ON THE POSSIBLE IMAGES OF THE MOD ¢ REPRESENTATIONS
ASSOCIATED TO ELLIPTIC CURVES OVER Q

DAVID J. ZYWINA

ABSTRACT. Consider a non-CM elliptic curve E defined over Q. For each prime ¢, there is a
representation pg.: Gal(Q/Q) — GL2(F,) that describes the Galois action on the ¢-torsion points
of E. A famous theorem of Serre says that pg, is surjective for all large enough ¢. We will
describe all known, and conjecturally all, pairs (E,¥¢) such that pg ¢ is not surjective. Together
with another paper, this produces an algorithm that given an elliptic curve E/Q, outputs the set
of such exceptional primes £ and describes all the groups pg.¢(Gal(Q/Q)) up to conjugacy. Much
of the paper is dedicated to computing various modular curves of genus 0 with their morphisms to
the j-line.

1. POSSIBLE IMAGES

Consider an elliptic curve E defined over Q. For each prime ¢, let E[¢] be the ¢-torsion subgroup
of E(Q), where Q is a fixed algebraic closure of Q. The group E[/] is a free Fy-module of rank 2 and
there is a natural action of the absolute Galois group Galg := Gal(Q/Q) on E[¢] which respects the
group structure. After choosing a basis for E[¢], this action can be expressed in terms of a Galois
representation

PE (- GalQ — GLQ(]F();
its image pp ¢(Galg) is uniquely determined up to conjugacy in GL2(IFy). A renowned theorem of
Serre [Ser72] says that pg is surjective for all but finitely many ¢ when E is non-CM.

In this paper, we shall describe all known (and conjecturally all) proper subgroups of GLa(Fy)
that occur as the image of such a representation pg ¢. Applying our classification with earlier work,
we will obtain an algorithm to determine the set S of primes ¢ for which pg ¢ is not surjective and
also compute pg ¢(Galg) for each £ € S.

Before stating our classification in §§1.1-1.7, let us make some comments. We will consider each
prime ¢ separately. For simplicity, assume that the j-invariant jp € Q of E/Q is neither 0 nor
1728. Our first step in determining pg ¢(Galg) is to compute the group

G := +pp(Galg),

i.e., the group generated by —I and pg¢(Galg). The benefit of studying G, up to conjugacy in
GL2(Fy), is that it does not change if E is replaced by a quadratic twist. Moreover, if E'/Q is a
quadratic twist of £//Q, then after choosing appropriate bases, we will have ppr ¢ = x - pg ¢ for some
quadratic character x: Galg — {£1}. Since jg ¢ {0,1728}, all twists of E are quadratic twists
and hence G, up to conjugacy, depends only on the value jg. The character detopg,: Galg — F/
describes the Galois action on the ¢-th roots of unity, so det(G) =F’.

For a subgroup G of GLy(F;) with det(G) =F; and —I € G, we can associate a modular curve
X@; it is a smooth, projective and geometrically irreducible curve defined over Q. It comes with a
natural morphism

G Xa — SpecQ[j] U {oo} =: P(b
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such that for an elliptic curve E/Q with jg ¢ {0,1728}, the group pg((Galg) is conjugate in
GL2(Fy) to subgroup of G if and only if the jg = mg(P) for some rational point P € X¢(Q).

Much of this paper is dedicated to describing those modular curves X¢ of genus 0 with X (Q) #
(). Such modular curves are isomorphic to the projective line and their function field is of form Q(h)
for some modular function h of level £. Giving the morphism 7w is then equivalent to expressing
the modular j-invariant in the form J(h) for a unique rational function J(t) € Q(t).

Once we have determined G, we know that pg ¢(Galg) will either be the full group G or equal to
an index 2 subgroup H of G for which —I ¢ H. For each such H, it is then a matter of determining

whether the quadratic character Galg 2L GG JH = {£1} is trivial or not.

We will first focus on the general case of non-CM elliptic curves over Q. In §1.9, we will give a
complete description of the groups pg ¢(Galg) when E/Q has complex multiplication.

Notation. We now define some specific subgroups of GLy(F,) for an odd prime ¢. Let Cs(¢) be
the subgroup of diagonal matrices. Let € = —1 if £ = 3 (mod 4) and otherwise let € > 2 be the
smallest integer which is not a quadratic residue modulo ¢. Let C5(¢) be the subgroup consisting
of matrices of the form (¢ %) with (a,b) € F7 — {(0,0)}. Let Ny(¢) and Nys(¢) be the normalizers
of Cs(¢) and C5(¢), respectively, in GLa(F;). We have [Ng(¢) : Cs(¢)] = 2 and the non-identity
coset of Cs(¢) in Ny(¢) is represented by (9 §). We have [Nys(¢) : Cp5(€)] = 2 and the non-identity
coset of Cps(£) in Nps(€) is represented by (§ ). Let B(f) be the subgroup of upper triangular
matrices in GLy(Fy).

1.1. £=2. Up to conjugacy, there are three proper subgroups of GLa(F2):

Gi={I}, G:={L (1)}, Gs={L(i5). (YD}
For i = 1,2 and 3, the index [GLy(F2) : G;] is 6, 3 and 2, respectively. Define the rational functions

2+t 4+1)° t41)°
(t?(t+1)2)’ Bty =256 ) 217,

Ji(t) = 256 ;

Theorem 1.1. Let E be a non-CM elliptic curve over Q. Then pg2(Galg) is conjugate in GLa(FF2)
to a subgroup of G; if and only if jg is of the form J;(t) for some t € Q.

1.2. £ = 3. Define the following subgroups of GLy(F3):

Let G be the group Cs(3).

Let G be the group Ns(3).

Let G3 be the group B(3).

Let G4 be the group Nys(3).

Let Hi1 be the subgroup consisting of the matrices of the form (§9).
Let Hs 1 be the subgroup consisting of the matrices of the form (§*).
Let H3 2 be the subgroup consisting of the matrices of the form (g 7).

The index in GLg(F3) of the above subgroups are 12, 6, 4, 3, 24, 8 and 8, respectively. Each of the
groups G contain —I. The groups H; ; do not contain —I and we have G; = +H, ;.
Define the rational functions:
(t+1)3(t+3)3(t* + 3)3
t3(t2 + 3t + 3)3

For t € Q — {0}, let &+ be the elliptic curve over Q defined by Weierstrass equation

(t+1)3(t —3)3
t3

(t+1)(t+9)3

Ji(t) = 27 5

, Ju(t) =3

, Ja(t) = 27

) J3(t) =27

y? =23 =3+ 1)(t+3) (1 + 3)ax — 2(t* — 3)(t* + 6t° + 18> + 18t + 9).
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For t € Q — {0, —1}, let &3+ be the elliptic curve over Q defined by Weierstrass equation

y? =23 = 3(t+ 1)3(t + 9)x — 2(t + 1)*(t* — 18t — 27).

The j-invariant of & ; is J;(t).

Theorem 1.2. Let E be a non-CM elliptic curve over Q.

(i)
(i)
(iii)

(iv)

If pE3 is not surjective, then pg3(Galg) is conjugate in GLa(F3) to one of the groups G;
or H@j.

