(Q) :=
∑

a⊆Ok squarefree
N(a)≤Q

∏
p|a

ωp

1− ωp
≥

∑
p∈Σ1

k(Q;d,m)

ωp.

For p ∈ Σ1
k(Q; d,m), Theorem 3.1 gives

ωp =
|C|

| SL2(Z/mZ)|
+O(|C|/N(p)1/2).
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Therefore

L(Q) ≥
∑

p∈Σ1
k(Q;d,m)

(
|C|

| SL2(Z/mZ)|
+O(|C|/N(p)1/2)

)

=
|C|

|SL2(Z/mZ)|

(
|Σ1
k(Q; d,m)|+Ok(m3Q1/2)

)
.

The assumption d ∈ χk(Gk) mod m ensures that L(Q) �k,m 1. The proposition follows by com-
bining our lower bound of L(Q) and (1.1) with (5.1). �

5.2. Galois image modulo an integer. The following proposition shows that for a “random”
elliptic curve E over k, ρE,m has large image.

Proposition 5.7. For a positive integer m,

|Bk,m(x)|
|Bk(x)|

�k,||·||,m
log x
x[k:Q]/2

.

Proof. Let C1, . . . , Cn be the conjugacy classes of GL2(Z/mZ) with determinant 1. By Lemma A.10,
we have Bk,m(x) ⊆

⋃n
i=1 YCi(x). Proposition 5.5 gives

|Bk,m(x)|
|Bk(x)|

≤
n∑
i=1

|YCi(x)|
|Bk(x)|

�k,||·||

n∑
i=1

| SL2(Z/mZ)|
|Ci|

(
|Σ1
k(x

[k:Q]/2; 1,m)|+Ok(m3x[k:Q]/4)
)−1

.

Using |Σ1
k(x

[k:Q]/2; 1,m)| �k,m x[k:Q]/2/ log x, we deduce that

|Bk,m(x)|
|Bk(x)|

�k,||·||,m

n∑
i=1

(
x[k:Q]/2/ log x

)−1 �m
log x
x[k:Q]/2

. �

5.3. Galois image modulo primes. Let h be the absolute logarithmic height on P1(Q). For an
elliptic curve E, let j(E) be its j-invariant. The following theorem bounds the number of primes `
that we need to consider (in particular, it gives an effective version of a result of Serre [Ser72]).

Theorem 5.8 (Masser-Wüstholz [MW93]). Let E be an elliptic curve defined over a number field
k, and assume that E does not have complex multiplication. There are positive absolute constants
c and γ such that if ` > c

(
max

{
[k : Q], h(j(E))

})γ, then ρE,`(Gk) ⊇ SL2(Z/`Z).

Lemma 5.9. If (a, b) ∈ Bk(x), then h(j(E(a, b)))�k,||·|| log x.

Proof. Let Σ∞k be the set of archimedean places of k. For each v ∈ Σ∞k , let | · |v be an absolute
value on the completion kv of k at v. On

∏
v∈Σ∞k

k2
v , we have a norm ||(av, bv)v||1 = supv∈Σ∞k

|av|v +
supv∈Σ∞k

|bv|v. Using the natural isomorphism R ⊗Z O2
k
∼=
∏
v∈Σ∞k

k2
v , we may view ||·||1 as a norm

on R⊗Z O2
k. Recall that j(E(a, b)) = −1728(4a)3/∆a,b. Since a and b are integral, we have

h(j(E(a, b))) = h([−1728(4a)3 : ∆a,b])�k

∑
v∈Σ∞k

log(max{1728 · 43|a|3v, |∆a,b|v})

and thus h(j(E(a, b)))�k log ||(a, b)||1. The norms ||·|| and ||·||1 are equivalent, so

h(j(E(a, b)))�k log ||(a, b)||1 �k,||·|| log ||(a, b)|| ≤ log x. �

Lemma 5.10. There is a constant c = c > 0 (depending only on k and ||·||) and an absolute
constant γ > 0 such that{

