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Abstract. Let E be a nonisotrivial elliptic curve over Q(T ) and denote the rank of the
abelian group E(Q(T )) by r. For all but finitely many t ∈ Q, specialization will give an
elliptic curve Et over Q for which the abelian group Et(Q) has rank at least r. Conjecturally,
the set of t ∈ Q for which Et(Q) has rank exactly r has positive density. We produce the
first known example for which Et(Q) has rank r for infinitely many t ∈ Q. For our particular
E/Q(T ) which has rank 0, we will make use of a theorem of Green on 3-term arithmetic
progressions in the primes to produce t ∈ Q for which Et has only a few bad primes that
we understand well enough to perform a 2-descent.

1. Introduction

Let E be an elliptic curve over the function field Q(T ) that is nonisotrivial, i.e., its j-
invariant does not lie in Q. Fix a Weierstrass model of E with coefficients in Q[T ] and
denote its discriminant by ∆. For all t ∈ Q with ∆(t) ̸= 0, evaluating the coefficients of the
model by t gives an elliptic curve Et over Q.

The group E(Q(T )) is a finitely generated abelian group whose rank we will denote by
r. A theorem of Silverman [Sil83] says that the group Et(Q) has rank at least r for all but
finitely many t ∈ Q. Let N (E) and J (E) be the set of t ∈ Q with ∆(t) ̸= 0 for which Et(Q)
has rank equal to r and rank strictly greater than r, respectively.

Conjecturally the sets N (E) and J (E) both have positive density in Q with respect to
the natural height, cf. [CP23, §4] for a heuristic. There has been much study on the set
J (E) which describes the Et for which their rank “jumps”, cf. [Sal12] and the references
therein. We will instead focus on the set N (E) and the following weaker conjecture.

Conjecture 1.1. The set N (E) is infinite, i.e., there are infinitely many t ∈ Q for which
Et(Q) has rank r.

Our main result gives the first unconditional example for which Conjecture 1.1 holds.

Theorem 1.2. Let E/Q(T ) be the elliptic curve defined by the equation y2 = x(x2−x+T ).
The group E(Q(T )) has rank 0 and Et(Q) has rank 0 for infinitely many t ∈ Q.

Take E/Q(T ) as in Theorem 1.2. The goal is to find specializations Et/Q for which the
curve has few bad primes and for which they are all explicitly understood. In order to bound
the rank of Et(Q), we will bound the cardinality of its 2-Selmer group and this will depend
on the knowledge of these bad primes.

Let us describe the specializations we use in our proof of Theorem 1.2. Take any positive
integers m and n for which m, m + n and m + 2n are all primes that are congruent to 3
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modulo 8. With t := m+n
2m

∈ Q, we shall prove that Et(Q) has rank 0. The elliptic curve Et

has good reduction away from the primes 2, m, m+ n and m+ 2n.
A theorem of Green [Gre05], later generalized by Green and Tao [GT08], will be used

to show that there are infinitely many such arithmetic progressions of primes; this is the
source of the infiniteness in Theorem 1.2. Alternatively, this could be proved with a minor
modification of the classical circle method argument that van der Corput used in 1939 to
prove that there are infinitely many 3-term arithmetic progressions of primes.

For our elliptic curve E, it is easy to show that the set J (E) is also infinite. Indeed, using
Silverman’s result one can prove that (1, b) is a point of infinite order on Eb2 for all but
finitely many b ∈ Q.

In a followup paper [Zyw25], we will give another example of Conjecture 1.1 with r = 2.

1.1. Some earlier conditional results. Let E/Q(T ) be the elliptic curve given by y2 =
x(x + 1)(x + T ). Caro and Pasten [CP23] showed that E satisfies Conjecture 1.1 if there
are infinitely many Mersenne primes. Moreover, given any Mersenne prime p = 2q − 1 with
q ≥ 5, they show that E2q(Q) has rank 0. Note that such an elliptic curve E2q has good
reduction away from 2 and p. The existence of infinitely many Mersenne primes is of course
a famous open problem.

Let E/Q(T ) be the elliptic curve given by y2 = x3 − (T + 1)/4 · x2 − x. If p is a prime of
the form t2 + 64 for an integer t, then one can show that Et(Q) has rank 0. These elliptic
curves have been studied in [Neu71, Set75, SW04]. Note that such an elliptic curve Et has
good reduction away from p. The existence of infinitely many primes of the form t2 + 64
with t ∈ Z is an open problem (a special case of the Bunyakovsky conjecture).