The group pg 3(Galg) is conjugate to a subgroup of G; if and only if jg is of the form J;(t)
for some t € Q.

Suppose that £pp 3(Galg) is conjugate to Gi. Fix an element t € Q such that Ji(t) = jg.
The group pg3(Galg) is conjugate to Hy 1 if and only if E is isomorphic to E14 or the
quadratic twist of £14 by —3.

Suppose that £pg 3(Galg) is conjugate to G3. Fiz an element t € Q such that J3(t) = jg.
The group pg3(Galg) is conjugate to Hs if and only if E is isomorphic to Es.

The group pp3(Galg) is conjugate to Hs o if and only if E is isomorphic to the quadratic
twist of E34 by —3.

Remark 1.3.

(i)

(i)

Let us briefly explain how Theorem 1.2 can be used to compute pg 3(Galg); similar remarks
will hold for the remaining primes (the case ¢ = 2 is particularly simple since —I = I). If
JE is not of the form J;(t) for any i € {1,2,3,4} and ¢t € Q, then pg3(Galg) = GL2(F3).
To check if jg is of the form J(t), clear denominators in J(¢) — jg to obtain a polynomial
in ¢ which one can then determine whether it has rational roots or not.

So assume that pg 3 is not surjective, and let ¢ be the smallest value in {1,2,3,4} for

which jg = J;(t) for some t € Q. By Theorem 1.2(i) and (ii), we deduce that £pg 3(Galg)
is conjugate to G;; note that the groups G; are ordered by decreasing index in GLgy(F3).
After possibly conjugating pg 3, we may assume that +£pp3(Galg) = G;. If pg3(Galg)
does not equal G;, then it is equal to one of the subgroups H; ; and parts (iii) and (iv) give
necessary and sufficient conditions to check this.
Our rational functions J;(t) are certainly not unique. In particular, any function of the
form J;((at +b)/(ct + d)) will work with fixed a,b, ¢, d € Q satisfying ad — bc # 0 (though
in general, one needs to also consider the value of J;(t) at co). Given J;(t), our equations
for &+ were produced by an algorithm that we will later describe; there are other possibly
simpler choices.

1.3. £ =5. Define the following subgroups of GLgy(F5):

e Let G be the subgroup consisting of the matrices of the form =+ (} ).
e Let G5 be the group Cy(5).

e Let H; be the subgroup consisting of the matrices of the form (¢
e Let Hy 2 be the subgroup consisting of the matrices of the form (‘1

Let G5 be the unique subgroup of Ny(5) of index 3; it is generated by (29), (§ %) and
(99)

Let G4 be the group Ns(5).

Let G5 be the subgroup consisting of the matrices of the form =+ (
Let Gg be the subgroup consisting of the matrices of the form =+ (
Let G7 be the group N,s(5).

Let Gg be the group B(5).

Let Gg be the unique maximal subgroup of GLs(F5) which contains N(5); it is generated
by (39): (5%), (%) and (1 4).

).
).

*
1
*
*

*
0
1
0
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Let Hs 1 be the subgroup consisting of the matrices of the form (
Let Hs o be the subgroup consisting of the matrices of the form (
Let Hg be the subgroup consisting of the matrices of the form (
Let Hg o be the subgroup consisting of the matrices of the form (
The index in GL2(F5) of the above subgroups are 60, 30, 30, 15, 12, 12, 10, 6, 5, 120, 120, 24, 24,
24 and 24, respectively. Each of the groups G; contain —I. The groups H; ; do not contain —/ and
we have Gz = :|:Hl‘7j.
Define the rational functions:

(t20 + 228¢1° + 494¢10 — 22845 + 1)3

Ji(t) = 510 — 115 — 1)3
Tty = 585! 458 +25)°(¢1 + 56° + 2062 + 25t + 26)°
£5(t4 + 5t3 + 15¢2 + 25t + 25)5
Ta(t) = 543 (12 + 5t + 10)%(2t% + 5t + 5)3(4t* + 303 + 95¢2 + 150¢ + 100)?
(2 + 5t + 5)5(¢1 + 5t3 + 15t + 25t + 25)°
Ja(t) = (t+5)3(t2 — 5)3(¢2 + 5t + 10)3
(t2 + 5t + 5)°
Jo(t) = (t* 4 2283 4 4941? — 228t 4 1)3
t(t2 — 11t — 1)5
Jo(t) = (t* — 1263 + 1442 4+ 12t 4 1)°
(12 — 11t — 1)
Ja(t) = 53(t + 1) (2t + 1)3(2t2 — 3t + 3)3
(t2+t—1)°
Jo(t) = 52(t% 4 10t + 5)°

5
Jo(t) = t3(t% + ;t + 40)
For t € Q — {0}, let &1+ be the elliptic curve over Q defined by the Weierstrass equation
y? = 2% — 27(t%0 + 22815 + 494410 — 228¢° 4 1)2
+ 54(t30 — 522t% — 10005t%° — 10005t + 522> 4 1).
For t € Q — {0}, let &5+ be the elliptic curve over Q defined by the Weierstrass equation
y? = a3 — 27(t* 4+ 228t + 4947 — 228t + 1)z + 54(t° — 522¢5 — 10005t — 10005t% + 522t + 1).

For t € Q — {0}, let &+ be the elliptic curve over Q defined by the Weierstrass equation

y? = a3 = 27(th — 1263 + 1442 + 12t 4 1) + 54(t% — 18¢° + 75t + 75¢% + 18t 4 1)
The j-invariant of & ¢ is J;(t).
Theorem 1.4. Let E be a non-CM elliptic curve over Q.

(i) If pEs is not surjective, then pp5(Galg) is conjugate in GLa(F5) to one of the groups G
or H@j.

(ii) The group pgs(Galg) is conjugate to a subgroup of G; if and only if jg is of the form J;(t)
for some t € Q.

(iii) Suppose that £pg5(Galg) is conjugate to G; with i € {1,5,6}. Fiz an element t € Q such
that Ji(t) = jp.
The group pgs(Galg) is conjugate to Hy 1 if and only if E is isomorphic to & ;.
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The group pgs(Galg) is conjugate to H;o if and only if E is isomorphic to the quadratic
twist of & by 5.

1.4. £ ="1. Define the follow subgroups of GLa(FF7):

e Let G be the subgroup of N(7) consisting of elements of Cs(7) with square determinant
and elements of Ny(7) — C(7) with non-square determinant; it is generated by (39), (93)
and (%' %)

Let G2 be the group Ng(7).

Let G3 be the subgroup consisting of matrices of the form =+ (§ *).
Let G4 be the subgroup consisting of matrices of the form £ (7).
Let G5 be the subgroup consisting of matrices of the form (§ ;).
Let Gg be the group N,s(7).

Let G7 be the group B(7).

Let Hy, be the subgroup generated by (29) and (92).