(a, b) ∈ Bk(x) : ρE(a,b),`(Gk) 6⊇ SL2(Z/`Z) for some prime ` ≥ 5
}

=
⋃

5≤`≤c(log x)γ

Bk,`(x).
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Proof. For an elliptic curve E/k with complex multiplication, we have ρE,`(Gk) 6⊇ SL2(Z/`Z) for
every prime ` ≥ 5. The lemma follows by combining Theorem 5.8 and Lemma 5.9. �

Lemma 5.11. Assume that 5 ≤ ` ≤ c(log x)γ, where c and γ are the constants from Lemma 5.10.
Then

|Bk,`(x)|
|Bk(x)|

�k,||·||
(log x)7γ+1

x[k:Q]/2
.

Proof. We may assume that ` satisfies k∩Q(µ`) = Q (this excludes only a finite number of `, which
can be handled with Proposition 5.7). Define the set Σ1

k(x) := {p ∈ Σk(x) : N(p) is prime}. By
the pigeonhole principle, there is an element d ∈ (Z/`Z)× = χk(Gk) mod ` such that

|Σ1
k(x

[k:Q]/2; d, `)| ≥ 1
`− 1

|Σ1
k(x

[k:Q]/2)|+Ok(1)�k
1

`− 1
x[k:Q]/2/ log x.

Let C1, . . . , Cn be the conjugacy classes of GL2(Z/`Z) with det(Ci) = d. Combining Lemma A.8
and Proposition 5.5, we have

|Bk,`(x)|
|Bk(x)|

≤
n∑
i=1

|YCi(x)|
|Bk(x)|

�k,||·||

n∑
i=1

| SL2(Z/`Z)|
|Ci|

(
|Σ1
k(x

[k:Q]/2; d, `)|+Ok(`3x[k:Q]/4)
)−1

�k,||·||

n∑
i=1

|GL2(Z/`Z)|
|Ci|

(
x[k:Q]/2/ log x+Ok(`4x[k:Q]/4)

)−1
.

The bounds n ≤ `3, 1 ≤ |Ci|, and ` ≤ c(log x)γ imply

|Bk,`(x)|
|Bk(x)|

�k,||·|| n`
4 log x
x[k:Q]/2

�k,||·||
(log x)7γ+1

x[k:Q]/2
. �

5.4. Proof of Proposition 5.2. Using Lemmas 5.10 and 5.11, we obtain the following bounds:
|
⋃
`≥5Bk,`(x)|
|Bk(x)|

≤
∑

5≤`≤c(log x)γ

|Bk,`(x)|
|Bk(x)|

�k,||·||
∑

5≤`≤c(log x)γ

(log x)7γ+1

x[k:Q]/2
�k,||·||

(log x)8γ+1

x[k:Q]/2
.

By Proposition 5.7 (with m = 4 and 9), we have

|Bk,4(x) ∪Bk,9(x)|
|Bk(x)|

�k,||·||
log x
x[k:Q]/2

.

The proposition follows immediately with β = 8γ + 1.

6. Discriminants

Proposition 6.1. Fix a number field k 6= Q and an integer r ≥ 2, and assume that k contains µr.
Then

|{(a, b) ∈ Bk(x) : r
√

∆a,b ∈ kcyc}|
|Bk(x)|

�k,||·||,r
log x√
x
.

Remark 6.2. From Proposition 6.1, we find that conditions (c) and (d) of Proposition 2.1 hold for
“most” elliptic curves over a fixed number field k 6= Q.

For the rest of this section, we shall fix k and r as in Proposition 6.1. Let d = [k : Q]. Let S be
the finite set of rational primes which satisfies the following conditions with minimal value

∏
p∈S p;

• S contains the primes dividing 6r,
• S contains the primes that are ramified in k,
• OS is a principal ideal domain, where OS is the ring of S′-integers of k and S′ = {p ∈ Σk :

p|p, for some p ∈ S}.
9



Note that the above choice of S depends only on k and r.