1.2. Aside: the isotrivial case. For Conjecture 1.1, it is important that E is assumed
to be nonisotrivial and not just nonconstant. Consider the isotrivial elliptic curve E/Q(T )
defined by y2 = x(x2 − (7 + 7T 4))2. Cassels and Schinzel [CS82] observed that E(Q(T )) has
rank 0 and expected that Et(Q) has rank at least 1 for all t ∈ Q. Indeed, the root number
of each Et is −1 and hence the rank of Et(Q) should be odd by the parity conjecture.

It is straightforward to find isotrivial and nonconstant examples for which the conclusion
of Conjecture 1.1 holds. Consider the elliptic curve E/Q(T ) defined by the equation y2 =
x3 + Tx. Then Ep(Q) has rank 0 for all primes p that are congruent to 7 or 11 modulo 16,
cf. [Sil09, Proposition 6.2].

What makes the nonisotrivial case more difficult is that it is harder to produce t ∈ Q for
which Et has bad reduction at only a few primes which are easy to describe. This is clear
from our example and the earlier conditional examples in §1.1.

2. Main computation

Consider any positive integers m and n for which m, m+n and m+2n are all primes that
are congruent to 3 modulo 8. Set a := −4m2 and b := 8m3(m + n), and define the elliptic
curve E over Q by

y2 = x(x2 + ax+ b) = x(x2 − 4m2x+ 8m3(m+ n)).(2.1)

In this section we shall prove that E(Q) has rank 0.

Remark 2.1. Set t := (m+n)/(2m) ∈ Q. In our proof of Theorem 1.2 in §3, we will see that
this curve is isomorphic to the elliptic curve Et/Q with notation as in Theorem 1.2.
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Set a′ := −2a = 8m2 and b′ := a2 − 4b = −16m3(m+2n), and define the elliptic curve E ′

over Q by

y2 = x(x2 + a′x+ b′) = x(x2 + 8m2x− 16m3(m+ 2n)).(2.2)

There is an isogeny ϕ : E → E ′ given by ϕ(x, y) = (y2/x2, y(b− x2)/x2) whose kernel E[ϕ] is

cyclic of order 2 and generated by (0, 0). Let ϕ̂ : E ′ → E be the dual isogeny of ϕ; its kernel

E ′[ϕ̂] is generated by the 2-torsion point (0, 0) of E ′.
The discriminant of the Weierstrass models (2.1) is −214m9(m+ n)2(m+ 2n). Therefore,

E and E ′ both have good reduction at all primes away from the set {2,m,m+ n,m+ 2n}.
For each prime p, we let cp(E) and cp(E

′) be the Tamagawa number of E and E ′, respec-
tively, at p. For each prime p, we will denote by ordp the discrete valuation on Qp with
valuation ring Zp normalized so that ordp(p) = 1.

Let W (E) be the global root number of E/Q. We will now show that W (E) = 1; the
Birch and Swinnerton–Dyer conjecture would imply that this is a necessary condition for
E(Q) to have rank 0.

Lemma 2.2.

(i) We have W (E) = 1.
(ii) We have

∏
p cp(E) = 8.

Proof. The root numberW (E) is the product of the local root numbersWv(E) over the places
v of Q, see [Roh93] for descriptions of the local root numbers. The local root number at the
archimedean place is −1 and Wp(E) = 1 for all primes p for which E has good reduction.
So to determine W (E), we need only compute Wp(E) with p ∈ {2,m,m+ n,m+ 2n}.

The elliptic curve E/Q is given by the Weierstrass equation

y2 = x(x2 − 4m2x+ 8m3(m+ n)) = x((x− 2m2)2 + 4m3(m+ 2n))

which has discriminant ∆ = −214m9(m+n)2(m+2n). We will make use of Tate’s algorithm
[Sil94, Algorithm 9.4] at each bad prime. In particular, we will find that the aboveWeierstrass
model is minimal.

First consider the prime p := m. Applying Tate’s algorithm, we find that E has Kodaira
symbol III∗ at p and hence cp(E) = 2. If p > 3, then [Roh93, Proposition 2(v)] implies that
Wp(E) =

(−2
p

)
= 1, where the last equality uses that p ≡ 3 (mod 8). When p = 3, we also

have Wp(E) = 1; this can be read off [Hal98, Table 2] by using only the Kodaira symbol.
Consider the prime p := m+n. We have ordp(∆) = 2 and y2 ≡ −4m2 ·x2+x3 (mod p), so

E has Kodaira symbol I2 at p and hence cp(E) = 2. The curve E has nonsplit multiplicative

reduction at p since
(−4m2

p

)
=

(−1
p

)
= −1, where the last equality uses that p ≡ 3 (mod 4).