Let H3 1 be the subgroup consisting of the matrices of the form
Let H3 o be the subgroup consisting of the matrices of the form
Let H41 be the subgroup consisting of the matrices of the form
Let H42 be the subgroup consisting of the matrices of the form

1 %
0 *
* ok
01
*

Let Hs o be the subgroup consisting of the matrices of the form

e Let H7 ;1 be the subgroup consisting of the matrices of the form

%
%
Let Hs 1 be the subgroup consisting of the matrices of the form (
(
e Let H7 2 be the subgroup consisting of the matrices of the form (

The index in GLy(F7) of the above subgroups are 56, 28, 24, 24, 24, 21, 8, 112, 48, 48, 48, 48, 48,
48, 16 and 16, respectively. Each of the groups G; contain —I. The groups H; ; do not contain —I
and we have G; = +£H; ;.

Define the rational functions

Ji(t)=3%-5-7/27
(1382 =5t +1)3(t2 — Bt + 8)3(tt — 513 + 82 — Tt 4+ 7)3

T (t) (13 — 412 + 3t +1)7
T(t) = (t2 —t + 1)3(¢5 — 11#° + 30t* — 153 — 10t + 5t + 1)3
(t—1)7Tt7(t3 — 8t2 + 5t + 1)
Ta(t) = (12 — t 4+ 1)3(£5 4 22915 4 270t* — 16953 + 1430t — 235t + 1)3
(t — 1)t(t3 — 8t2 + 5t + 1)7
Jo() = — (12 =3t —3)3(t2 —t + 1)3(3t2 — 9t + 5)3(5¢2 —t — 1)3
(t3 —2t2 —t + 1) (13 — 12 — 2t + 1)7
Jolt) = 64t3(t2 + 7)3(t2 — Tt + 14)3(5t2 — 14t — 7)3
(83 =T+ 7t +7)7
(t) = (2 + 245t + 2401)3(¢2 + 13t + 49)

t7
Let &1 be the elliptic curve over Q defined by the Weierstrass equation

y? =23 — 53732 — 5472106
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For t € Q — {0, 1}, let &, be the elliptic curve over Q defined by the Weierstrass equation
y? =% —27(t% —t + 1)(t° — 117 + 30t — 15¢> — 10¢? + 5t + 1)z
+54(t1% — 18t 4 11719 — 354¢° 4 57018 — 48617
+ 27315 — 22215 + 174t* — 46t — 15t + 6t + 1).
For t € Q — {0, 1}, let &4+ be the elliptic curve over Q defined by the Weierstrass equation
y? = a3 —27(t% —t + 1) (% + 229¢° + 270t* — 1695t + 143012 — 235t 4 1)z
+54(t12 — 522t — 895510 + 37950t — 70998t% 4 131562t
— 253239t% + 316290> — 218058t* 4 80090t> — 14631t + 510t + 1).

For t € Q, let & be the elliptic curve over QQ defined by the Weierstrass equation
y? =23 =27 - T(t* =3t =3)(t* —t + 1)(3t> = 9t + 5)(5t> —t — 1)z
— 54 - 72(t* — 613 + 17t2 — 24t + 9)(3t* — 4> — 52 — 2t — 1)(9t* — 126> — 2 4 8t — 3).
For t € Q — {0}, let &7+ be the elliptic curve over Q defined by the Weierstrass equation
y? = 2% — 27(t% + 13t + 49)3 (¢ + 245t + 2401)z
+ 54(1% 4 13t + 49)*(t* — 490t> — 21609t> — 235298t — 823543).
The j-invariant of & ; is J;(t).

Theorem 1.5. Let E be a non-CM elliptic curve over Q.

(i) If pe is not surjective, then pg7(Galg) is conjugate in GL2(FF7) to one of the groups G;
or Hi,j-

(ii) The group pp7(Galg) is conjugate to a subgroup of G; if and only if jg is of the form J;(t)
for some t € Q.

(iii) The group pg7(Galg) is conjugate to Hyy if and only if E/Q is isomorphic to & or to the
quadratic twist of &1 by —7.

(iv) Suppose that £pp 7(Galg) is conjugate to G; with i € {3,4,5,7}. Fiz an element t € Q
such that J;(t) = jg.
The group pg7(Galg) is conjugate to Hy 1 if and only if E is isomorphic to & .
The group pg7(Galg) is conjugate to H;o if and only if E is isomorphic to the quadratic
twist of &4 by —T.

1.5. £=11.

e Let G be the subgroup generated by + (1) and (3 9).
e Let G be the subgroup generated by £ (§1) and (§9).
e Let G5 be the group N,s(11).

e Let Hy be the subgroup generated by (1) and (§2).
e Let Hj s be the subgroup generated by ({1) and (§2).
e Let Ho be the subgroup generated by ({1) and (39).
e Let Hs 5 be the subgroup generated by ({1) and (§9).

The index in GLg(Fq1) of the above subgroups are 60, 60, 55, 110, 120, 120, 120 and 120, re-
spectively. Each of the groups G; contain —I. The groups H;; do not contain —I and we have
Gi = :l:Hi,j~
Let &£ be the elliptic curve over Q defined by the Weierstrass equation y? +y = 23 — 22 — Tz 4 10
and let O be the point at infinity. The Mordell-Weil group £(Q) is an infinite cyclic group generated
6



by the point (4,5). Define

T(z,y) = (flJJ:gf?i{zx)S?
576
where
fi =>4 3z —6, fo = 11(z% = 5)y + (22 + 2323 — 7222 — 28z + 127),
f3 =6y + 11z — 19, f1=22(x — 2)y + (52> + 172% — 1122 + 120),
fs = 1y + (222 + 17z — 34), fo=(xr—4)y— (5 —9).

We shall view J as a morphism & — A(b U {oo}.

Let & /Q be the elliptic curve defined by the Weierstrass equation y? = 23 —27- 11z 4 54 - 11° - 43
Let & /Q be the elliptic curve defined by the Weierstrass equation y? = 23 — 27 - 113 - 1312 + 54 -
114 - 4973.

Theorem 1.6. Let E be a non-CM elliptic curve defined over Q.

(i) If pE11 is not surjective, then pg11(Galg) is conjugate in GLa(F11) to one of the groups
Gi or Hm‘.

(ii) The group £pg11(Galg) is conjugate to Gy in GLa(F11) if and only if jp = —112%.

(iii) The group +pp11(Galg) is conjugate to G in GLa(F11) if and only if jp = —11-1313.

(iv) The group pp11(Galg) is conjugate to Gs in GLa(F11) if and only if jg = J(P) for some
point P € £(Q) — {O}.

(v) Fori € {1,2}, the group pr11(Galg) is conjugate in GL2(F11) to H;y if and only if E is
isomorphic to &;.

(vi) For i e {1,2}, the group pp11(Galg) is conjugate in GLa(F11) to H; o if and only if E is
isomorphic to the quadratic twist of & by —11.

Remark 1.7. The modular curve X' (11) = X, is the only one in our classification that has genus
1 with infinitely many rational points. Halberstadt [Hal98] showed that X;f,(11) is isomorphic to
€ and that the morphism to the j-line corresponds to J(x,y).