Lemma 6.3. Fix a prime p /∈ S and an element ∆ ∈ k×, and let P1 . . . ,Pn be the prime ideals of
Ok( r

√
∆) lying over p. If r

√
∆ ∈ kcyc, then

e(P1/p) = · · · = e(Pn/p),

where e(Pi/p) is the ramification index of Pi over p.

Proof. Since r
√

∆ ∈ kcyc = Qcyc · k, one can show that there is a field L ⊆ Qcyc such that k( r
√

∆) =
L · k. Since p is unramified in k, we find that e(Pi/p) = e(Pi ∩ OL/p). The value e(Pi ∩ OL/p) is
independent of i, since L is a Galois extension of Q. �

Lemma 6.4. Let B ⊆ O×S be a set of representatives for the cosets of O×S /(O
×
S )r. Then for any

∆ ∈ Ok with r
√

∆ ∈ kcyc, there are m ∈ Z, α ∈ OS, and β ∈ B such that ∆ = mαrβ.

Proof. Fix ∆ ∈ Ok with r
√

∆ ∈ kcyc. We first show that ∆ can be written in the form mαrβ, for
some m ∈ Z, α ∈ OS , and β ∈ O×S . We may assume that ∆ is non-zero. Since OS is a principal
ideal domain, there is an element α ∈ OS such that 0 ≤ ordp(∆/αr) < r for all p 6∈ S′.

Take any prime p /∈ S and let p1, . . . , pg be the prime ideals of OS lying over p. Suppose that
some pi divides ∆/αr in OS . Since 0 < ordpi(∆/α

r) < r, we deduce that the extension k( r
√

∆)/k is
ramified at pi. By Lemma 6.3, we find that k( r

√
∆)/k is ramified at all the primes p1, . . . , pg, and

hence pOS = p1 . . . pg divides ∆/αr in OS . Dividing by p and repeating the above process, we find
that there is an integer m ≥ 1 such that β := ∆/(mαr) is an element of O×S . We may assume that
β is in B after multiplying α by an appropriate element of O×S . �

For each β ∈ O×S , define the sets

Wβ := {(a, b) ∈ O2
k : ∆a,b = mαrβ, for some m ∈ Z, α ∈ OS}

and Wβ(x) := Wβ ∩Bk(x). For a set B as in Lemma 6.4, we have

{(a, b) ∈ Bk(x) : r
√

∆a,b ∈ kcyc} ⊆
⋃
β∈B

Wβ(x).

The set B is finite (since the abelian group O×S is finitely generated), so

(6.1) |{(a, b) ∈ Bk(x) : r
√

∆a,b ∈ kcyc}| �k,r max
β∈O×S

|Wβ(x)|.

Thus to prove Proposition 6.1, it suffices to find bounds for the functions |Wβ(x)|.

Lemma 6.5. Let p - 6 be a prime with p ≡ 1 mod r. For any γ ∈ F×p ,

|{(a, b) ∈ F2
p : ∆a,b = γcr, for some c ∈ Fp}| =

1
r
p2 +Or(p3/2).

Proof. Fix γ ∈ F×p . The equation ∆a,b = γcr defines a geometrically irreducible variety X in
A3

Fp = Spec(Fp[a, b, c]). Using the Weil conjectures, we find that

(6.2) |X(Fp)| = p2 +Or(p3/2)

(that the implicit constant in (6.2) depends only on r can be deduced from [Bom78]).
For fixed (a, b) ∈ F2

p, if ∆a,b = γcr has a solution c ∈ F×p , then it has exactly r such solutions (this
uses the assumption p ≡ 1 mod r). Most solutions have c 6= 0, since |{(a, b) ∈ F2

p : ∆a,b = 0}| � p.
The lemma is now immediate. �
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Lemma 6.6. Take any β ∈ O×S . Let p 6∈ S be a prime that splits completely in k, and let Wβ,p be
the image of Wβ in O2

k/pO2
k. Then

|Wβ,p| ≤
( 1
rd−1

+Or,d(p−1/2)
)
|O2

k/pO2
k|.