We have Wp(E) = 1 by [Roh93, Proposition 3].
Consider the prime p := m+ 2n. We have ordp(∆) = 1 and

y2 ≡ x(x− 2m2)2 ≡ 2m2 · (x− 2m2)2 + (x− 2m2)3 (mod p),

so E has Kodaira symbol I1 at p and hence cp(E) = 1. The curve E has nonsplit multiplica-

tive reduction at p since
(
2m2

p

)
=

(
2
p

)
= −1, where the last equality uses that p ≡ 3 (mod 8).

We have Wp(E) = 1 by [Roh93, Proposition 3].
Finally consider the prime p = 2. Applying Tate’s algorithm, we find that E has Kodaira

symbol III∗ at 2 and hence c2(E) = 2. The root number W2(E) can be computed using
3



Table 1 of [Hal98] (in the notation of the table, we have ord2(c4) = 7, ord2(c6) = 10,
ord2(∆) = 14, c′4 = −m4 − 3m3n ≡ 7 (mod 8) and c′6 = −5m6 − 9m5n ≡ 3 (mod 8)). We
have W2(E) = −1.

We haveW (E) = −
∏

pWp(E) and henceW (E) = −(−1) = 1 by the above computations.

Since cp(E) = 1 for each prime p for which E has good reduction, the above computations
show that

∏
p cp(E) = 8. □

Lemma 2.3. We have
∏

p cp(E
′) = 4.

Proof. The elliptic curve E ′/Q is isomorphic to the curve given by the Weierstrass equation

y2 = x(x2 + 2m2x−m3(m+ 2n)) = x((x+m2)2 − 2m3(m+ n))

which has discriminant ∆′ = 27m9(m+n)(m+2n)2 (replacing x and y in (2.2) by 4x and 8y
will produce the above model). Using that m, m+n and m+2n are distinct odd primes, we
can apply Tate’s algorithm [Sil94, Algorithm 9.4] for the primes p ∈ {2,m,m + n,m + 2n}
to show that the above Weierstrass model is minimal and that the Kodaira symbols of E
at 2, m, m + n and m + 2n are equal to II, III∗, I1 and I2, respectively. In these cases,
the Tamagawa numbers are determined by the Kodaira symbols and we have c2(E

′) = 1,
cm(E

′) = 2, cm+n(E
′) = 1 and cm+2n(E

′) = 2, cf. [Sil94, Algorithm 9.4]. The lemma follows
since cp(E

′) = 1 for all primes p for which E ′ has good reduction. □

We will now compute the Selmer groups associated to the isogenies ϕ and ϕ̂. For basic
definitions and results see [Sil09, §X.4]. In particular, [Sil09, §X.4 Example 4.8] contains the
relevant formulae for our computations. Set GalQ := Gal(Q/Q). Starting with the short

exact sequence 0 → E[ϕ] → E
ϕ−→ E ′ → 0 and taking Galois cohomology yields an exact

sequence

0 → E(Q)[ϕ] → E(Q)
ϕ−→ E ′(Q)

δ−→ H1(GalQ, E[ϕ]).

The image of δ lies in the ϕ-Selmer group Selϕ(E/Q) ⊆ H1(GalQ, E[ϕ]). Since E[ϕ] and {±1}
are isomorphism GalQ-modules, we have isomorphisms

H1(GalQ, E[ϕ])
∼−→ H1(GalQ, {±1}) ∼−→ Q×/(Q×)2.(2.3)

Using (2.3) as an identification, we may view δ as a homomorphism E ′(Q) → Q×/(Q×)2. For
any point (x, y) ∈ E ′(Q)− {0, (0, 0)}, we have δ((x, y)) = x · (Q×)2. We also have δ(0) = 1
and δ((0, 0)) = b′ · (Q×)2.

For each d ∈ Q×, let Cd be the smooth projective curve over Q defined by the affine
equation

dw2 = d2 + a′dz2 + b′z4.

Using (2.3), we can identify Selϕ(E/Q) with a subgroup of Q×/(Q×)2. In fact, we have

Selϕ(E/Q) = {d ∈ Q×/(Q×)2 : Cd(Qv) ̸= ∅ for all places v of Q}.