In §4.5.5, we give explicit polynomials A, B,C' € Q[X] of degree 55 such that for a non-CM
elliptic curve E/Q, we have jg = J(P) for some P € £(Q) — {O} if and only if the polynomial
A(z)j% + B(z)jr + C(z) € Q[z] has a rational root. This gives a straightforward way to check the
criterion of Theorem 1.6(iv).

1.6. £ =13. Define the following subgroups of GLg(Fy3):

Let G1 be the subgroup consisting of matrices of the form (g ,:
Let G2 be the subgroup consisting of matrices of the form (%
Let G3 be the subgroup consisting of matrices () for which
Let G4 be the subgroup consisting of matrices of the form (g 2
Let G5 be the subgroup consisting of matrices of the form (‘12 I)
Let G be the group B(13).

Let G7 be the subgroup generated by the matrices (29), (29), (Y 3') and (1 1); it
contains the scalar matrices and its image in PGLy(F13) is isomorphic to &y.

e Let Hy be the subgroup consisting of matrices of the form () ).

e Let Hy o be the subgroup generated by matrices of the form (b2 * ) and (29).

e Let Hs 1 be the subgroup consisting of matrices of the form (

8 °%c
* % g
SN—

e Let Hs2 be the subgroup generated by matrices of the form (
7

b*2) and (39).



The index in GL2(F13) of the above subgroups are 42, 42, 42, 28, 28, 14, 91, 56, 56, 56 and 56,
respectively. Each of the groups G; contain —I. The groups H; ; do not contain —I and we have
Gi = iHZ‘J'.

Define the polynomials

Pi(t) = t*2 + 231t 4 26919 — 3160t + 6022t° — 9616¢7 + 21880¢°
— 34102t° 4 28297t* — 12455t + 2876t% — 243t + 1

Py(t) =t — 9t't 429110 — 401 + 2268 — 16¢7 + 4015 — 22¢° — 23¢* + 25¢% — 44* — 3t + 1
Py(t) = (t* — 3 + 26> — 9t + 3)(3t* — 3t — 72 412t — 4)(4t* — 43 — 562 + 3t — 1)

Py(t) = t® + 235¢7 + 1207¢% + 955¢° + 3840t — 955t + 1207¢* — 235t + 1

Ps(t) =t — 5t + 7% — 565 + 563 4+ 712 + 5t + 1

Ps(t) = t* + 73 + 20t + 19t + 1

Qu(t) = t'% — 512" — 1307910 — 32300t — 104792t — 111870¢7

— 419368t5 + 111870t° — 104792t* + 32300t3 — 13079t? + 512t + 1,
Qs(t) = t'2 — 8! 4+ 25810 — 4419 + 40¢® + 18¢7 — 40t5 — 1845 + 40t* + 4413 + 25¢% + 8t + 1
and the rational functions

(2 —t+1)3P(t)3 (t2 —t+1)3Py(¢)3

t) = t) =
Ni(t) (t—1)t(t3 — 42+t +1)13 T (t) (t— 1B — 42 + £ + 1)
J5(t) = — 1342 —t + 1)3P(t)? Ta(t) = (1 — 3 + 52+t + 1) Py(t)3
ST T B 4t )BGB -2 —8t+5) N tt2—3t—1)13
th— 3+ 512+t + 1)P5(t)3 2 + 5t + 13) Ps(t)3
J5(t) _ ( ) 5( ) J6(t) _ ( ) 6( ) )

312 =3t — 1)
For t € Q — {0}, let £4+ be the elliptic curve over Q defined by the Weierstrass equation

t

y? = a3 = 27(t* — 3 4 52 4t + 1)3Py(t)x + 54(t% + 1) (t* — 3 + 562 + t + 1)1Qu(2).
For t € Q — {0}, let & be the elliptic curve over Q defined by the Weierstrass equation
y? = 2% = 27(t* — 3 £ 52 + t + 1)3Ps(t)x + 54(t% + 1) (t* — £ + 562 + ¢ + 1)1Q5(¢).

Theorem 1.8. Let E be a non-CM elliptic curve over Q.

(i) If pr13(Galg) is conjugate to a subgroup of B(13), then pp13(Galg) is conjugate to one of
the groups G; with 1 <1 <6 or to a group H; ;.
(ii) For 1 <i <6, pp13(Galg) is conjugate in GL2(FF13) to a subgroup of G; if and only if jg
is of the form J;(t) for some t € Q.
(iii) For an i € {4,5}, suppose that J;(t) = jg for some t € Q.
The group pp13(Galg) is conjugate to H; 1 if and only if E is isomorphic to &; ;.
The group pg13(Galg) is conjugate to H; o if and only if E is isomorphic to the quadratic
twist of & 1 by 13.
(iv) If jg is
2¢.5.131.173 212.5%.11-13¢ 218.33 .13 . 1273 . 1393 - 1573 . 2833 - 929
I TE R 313 or 513 . 6113 ’

then pg13(Galg) is conjugate to Gy.



Up to conjugacy, there are four maximal subgroups G of GLg(F;3) that satisfy det(G) = Fi5;
they are Gg = B(13), Ns(13), N,s(13) and G7. The cases concerning subgroups of B(13) are
completely handled in Theorem 1.8.

Baran [Bar14] has shown that the modular curves X (13) and X, (13) attached to Ng(13) and
Nys(13), respectively, are both isomorphic to the genus 3 curve C' defined in IP?Q by the equation

(—y — z)x3 + (2y2 + zy)sc2 + (—y3 + 2% — 2%y + 23)37 + (2z2y2 — 3z3y) =0.

In [Barl4], the morphism from the model of the modular curves to the j-line is given. The seven
rational points (0,0,1), (0,1,0), (0,3,2), (1,0,—1), (1,0,0), (1,0,1), (1,1,0) of C all correspond to
cusps and CM points on X¢(13) and X,,5(13). Conjecturally, there are no non-CM elliptic curves
E over Q with pg 13(Galg) conjugate to a subgroup of Ng(13) or N,4(13); equivalently, C' has no
other rational points.

Denote by Xg,(13) the modular curve corresponding to G7. Banwait and Cremona [BC14] have
shown that X, (13) is isomorphic to the genus 3 curve C’ defined in IP(Q@ by the equation

4:E3y — 3:U2y2 + 33:y3 — 23+ 163:2yz — 11xy2z + 5y3z + 32222 + 9xyz2 + y2z2 + x4 2yz3 =0

and have found the morphism from the modular curve to the j-line. The four rational points
(0,1,0), (0,0,1), (1,0,0) and (1,3, —2) of C’ correspond to a CM point and three non-CM points;
the non-CM points give rise to the three j-invariants in Theorem 1.8(iv).

Suppose E/Q is an elliptic curve with one of the j-invariants from Theorem 1.8(iv). From [BC14],
we find that the image of pg 13(Galg) in PGLy(F13) is isomorphic to &4. Therefore, pg 13(Galg) is
conjugate to Gy since G7 has no proper subgroups H whose image in PGL2(F;3) is isomorphic to
G4 and satisfies det(H) = F 5. In particular, this proves Theorem 1.8(iv).