Proof. Let p1, . . . , pd ∈ Σk be the prime ideals lying over p. By the Chinese remainder theorem, we
have a natural identification Ok/pOk =

∏d
i=1 Fpi . Then

Wβ,p ⊆
⋃
m∈R

d∏
i=1

{
(a, b) ∈ F2

pi : ∆a,b = mαr · (β mod pi), for some α ∈ Fpi

}
,

where the union is over a set of coset representatives R ⊆ F×p of F×p /(F×p )r. We have p ≡ 1 mod r,
since p splits completely in k and by assumption µr ⊆ k. By Lemma 6.5,

|Wβ,p| ≤ |R|
(
p2/r +Or(p3/2)

)d = p2d/rd−1 +Or,d(p2d−1/2). �

Lemma 6.7. For β ∈ O×S , |Wβ(x)| �k,||·||,r |Bk(x)|(log x)/
√
x.

Proof. Let I be the set of primes p 6∈ S that split completely in k. By Lemma 6.6, for each prime
p ∈ I, we have |Wβ(x) mod pO2

k| ≤ (1 − ωp)|O2
k/pO2

k|, where ωp = 1 − 1/rd−1 + Or,d(p−1/2). For
p /∈ I, set ωp = 0.

We may now apply the large sieve. By Theorem 4.1 (with K = Q, Λ = O2
k, Q =

√
x, and our

chosen norm ||·|| on R⊗Z Λ), we have |Wβ(x)| �k,||·|| x
2d/L(

√
x), where

L(
√
x) :=

∑
J⊆I finiteQ
p∈J p≤

√
x

∏
p∈J

ωp
1− ωp

.

Using r ≥ 2 and d ≥ 2 (since k 6= Q), we have the bound

L(
√
x) ≥

∑
J⊆I finiteQ
p∈J p≤

√
x

∏
p∈J

(
1 +Or,d(p−1/2)

)
≥
∑
p∈I
p≤
√
x

(
1 +Or,d(p−1/2)

)
.

The set I has positive density in the primes, so L(
√
x)�r,k

√
x/ log x. The lemma follows by using

this bound for L(
√
x) and (1.1) with our upper bound for |Wβ(x)|. �

Proof of Proposition 6.1. Apply Lemma 6.7 to the bound (6.1). �

7. Elliptic curves with maximal Galois action

7.1. Proof of Theorem 1.3. Define the sets

Y1(x) = Bk,4(x) ∪Bk,9(x) ∪
⋃

`≥5
Bk,`(x),

Y2(x) = {(a, b) ∈ Bk(x) :
√

∆a,b ∈ kcyc},

Y3(x) = {(a, b) ∈ Bk(x) : µ3 ⊆ k and 3
√

∆a,b ∈ kcyc}.

By Proposition 2.1, we have {(a, b) ∈ Bk(x) : ρE(a,b)(Gk) 6= Hk} ⊆ Y1(x) ∪ Y2(x) ∪ Y3(x), and thus

|{(a, b) ∈ Bk(x) : ρE(a,b)(Gk) 6= Hk}| ≤ |Y1(x)|+ |Y2(x)|+ |Y3(x)|.

By Proposition 5.2, we have |Y1(x)|/|Bk(x)| �k,||·|| (log x)β/x[k:Q]/2, where β ≥ 1 is an absolute
constant. By Proposition 6.1, we have

|Y2(x)|
|Bk(x)|

�k,||·||
log x√
x

and
|Y3(x)|
|Bk(x)|

�k,||·||
log x√
x
.
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Combining everything together gives:

|{(a, b) ∈ Bk(x) : ρE(a,b)(Gk) 6= Hk}|
|Bk(x)|

�k,||·|| max
{(log x)β

x[k:Q]/2
,
log x√
x

}
� log x√

x
,

where the last bound uses k 6= Q.