Lemma 2.4. We have | Selϕ(E/Q)| = 2.

Proof. Take any squarefree integer d that represents a square class in Selϕ(E/Q). We have
Cd(Qv) ̸= ∅ for all places v of Q. By changing variables, we see that Cd is isomorphic to the
smooth projective curve C ′

d over Q given by the affine model

y2 = dx4 + a′/4 · x2 + b′/(16d) = dx4 + 2m2x2 −m3(m+ 2n)/d.(2.4)
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First suppose that d is divisible by a prime p ∤ m(m + 2n). Since C ′
d(Qp) ̸= ∅, there

is a point (x, y) ∈ Q2
p satisfying (2.4); the points at infinity are not defined over Qp since

d is not a square in Qp. If x ∈ Zp, then from (2.4) we find that ordp(y
2) is equal to

ordp(−m3(m + 2n)/d) = −1. If x /∈ Zp, then from (2.4) we find that ordp(y
2) is equal to

ordp(dx
4) = 1 + 4 ordp(x). In either case, ordp(y

2) = 2 ordp(y) is an odd integer which is a
contradiction. Therefore, if a prime divides d, then it must be m or m + 2n. In particular,
d ∈ {±1,±m,±(m+ 2n),±m(m+ 2n)}.

Now suppose that d ≡ ±3 (mod 8). The integer d is not a square in Q2, so the points
at infinity of the model (2.4) are not defined over Q2. Since C ′

d(Q2) ̸= ∅, there is a point
(x, y) ∈ Q2

2 satisfying (2.4). First suppose that x ∈ Z2 and hence y ∈ Z2 as well. If
x ∈ 2Z2, then y2 ≡ −m3(m + 2n)/d ≡ ±3 (mod 8). If x ∈ Z×

2 , then y2 ≡ d + 2 −
1/d ≡ d + 2 − d ≡ 2 (mod 8). In both of these computations we have used that m and
m + 2n are congruent to 3 modulo 8. Since 3, −3 and 2 are not squares modulo 8, we
deduce that x /∈ Z2. Define e := − ord2(x) ≥ 1. Since m and d are odd, we find that
2 ord2(y) = ord2(y

2) = ord2(dx
4) = −4e and hence ord2(y) = −2e. Multiplying (2.4) by 24e

gives (22ey)2 = d(2ex)4 + 22e+1m2(2ex)2 − 24em3(m + 2n)/d. Reducing modulo 8, we find
that d is a square modulo 8 which contradicts that d ≡ ±3 (mod 8).
We thus have d ̸≡ ±3 (mod 8). Since m and m + 2n are congruent to 3 modulo 8, we

must have d ∈ {±1,±m(m+ 2n)}.
Now suppose that d = −1. The curve C ′

d is given by the model

y2 = −x4 + 2m2x2 +m3(m+ 2n) = −(x2 −m2)2 + 2m3(m+ n).(2.5)

Set p := m+n. We note that −1 is not a square modulo p since p ≡ 3 (mod 4). The integer
−1 is not a square in Qp so the points at infinity of the model of C ′

d are not defined over Qp.
Since C ′

d(Qp) ̸= ∅, there is a point (x, y) ∈ Q2
p satisfying (2.5). Define z := x2 −m2 ∈ Qp;

we have y2 = −z2 + 2m3p. If z ∈ pZp, then 2 ordp(y) = ordp(2m
3p) = 1 which is impossible.

If z ∈ Z×
p , then y2 ≡ −z2 (mod p) and hence −1 is a square modulo p which is impossible.

Define e := − ordp(z) ≥ 1. We have 2 ordp(y) = ordp(y
2) = ordp(z

2) = −2e and hence
ordp(y) = −e. Therefore, (pey)2 = −(pez)2 + 2m3p1+2e and reducing modulo p shows that
−1 is a square modulo p which is impossible. Therefore, d ̸= −1.
We have now shown that every element of Selϕ(E/Q) is represented by the square class of

an integer d ∈ {1,±m(m + 2n)}. Since Selϕ(E/Q) is an abelian 2-group, it must be cyclic
of order 1 or 2. The group Selϕ(E/Q) has order 2 since it contains δ((0, 0)) = b′ · (Q×)2 =
−m(m+ 2n) · (Q×)2 and m(m+ 2n) is not a square. □

We now compute the cardinality of the Selmer group Selϕ̂(E
′/Q).