Conjecturally, if E is a non-CM elliptic curve over Q, then pg 13(Galg) is conjugate to a subgroup
of G7 if and only if jp is one of three values from Theorem 1.8(iv); equivalently, C’ has no other
rational points.

Remark 1.9. The case ¢ = 13 is the first for which we do not have a complete description. As
explained above, it remains to determine all the rational points of the genus 3 curves C' and C’.

1.7. £ > 17. We first describe all the known cases of non-CM elliptic curves E/Q for which pg  is
not surjective for some prime ¢ > 17. Define the following groups:

Let G1 be the subgroup of GLy(F17) generated by (2 &), (8 %) and (}
Let G be the subgroup of GLy(F17) generated by (119), (%) and (§
Let G3 be the subgroup of GLy(Fs7) consisting of the matrices of the form (
Let G4 be the subgroup of GLy(Fs7) consisting of the matrices of the form (

1
1
1
1

).
)
0
0

*
a3

).
Theorem 1.10.
(i) If E/Q has j-invariant —17 - 3733 /217 or —17% - 1013 /2, then pg 17(Galg) is conjugate in
GLy(Fy7) to G or Ga, respectively.
(ii) If E/Q has j-invariant —7-11% or —7-137%-20833, then pg 37(Galg) is conjugate in GLa(Fsr)
to Gs or Gy, respectively.

Theorem 1.11 (Mazur, Serre, Bilu-Parent-Rebolledo). Fiz a prime ¢ > 17 and let E be a non-CM
elliptic curve defined over Q. If (£,jg) does not belong to the set

(1.1)  {Q7,—17-373%/2'7), (17,-17% - 1013/2), (37,7 -11%), (37, -7 - 1373 - 20833)},

then either pg o is surjective or pg¢(Galg) is conjugate to a subgroup of Nps({).
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Proof. The group GLa(FFy) has either three or four maximal subgroups with determinant ;. They
are B({), Ng4(¢), Nps(¢) and when £ = £3 (mod 8), we also have a maximal subgroup Hg, (¢) whose
image in PGLy(IFy) is isomorphic to the symmetric group &y.

Take any non-CM elliptic curve E over Q. Serre has shown that pg ((Galg) cannot be conjugate
to a subgroup of Hg, (), cf. [Ser81, §8.4]. Bilu, Parent and Rebolledo have proved that pg ¢(Galg)
cannot be conjugate to a subgroup of Ng(¢), cf. [BPR11] (they make effective the bounds in earlier
works of Bilu and Parent using improved isogeny bounds of Gaudron and Rémond). The B(¢)
case follows from a famous theorem of Mazur, cf. [Maz78]. The modular curves Xy(17) and X(37)
each have two rational points which are not cusps or CM points and they are accounted for by the
curves of Theorem 1.10. O

We conjecture that Theorem 1.11 describes all the reasons that pg ¢ can fail to be surjective for
anon-CM E/Q and a prime ¢ > 17; this is a problem raised by Serre, cf. [Ser81, p.399], who asked
if pg ¢ is surjective whenever £ > 37.

Conjecture 1.12. If FE is a non-CM elliptic curve over Q and £ > 17 is a prime such that the
pair (£, jg) does not belong to the set (1.1), then pg¢(Galg) = GLo(Fy).

Even if Conjecture 1.12 is false for some E/Q and ¢ > 17, the following proposition gives at most
two possibilities for the image of pg ¢ (they can be distinguished computationally by looking at the
division polynomial of E at ).

Proposition 1.13. Suppose that pgy is not surjective for a non-CM elliptic curve E/Q and a
prime ¢ > 17 for which (¢, jg) does not lie in the set (1.1).

(i) If =1 (mod 3), then pg(Galg) is conjugate in GLa(Fy) to Nyg(€).

(ii) If ¢ =2 (mod 3), then pg(Galg) is conjugate in GLa(IF¢) to Nps(£) or to the group

G={a’:aeCpu(0)}U{(§25) a®:aeCpnlt)}

1.8. Algorithm. Let £/Q be a non-CM elliptic curve (when E/Q has complex multiplication, the
groups pp¢(Galg) are all described in §1.9 below). In [Zyw15], we give an algorithm to compute
the set " of primes ¢ > 13 for which pg ¢ is not surjective.

Combined with the theorems from §§1.1-1.5, we are now able to compute the (finite) set S of
primes ¢ for which pg , is not surjective. Moreover, using the results from §§1.1-1.5, we can give
the group pg ((Galg), up to conjugacy in GLo(IF), for each £ € S.

Sutherland has a probabilistic algorithm to determine the groups pg ¢(Galg) by consider Frobe-
nius at many primes p, [Sut15]. His algorithm can in principle be made deterministic using effective
versions of the Chebotarev density theorem. Sutherland’s algorithm has the advantage that it can
be used for elliptic curves over a number field K # Q (for our approach, we would have more
modular curves to consider and those modular curves not isomorphic to IP’(b would need to be
reconsidered).

The next task that needs to be completed is to consider the images of pg ¢» for small primes ¢
and n > 2. Rouse and Zureick-Brown have already done this for ¢ = 2, cf. [RZB14]; the case { = 2
is rather accessible since all the groups that occur are solvable.
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1.9. Complex multiplication. Up to isomorphism over Q, there are thirteen elliptic curves with
complex multiplication that are defined over Q. In Table 1 below, we give an elliptic curve Ep /Q
with each of these thirteen j-invariants (this comes from [Sil94, Appendix A §3] though with some
different models). The curve Ep ; has conductor N and has complex multiplication by an order R
of conductor f in the imaginary quadratic field with discriminant —D.

’ j-invariant ‘ D ‘ f ‘ Elliptic curve Ep ¢ ‘ N ‘

0 3 |1 |y>=2%+16 33

243353 2 | y? =23 — 150+ 22 2232
—2153 .53 3| y? =23 — 480x + 4048 33
2033 = 1728 4 |1y =23+2 26
2333113 2 | y? =23 —1lz + 14 29
—3353 7 11 |y?=23—1715z + 33614 72
3353173 2 | y? = 3 — 291552 4+ 1915998 72
2053 8 | 1]y?=ua3—4320x + 96768 28

—215 11 | 1 | y? =23 — 9504z + 365904 112
—21533 19 [ 1] y?=2%— 608z + 5776 192
—2183353 43 | 1| y? = 2% — 13760z + 621264 432
—2153353113 | 67 | 1 |y? = 23 — 1179202 + 15585808 672

—2183353233293 | 163 | 1 | y? = 23 — 34790720 + 78984748304 | 1632

TABLE 1. CM elliptic curves over Q

We first describe the group pg((Galg) up to conjugacy when E is a CM elliptic curve with
non-zero j-invariant and ¢ odd.