7.2. Proof of Theorem 1.6. The theorem is easily deduced by combining the criterion of Lemma 2.4
with Proposition 5.2 and Proposition 5.7 (with m = 72).

Appendix A. Group theory for SL2

In this appendix, we collect several basic facts about the groups SL2(Z/mZ). We will need to
pay special attention to the primes 2 and 3.

A.1. Abelianizations.

Lemma A.1. Let m be a positive integer, and define b := gcd(m, 12). Reduction modulo b induces
an isomorphism SL2(Z/mZ)ab ∼→ SL2(Z/bZ)ab. The group SL2(Z/mZ)ab is cyclic of order b.

Proof. It is well-known that the group PSL2(Z) := SL2(Z)/{±I} has a presentation 〈A,B : A2 =
1, B3 = 1〉, thus PSL2(Z)ab is a cyclic group of order 6. Under the quotient map, SL2(Z)′ surjects
on to PSL2(Z)′, so SL2(Z)ab has order 6 or 12.

For each positive integer m, reduction modulo m gives a surjective homomorphism SL2(Z) �
SL2(Z/mZ) (see [Shi94, Lemma 1.38]). We leave it to the reader to verify that the groups
SL2(Z/2Z)ab, SL2(Z/3Z)ab and SL2(Z/4Z)ab are cyclic of order 2, 3 and 4 respectively. We de-
duce that SL2(Z)ab is cyclic of order 12 and that reduction modulo 12 induces an isomorphism
SL2(Z)ab ∼→ SL2(Z/12Z)ab. The lemma is easily deduced from this isomorphism. �

A.2. Reductions.

Lemma A.2. Let ` be a prime, n ≥ 1 an integer, and H a subgroup of SL2(Z/`nZ).

((i)) If ` ≥ 5 and the image of H modulo ` is SL2(Z/`Z), then H = SL2(Z/`nZ).
((ii)) If n ≥ 2 and the image of H modulo `2 is SL2(Z/`2Z), then H = SL2(Z/`nZ).

Proof. Part (i) is due to Serre, see [Ser98, IV-23 Lemma 3]. We now prove (ii). By induction, it
suffices to show that for each r ≥ 2, no proper subgroup of SL2(Z/`r+1Z) reduces modulo `r to the
full group SL2(Z/`rZ). Let G be any subgroup of SL2(Z/`r+1Z) such that G mod `r = SL2(Z/`rZ).
It suffices to show that G contains the abelian group s := {A ∈ SL2(Z/`r+1Z) : A ≡ I mod `r}.

The group s has a natural structure as an SL2(Z/`Z)-module; i.e., conjugate by any lift to
SL2(Z/`r+1Z). As an SL2(Z/`Z)-module, s is generated by

I + `r ( 0 1
0 0 ) and I + `r ( 0 0

1 0 ) .

Since G mod ` = SL2(Z/`Z), we find that G ∩ s is an SL2(Z/`Z)-submodule of s. Take any
B ∈ {( 0 1

0 0 ) , ( 0 0
1 0 )}. We shall now show that I + `rB ∈ G, which will complete the proof of (ii). By

assumption, there exists a g ∈ G such that g ≡ I + `r−1B mod `r. Taking `-th powers, and using
r ≥ 2 and B2 = 0, we find that I + `rB = g` ∈ G. �

Remark A.3. Lemma A.2(i) is not true for ` = 2 and 3 (see [Ser98, IV-28 Exercises 2 and 3]).
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A.3. Goursat’s lemma. For a finite group G, let J (G) be the set of non-abelian simple groups,
up to isomorphism, which occur in some/any composition series of G.

Lemma A.4 (Goursat’s lemma). Let G1, . . . , Gn be finite groups, and assume that for each i 6= j,
J (Gi) ∩ J (Gj) = ∅ and gcd(|Gab

i |, |Gab
j |) = 1. Let H be a subgroup of G1 × · · · × Gn such that

pri(H) = Gi for every projection pri : G1 × · · · ×Gn → Gi. Then H = G1 × · · · ×Gn.