Lemma 2.5. We have | Selϕ̂(E ′/Q)| = 2.

Proof. For a choice of minimal Weierstrass model y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

of E/Q, we define the invariant differential ω := dx/(2y + a1x + a3) on E. We denote the
integral of |ω| over E(R) by ΩE. We similarly define a differential ω′ on E ′ and a period ΩE′ .
By equation (6.2) of [SS04], which is a reformulation of a result of Cassels from [Cas65],

we have
| Selϕ̂(E ′/Q)|
| Selϕ(E/Q)|

=
|E ′(Q)[ϕ̂]|
|E(Q)[ϕ]|

· ΩE

ΩE′
·
∏
p

cp(E)

cp(E ′)
.
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We have | Selϕ(E/Q)| = 2 by Lemma 2.4 and
∏

p cp(E)/cp(E
′) = 2 by Lemmas 2.2(ii) and

2.3. Therefore,

| Selϕ̂(E
′/Q)| = 4 · ΩE/ΩE′ .

There is a unique real number c for which c · ϕ∗ω′ = ω. From [DD15, Theorem 1.2], we
have ΩE/ΩE′ = |c|. As noted in the proof of [DD15, Theorem 8.2], we have |c| ∈ {1, 1/2}.
Therefore, ΩE/ΩE′ is either 1 or 1/2.

Suppose that ΩE/ΩE′ = 1. Since
∏

p cp(E)/cp(E
′) = 2, [DD15, Theorem 8.2] implies that

the order of vanishing of the L-function L(E, s) at s = 1 is odd. Equivalently, the global
root number W (E) is −1 which contradicts Lemma 2.2(i). Therefore, ΩE/ΩE′ = 1/2 and
we conclude that | Selϕ̂(E ′/Q)| = 2. □

We can now bound the cardinality of the 2-Selmer group of E/Q.

Lemma 2.6. We have | Sel2(E/Q)| ≤ 2.

Proof. By [SS04, Lemma 6.1], we have an exact sequence

0 → E ′(Q)[ϕ̂]/ϕ(E(Q)[2])
α−→ Selϕ(E/Q)

β−→ Sel2(E/Q)
γ−→ Selϕ̂(E

′/Q)

of groups. The discriminant of x2−4m2x+8m3(m+n) is divisible by the primem+2n exactly

once and hence is not a square. Therefore, E(Q)[2] = ⟨(0, 0)⟩ and so E ′(Q)[ϕ̂]/ϕ(E(Q)[2])
is a cyclic group of order 2. This implies that the injective homomorphism α is surjective
since | Selϕ(E/Q)| = 2 by Lemma 2.4. By the exactness, β is the zero map and hence γ
is an injective homomorphism Sel2(E/Q) ↪→ Selϕ̂(E

′/Q). The lemma is now an immediate
consequence of Lemma 2.5. □

Let r be the rank of E(Q). Since E(Q) has a point of order 2, we have |E(Q)/2E(Q)| ≥
21+r. There is an injective homomorphism E(Q)/2E(Q) ↪→ Sel2(E/Q) which implies that
E(Q)/2E(Q) has cardinality at most 2 by Lemma 2.6. So 21+r ≤ 2 and we conclude that
r = 0.

3. Proof of Theorem 1.2

Let A be the set of primes that are congruent to 3 modulo 8; it has relative density 1/4
in the set of all primes. A theorem of Green [Gre05] implies that A contains infinitely many
arithmetic progressions of length 3.

Now consider one of the infinitely many pairs (m,n) of positive integers for which m, m+n
and m + 2n are all primes that lie in A. Define t := (m + n)/(2m) ∈ Q. The elliptic curve
Et/Q is given by the equation y2 = x(x2 − x+ t). With x′ := 4m2x and y′ := 8m3y, we find
that Et is isomorphic to the elliptic curve over Q given by the model

y′2 = x′(x′2 − 4m2x′ + 8m3(m+ n)).

By the computation of §2, we deduce that Et(Q) has rank 0. Note that t = (m+n)/(2m) is
in lowest terms, so from t we can recover the pair (m,n). We have thus proved that Et(Q)
has rank 0 for infinitely many t ∈ Q.

Finally let r be the rank of E(Q(T )). From Silverman [Sil83], we know that r is less than
or equal to the rank of Et(Q) for all but finitely many t ∈ Q. Since we have shown that
Et(Q) has rank 0 for infinitely many t ∈ Q, we deduce that r = 0.
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