Proposition 1.14. Let E be a CM elliptic curve defined over Q with jg # 0. The ring of endo-
morphisms of E@ s an order of conductor f in the ring of integers of an imaginary quadratic field
of discriminant —D. Take any odd prime .
(i) If (%) =1, then pg(Galg) is conjugate in GLa(F,) to Ns(£).
(i) If (%) = —1, then pg(Galg) is conjugate in GLo(F;) to Nps(¥).
(iii) Suppose that ¢ divides D and hence D = . Define the groups
G={(82,):acF, belF;},

Hi={(82):acF )2 beF}, and Hy={(%?):ae (F;)*beF}
If E is isomorphic to Ep ¢, then pg (Galg) is conjugate in GLa(F¢) to Hy.
If E is isomorphic to the quadratic twist of Ep s by —{, then pg(Galg) is conjugate in
GLQ(]F[) to HQ.
If E is not isomorphic to Ep ; or its quadratic twist by —{, then pg(Galg) is conjugate
m GLQ(F[) to G.

The following deals with the excluded prime £ = 2.

Proposition 1.15. Let E/Q be a CM elliptic curve. Define the subgroup Go = {I,({1)} of
GL2(Fy).
i) If jg € {243353, 2333113, —3353, 3353173, 26531, then pro(Galg) is conjugate to Ga.
K Q
(ii) Ifjg € {—2193-53, —215 21533 2183353 2153353113 2183353233293}, then pp 2(Galg) =
GLa(Fy).
11



(iii) Suppose that jp = 1728. The curve can be given by a Weierstrass equation y? = x® — dx
for some d € Q*.
If d is a square, then pg2(Galg) = {I}.
If d is not a square, then the group pg2(Galg) is conjugate to Gs.

(iv) Suppose that jp = 0. The curve E can be given by a Weierstrass equation y?> = 3 +d for
some d € Q*.
If d is a cube, then pg2(Galg) is conjugate in GLa(F2) to the group Ga.
If d is not a cube, then pp2(Galg) = GLa(F2).

It remains to consider the situation where ¢ is an odd prime and E/Q is an elliptic curve with
jr = 0. That such curves have cubic twists make the classification more involved.

Proposition 1.16. Let E be an elliptic curve over Q with jg = 0. Take any odd prime £.

(i) If£=1 (mod 9), then pg(Galg) is conjugate to Ns(¢) in GLa(Fy).

(ii) If ¢ =8 (mod 9), then pg (Galg) is conjugate to Nys(¢) in GLa(Fy).

(iii) Suppose that € is congruent to 4 or 7 modulo 9. Let E'/Q be the elliptic curve over Q
defined by y? = x3 + 16(¢, where e € {1,2} satisfies Z_Tl =e (mod 3).
If E is not isomorphic to a quadratic twist of E', then pg ¢(Galg) is conjugate to Ny(¢) in
GLy(Fy).
If E is isomorphic to a quadratic twist of E', then pg ¢(Galg) is conjugate in GLo(Fy) to the
subgroup G of Ns(€) consisting of the matrices of the form (8 2) or (2 8) with a/b € (IFZX)3

(iv) Suppose that € is congruent to 2 or 5 modulo 9. Let E'/Q be the elliptic curve over Q
defined by y? = x3 + 16(°, where e € {1,2} satisfies ”Tl = —e (mod 3).
If E is not isomorphic to a quadratic twist of E', then pg ¢(Galg) is conjugate to Nys(¢) in
GLo(TFy).
If E is isomorphic to a quadratic twist of E', then pg(Galg) is conjugate in GLa(Fy) to
the subgroup G of Nys({) generated by the unique index 3 subgroup of Cps(f) and by ((1) 0 )

(v) Suppose that £ = 3. The curve E can be given by a Weierstrass equation y*> = x® +d for
some d € Q*. Fix notation as in §1.2.
If d or —3d is a square and —4d is a cube, then pg 3(Galg) is conjugate to Hy 1.
If d and —3d are not squares and —4d is a cube, then pg 3(Galg) is conjugate to G.
If d is a square and —4d is not a cube, then pp 3(Galg) is conjugate to Hs ;.
If —3d is a square and —4d is not a cube, then pg 3(Galg) is conjugate to Hs .
If d and —3d are not squares and —4d is not a cube, then pg 3(Galg) is conjugate to Gs.

1.10. Overview. We now give a very brief overview of the paper. In §2, we describe applicable
subgroups G of GLa(FFy); these groups have many of the properties that the groups +pg ((Galg) do.

In §3, we recall what we need concerning the modular curve X¢/Q; we will identify its function
field with a subfield of the field of modular function for the congruence subgroup I'(?).

In §4, we prove the parts of our main theorems that determine +pp ¢(Galg). We describe the
rational points of X when £ is small. When X has genus 0 and X (Q) # (), then the function
field of X¢ is of the form Q(h) for some modular function h. Much of this section is dedicated to
describing such h and determining the rational function J(t) € Q(¢) such that J(h) is the modular
j-invariant.

Assuming that G := £pg ¢(Galg) is known, with £/Q non-CM, we describe in §5 how to deter-
mine the (finite number of) quadratic twists of E’ of E for which pgr ¢(Galg) is not conjugate to
G. In §6, we prove the parts of our main theorems that determine pg ((Galg) given +pg (Galg).

In §7, we prove the propositions from §1.9 concerning CM elliptic curves defined over Q. The
j-invariant 0 case requires special attention since one has to worry about cubic twists. Finally, in

88, we prove Proposition 1.13.
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The equations in §1.1-1.7 and Magma code verifying some claims in §4 and §6 can be found at:
http://www.math.cornell.edu/~zywina/papers/PossibleImages/

Acknowledgments. Thanks to Andrew Sutherland, David Zureick-Brown and René Schoof. The
computations in this paper were performed using the Magma computer algebra system [BCP97].

2. APPLICABLE SUBGROUPS

Fix an integer N > 2. For an elliptic curve E/Q, let E[N] be the N-torsion subgroup of E(Q).
After choosing a basis for E[N]| as a Z/NZ-module, the natural Galg-action on E[N] can be
expressed in terms of a Galois representation

PE,N - Gal@ — GLQ(Z/NZ).

When N is a prime, these agree with the representations of §1. We now describe some restrictions
on the possible images of pg .

Definition 2.1. We say that a subgroup G of GLy(Z/NZ) is applicable if it satisfies the following
conditions:
e G+ GLy(Z/NZ),
e —] € G and det(G) = (Z/NZ)*,
e G contains an element with trace 0 and determinant —1 that fixes a point in (Z/NZ)? of
order N.

This definition is justified by the following.

Proposition 2.2. Let E be an elliptic curve over Q for which pg N is not surjective. Then
+pp n(Galg) is an applicable subgroup of GLo(Z/NZ).

Proof. The group G := #pp n(Galg) clearly contains —I. The character detopp n: Galpg —
(Z/NZ)* is the surjective homomorphism describing the Galois action on the group of N-th roots
of unity in Q, i.c., for a N-th root of unity ¢ € Q, we have o(¢) = ¢4t(e.N() for all ¢ € Galg.
Therefore, det opg y is surjective and hence det(G) = (Z/NZ)*.

Let ¢ € Gal(Q/Q) be an automorphism corresponding to complex conjugation under some em-
bedding Q@ <+ C. Set g := pp n(c). As a topological group, the connected component of E(R)
containing the identity is isomorphic to R/Z. Therefore, E(R) contains a point P; of order N.
We may assume that pp n is chosen with respect to a basis whose first term is P, and hence g is

upper triangular whose first diagonal term is 1. We have det(g) = —1 since ¢ acts by inversion on
N-th roots of unity. Therefore, g is upper triangular with diagonal entries 1 and —1, and hence
tr(g) = 0.