Proof. By induction, we may reduce to the case n = 2. Define N1 = pr1(H ∩ (G1 × {1})) and
N2 = pr2(H ∩ ({1}×G2)) which are normal subgroups of G1 and G2 respectively. The image of H
in G1/N1 ×G2/N2 is the graph of an isomorphism

(A.1) G1/N1
∼= G2/N2;

this fact is usually called Goursat’s lemma (see [Rib76, Lemma 5.2.1]). We deduce that J (G1/N1)
is a subset of J (G1) ∩ J (G2) = ∅, thus the group G1/N1 is solvable. The groups G1 and G2 have
no common abelian quotients besides 1 (this follows from the assumption gcd(|Gab

1 |, |Gab
2 |) = 1), so

from (A.1) and the solvability, we deduce that G1 = N1 and G2 = N2. From the definition of the
Ni, we find that H contains {1} ×G2 and G1 × {1}, hence H = G1 ×G2. �

Lemma A.5 ([Lan02, XIII Theorem 8.4]). For ` ≥ 5, PSL2(Z/`Z) := SL2(Z/`Z)/{±I} is a
non-abelian simple group of order (`3 − `)/2. The groups SL2(Z/2Z) and SL2(Z/3Z) are solvable.

Lemma A.6. Let m and n be relatively prime positive integers and let H be a subgroup of
SL2(Z/mnZ). Then H = SL2(Z/mnZ) if and only if H surjects onto SL2(Z/mZ) and SL2(Z/nZ)
by reduction modulo m and n, respectively.

Proof. Using Lemma A.5 and the solvability of `-groups, we deduce that for any positive integer
d, J (SL2(Z/dZ)) = {PSL2(Z/`Z) : `|d, ` ≥ 5}. Since m and n are relatively prime, we have
J (SL2(Z/mZ)) ∩ J (SL2(Z/nZ)) = ∅. By Lemma A.1,

gcd(| SL2(Z/mZ)ab|, |SL2(Z/nZ)ab|) = gcd(m,n, 12) = 1.

The lemma is now a direct consequence of Lemma A.4. �

Lemma A.7. Let H be a closed subgroup of SL2(Ẑ). Then H = SL2(Ẑ) if and only if H mod 4 =
SL2(Z/4Z), H mod 9 = SL2(Z/9Z), and H mod ` = SL2(Z/`Z) for all ` ≥ 5.

Proof. We have H = SL2(Ẑ) if and only if H mod m = SL2(Z/mZ) holds for all positive integers
m. By Lemmas A.2 and A.6, this equivalent to having H mod m = SL2(Z/mZ) whenever m is 4,
9, or a prime ≥ 5. �

A.4. Conjugacy classes with fixed determinant.

Lemma A.8. Let ` be a prime and H a subgroup of GL2(F`). Fix an element d ∈ F×` and assume
that (`, d) 6= (3,−1). If H ∩C 6= ∅ for every conjugacy class C of GL2(F`) with det(C) = {d}, then
H ⊇ SL2(F`).

Proof. If H was contained in a Borel subgroup of GL2(F`) (i.e., in a subgroup conjugate to the
group of upper triangular matrices), then the main hypothesis of the lemma would imply that every
semisimple matrix in GL2(F`) of determinant d is diagonalizable over F`; which is false. Therefore
H is not contained in a Borel subgroup of GL2(F`).