Now suppose that G = GLy(Z/NZ). Define S = pg n(Galg) N SL2(Z/NZ). Since G =
GL2(Z/NZ), prp.n(Galg) # GL2(Z/NZ) and det(pp n(Galg)) = (Z/NZ)*, we deduce that S #
SLo(Z/NZ) and +S = SLy(Z/NZ). However, this is impossible by Lemma 2.3 below, so we must
have G # GL2(Z/NZ). O

Lemma 2.3. There is no proper subgroup S of SLa(Z/NZ) such that £S5 = SLo(Z/NZ).

Proof. Suppose that S is a subgroup of SLy(Z/NZ) for which £S5 = SLy(Z/NZ). By [Zyw]10,
Lemma A.6], we deduce that there is a prime power ¢¢ dividing N such that the image S of S in
SLy(Z/0¢Z) is a proper subgroup satisfying +5 = SLo(Z/¢°Z). So without loss of generality, we
may assume that N = £¢.

The group S has index 2 in SLy(Z/¢¢Z). Therefore, S is normal in SLy(Z/¢°Z) and the quotient
is cyclic of order 2. However, the abelianization of SLy(Z/¢¢Z) is a cyclic group of order ged(¢¢, 12),
cf. [Zyw10, Lemma A.1]. Therefore, we must have ¢ = 2. Since the abelianization of SLo(Z/2°Z) is
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cyclic of order 2 or 4, we find that S is the unique subgroup of SLs(Z/2°Z) of index 2. The group
S is now easy to describe; it is the group of elements in SLy(Z/2°Z) whose image in SLy(Z/2Z) lies
in the unique cyclic group of order 3. However, this implies that +S5 # SLo(Z/2°Z) since —I = 1
(mod 2). This contradiction ensures that no such S exists. O

Remark 2.4. When N is a prime ¢, which is the setting of this paper, the last condition in the
definition of applicable subgroup can be simplified to say simply that G contains an element with
trace 0 and determinant —1.

3. MODULAR CURVES

Fix an integer N > 1; in our later application, we will take N to be a prime £. In §3.1, we recall
the Galois theory of the field of modular functions of level N. In §3.2, we define modular curves
in terms of their functions fields. We take an unsophisticated approach to modular curves and
develop what we need from Shimura’s book [Shi94]; it will be useful for reference in future work.
Alternatively, one could develop modular curves as in [DR73, IV-3].

3.1. Modular functions of level N. The group SLy(Z) acts on the complex upper half plane b
via linear fractional transformations, i.e., 7.(7) = (a7 + b)/(cT + d) for v = (2%) € SLa(Z) and
7 € h. Let I'(IV) be the congruence subgroup consisting of matrices in SLo(Z) that are congruent
to I modulo N. The quotient I'(IV)\$ is a Riemann surface and can be completed to a compact
and smooth Riemann surface Xy. Let 7 be a variable of the complex upper half plane.

Every meromorphic function f on Xy has a g-expansion ) ., cng™N; here the ¢, are complex
numbers which are 0 for all but finitely many negative n and ¢*/V := €2™7/N_ We define Fy to be
the field of meromorphic functions on Xy whose g-expansion has coefficients in Q((y), where (y is
the N-th root of unity €2™/N. For example, F; = Q(j) where j = j(7) is the modular j-invariant
with the familiar expansion

j =q ' 4 744 + 196884¢ + 21493760¢> + 864299970¢° + . . ..

For each d € (Z/NZ)*, let o4 be the automorphism of the field Q((y) for which 4(Cy) = (%
We extend og to an automorphism of Fy by taking a function with g-expansion ) eng™N to
S, 0a(cn)d/N. We let SLy(Z) act on Fy by taking a modular function f € Fy and a matrix
v € SLo(Z) to f ot i.e., the function (f o4!)(7) = f(7L(7)) where 4 is the transpose of 7.

Proposition 3.1. The extension Fn of Q(j) is Galois. There is a unique isomorphism

such that the following holds for all f € Fn:

(a) For A € SLo(Z/NZ), we have On(A)f = fo~t, where 7 is any matriz in SLy(Z) that is
congruent to A modulo N.

(b) For A= (}Y9) € GL2(Z/NZ), we have On(A)f = aq(f).
The field Q((n) is the algebraic closure of Q in Fn and corresponds to the subgroup SLo(Z/N7Z)/{£I}.

We will sketch Propostion 3.1 in §3.4. Throughout the paper, we will let GLy(Z/NZ) act on Fy
via the isomorphism 0y (with —I acting trivially).

Remark 3.2. There are other choices for an isomorphism GLo(Z/NZ)/{%1}; for example, one could
instead replace the transpose by an inverse in (a). Our choice is explained by our application to
modular curves. As a warning, there are several places in the literature where incompatible choices
are made with respect to modular curves.
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3.2. Modular curves. Let G be a subgroup of GL2(Z/NZ) containing —1I that satisfies det(G) =
(Z/NZ)*. Denote by }"](5 the subfield of Fy fixed by the action of G from Proposition 3.1. Using
Proposition 3.1 and the assumption det(G) = (Z/NZ)*, we find that Q is algebraically closed in
FG.

Let X¢g be the smooth projective curve with function field ]:ﬁ; it is defined over Q and is
geometrically irreducible. The inclusion of fields ]:ﬁ 2O Q(y) gives rise to a non-constant morphism

G Xa — Spec Q[j] U {o0} = I%.
The morphism 7 is non-constant and we have
deg(nc) = [GLo(Z/NZ){£]} : G/{+1}] = [GLa(Z/NZ) : G).

We will also denote the function field F§ of X¢ by Q(X¢). A point in X is a cusp or a CM point
if m¢ maps it to oo or to the j-invariant of a CM elliptic curve, respectively.

The following property of the curve Xq is key to our application; we will give a proof in §3.5.

Proposition 3.3. Let G be a subgroup of GL2(Z/NZ) that contains —I and satisfies det(G) =
(Z/NZ)*. Let E be an elliptic curve defined over Q with jp ¢ {0,1728}. Then pp n(Galg) is
conjugate in GLo(Z/NZ) to a subgroup of G if and only if jg belongs to ng(Xa(Q)).

The following lemma will be key to finding modular curves of genus 0 with rational points.

Lemma 3.4. Fiz a modular function h € Fn — Q(j) such that J(h) = j for a rational function
J(t) € Q(t). Let G be the subgroup of GLo(Z/NZ) that fixres h under the action on Fy from
Proposition 5.1.
(i) The subgroup G of GLo(Z/NZ) is applicable.
(ii) The modular curve X¢g has function field Q(h). In particular, it is isomorphic to Pb.
(ili) Let E/Q be an elliptic curve with jr ¢ {0,1728}. The group pp n(Galg) is conjugate in
GL2(Z/NZ) to a subgroup of G if and only if jp = J(t) for somet € QU {oo}.