Let us first suppose that d = b2 for some b ∈ F×` . The group H then contains an element
conjugate in GL2(F`) to b · ( 1 1

0 1 ). In particular, |H| ≡ 0 mod `. By [Ser72, Proposition 15] (which
needs the condition |H| ≡ 0 mod `), we deduce that either H is contained in a Borel subgroup of
GL2(F`) or that H contains SL2(F`). Since we have already ruled out the Borel case, we deduce
that H ⊇ SL2(F`).
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Now suppose that d is not a square in F×` . So by our assumption (`, d) 6= (3,−1), we have ` ≥ 5.
Without loss of generality, we may assume that H contains the scalar matrices in GL2(F`). Since
d is not a square, we have det(H) = F×` .

We shall now show that H = GL2(F`). Let Hd be the set of elements of H with determinant d.
The main hypothesis of the lemma implies that

(A.2) {A ∈ GL2(F`) : det(A) = d} =
⋃

g∈GL2(F`)/H

gHdg
−1.

By counting both sides, we find that the expression (A.2) must be a disjoint union. Therefore

(A.3)
⋃
h∈Hd

{g ∈ GL2(F`) : ghg−1 ∈ H} ⊆ H.

Using (A.3), we deduce that H contains both split and non-split Cartan subgroups of GL2(F`) (see
[Ser72, §2.1] for definitions; we have used that a Cartan subgroup of GL2(F`) is abelian and that
det(C) = F×` ). Proposition 17 of [Ser72] implies that either H = GL2(F`) or that H is contained
in the normalizer of a Cartan subgroup. The second case is ruled out by Proposition 14 of [Ser72]
which implies that the normalizer of a Cartan subgroup in GL2(F`) cannot contain both split and
non-split Cartan subgroups (this last step requires ` ≥ 5). �

Remark A.9. Let H be a 2-Sylow subgroup of GL2(F3). Then H ∩ C 6= ∅ for every conjugacy
class C of GL2(F3) with det(C) = {−1}, but H 6⊇ SL2(F3). This justifies the extra condition in
Lemma A.8.

Lemma A.10. Let m be a positive integer and let H be a subgroup of GL2(Z/mZ). If H ∩ C 6= ∅
for every conjugacy class C of GL2(Z/mZ) with determinant 1, then H ⊇ SL2(Z/mZ).

Proof. By replacing H with H ∩SL2(Z/mZ), we may assume that H is a subgroup of SL2(Z/mZ).
By Lemma A.6, it suffices to consider the case where m is a prime power. By Lemma A.2, we
may further assume that m is 4, 9, or a prime. The case where m is prime, is a consequence of
Lemma A.8.

We may thus assume that m = `2, where ` = 2 or 3. There is an exact sequence

1→ s→ SL2(Z/mZ) mod `→ SL2(Z/`Z)→ 1.

Since s is abelian, it has a natural SL2(Z/`Z)-action, that is, lift to an element of SL2(Z/mZ) and
act via conjugation on s. By the prime case of the lemma, we find that the image of H modulo `
is SL2(Z/`Z). Therefore H ∩ s is a normal subgroup of SL2(Z/mZ).

If ` = 3, then H ∩ s contains an element conjugate in GL2(Z/9Z) to A := ( 1 3
3 1 ). The conjugacy

classes of A in SL2(Z/9Z) and GL2(Z/9Z) are equal and have cardinality 12. Since H ∩ s is a
normal subgroup of SL2(Z/9Z), we deduce that H ∩ s contains at least 12 elements. Since |s| = 27,
we conclude that H ∩ s = s and hence H = SL2(Z/9Z).

If ` = 2, then H ∩ s contains B := ( 3 0
0 3 ) which is in the center of GL2(Z/4Z). Also H ∩ s must

contain at least one element not in {I,B}. Since |s| = 8, we have

[SL2(Z/4Z) : H] = [s : H ∩ s] ∈ {1, 2}.

Suppose that [SL2(Z/4Z) : H] = 2. Then H is a normal subgroup of SL2(Z/4Z) with quotient
cyclic of order 2. However, by Lemma A.1 there is only one index 2 subgroup of SL2(Z/4Z), and
when reduced modulo 2, it does not have image SL2(Z/2Z). Therefore [SL2(Z/4Z) : H] = 1. �
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