Proof. By the Galois correspondence coming from the isomorphism 6y of Proposition 3.1, the field
Q(h) equals F§ and is an extension of Q(j) of degree

(GLy(Z/NZ)/{£I} : G/{+I}] = [GLy(Z/NZ) : G].

The field Q is algebraically closed in F§ = Q(h), so det(G) = (Z/NZ)* by Proposition 3.1.
Therefore, Q(h) is the function field of X and the field extension Q(h)/Q(j) given by j = J(h)
corresponds to the morphism ng: Xg — Pb. The modular curve X is thus isomorphic to IP’%@ and
we have 7¢(X¢(Q)) = J(QU {oo}). This proves (ii). Part (iii) follows from Proposition 3.3.
Finally, we prove that G is applicable. We have G # GLy(Z/NZ) since the extension Q(h)/Q(j)
is non-trivial by our assumption on h. Using part (iii) and Proposition 2.2, we find that G contains
an applicable subgroup. Since G # GL2(Z/NZ) and G contains an applicable subgroup, we deduce
that G is applicable. O

If X¢ has genus 0 and has rational points, then there are in fact curves £/Q with +pg n(Galg)
conjugate to G.

Lemma 3.5. Suppose that Xq is isomorphic to IP’}@; equivalently, the function field of Xq is of the

form Q(h). We have j = J(h) for a unique J(t) € Q(t) because of the inclusion Q(h) O Q(j).

Then for “most” uw € Q (more precisely, outside a set of density 0 with respect to height), the groups

+pp N(Galg) and G are conjugate in GLo(Z/NZ) for any elliptic curve E/Q with j-invariant J(u).
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Proof. Let G be the (finite) set of applicable subgroups H of GL2(Z/NZ) satisfying H C G. For
each H € G, let my ¢ be the natural morphism Xy — X¢; it has degree [G : H| > 1. To prove
the lemma, it suffices to show that the set S := Ugenmh,c(Xu(Q)) has density 0 (with respect to
the height) in X5 (Q) = P1(Q). This is a consequence of Hilbert irreducibility; in the language of
[Ser97, §9], the set S is thin and hence has density 0. O

3.3. The modular curve Xy(N). Let Xo(N)/Q be the modular curve Xp(yy, where B(N)
is the transpose of B(N); it consists of the lower triangular matrices and is conjugate to B(N)
in GL2(Z/NZ). Let I'o(N) be the group of matrices in SLa(Z) whose image modulo N is upper
triangular. A function f € Fy belongs to Q(Xo(N)) if and only if it has rational Fourier coefficients
and f o~y = f for all v € [o(N). Define the modular curve X(N) := X, (n), where Cs(N) is the
subgroup of diagonal matrices in GLy(Z/NZ).

Lemma 3.6. The map Q(Xo(N?)) — Q(Xs(N)), f(1) = f(7/N) is an isomorphism of fields.
This isomorphism induces an isomorphism between the modular curves Xs(N) and Xo(N?) which
gives a bijection between their cusps.

Proof. Let I's(N) be the group of matrices in SLg(Z) whose image modulo N is diagonal. The
function field of X (V) then consist of the f € Fn with rational Fourier coefficients for which
fory=fforallvyin I's(N).

Define w = (} ¥ ); it acts on b by linear fractional transformation, i.e., w.(r) = 7/N. Take
any f € Fn whose Fourier coefficients are rational. We have f o w in Q(Xs(N)) if and only if
fowoy= fow for all ¥ € T4(N). Since wl's(N)w™! = Ty(N?), we deduce that f o w belongs to
Q(X,(N)) if and only if f belongs to Q(Xo(N?)). It is now straightforward to show that the map of
fields is well-defined and an isomorphism. The isomorphism of function fields of course induces an
isomorphism of the corresponding curves. That the cusps are in correspondence is a consequence of
the map ['o(N?)\b — Ts(N)\bh, 7 — ws(7) = 7/N being an isomorphism of Riemann surfaces. [J

Lemma 3.7. Let n(7) be the Dedekind eta function.
(i) We have Q(Xo(4)) = Q(h), where h(1) = n(7)8/n(471)8.
(ii) We have Q(X(9)) = Q(h), where h(t) = n(7)3/n(97)3.
Proof. This is well-known; for example see [Elk01]. O

3.4. Proof of Proposition 3.1. For 7 € ), let A; be the lattice Z7 + Z in C. Set g2(7) = g2(A;)
and ¢3(7) = g3(A;), and let p(z;7) be the Weierstrass p-function relative to A, cf. [Sil09, §VI.3]
for background on elliptic functions. For each pair a = (a1, az) € N~1Z% — Z2, define the function

92\7)g3\T

o) s
92(7)% = 27g3(7)

of the upper half plane. The function f, is modular of level N. Moreover, Proposition 6.9(1) of

[Shi%4] says that

(3.1) Fn =Q(j, fa|a e N7'Z? - 77).

For a,b € N~'Z2 — 72, we have f, = f; if and only if a lies in the same coset of Q2?/Z? as b or —b,
cf. equation (6.1.5) of [Shi94]. So for any A € My(Z) with determinant relatively prime to IV, the
function f,4 depends only on the image A of A in GLy(Z/NZ)/{£1}. By abuse of notation, we
shall denote foa by f, -

By Theorem 6.6 of [Shi94], there is a unique isomorphism

On: GLo(Z/NZ)/{£I} = Gal(Fy/Q(5))

such that Oy (A)f, = faar for all A € GLo(Z/NZ)/{£I} and a € N~'Z? — Z?; we have added the
transpose so the map is a homomorphism (and not an antihomorphism).
16
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Fix any v € SL2(Z) and let A € SLy(Z/NZ) be its image modulo N. For any a € N~1Z? — 72
the function f, o 7' agrees with f,..: = 0n(A)fa by equation (6.1.3) of [Shi94]. Using (3.1), we
deduce that Ox(A)f = f o~ for all f € Fy; this shows that (a) holds.

Now take integer d relatively prime to N and let A be the image of (}Y) in GLy(Z/NZ). Take
any a € N~'Z? — Z?; we have a = (r/N, s/N) with r, s € Z. Since f, = f, when a = b (mod Z?),
we may assume that 0 <7 < N. We have On(A)fo = foar = fr/nas/n)- By equation (6.2.1) of
[Shi94], we have

(2m) Pp(ar +az; ) =~ 1/12 + QZ /(1 —=q") = g™ /(1 = CRrg™/™)?

_ Z Cns nr/N + Can fm‘/N) nqn/(l - qn);

applying o4 to this series gives the same thlng with s replaced by ds. The Fourier coefficients of the
expansion of g»(7)/g3(7) are all #2 times a rational number. Therefore, 0q(fa) = oa(fir/n.s/N))
equals f(./ndas/N) = foar. Using (3.1), we deduce that Oy (A)f = o4(f) for all f € Fi; this shows
that (b) holds.

This explains the existence of an isomorphism fy as in the statement of Proposition 3.1. The
uniqueness if immediate since GL2(Z/NZ) is generated by SLa(Z/NZ) and matrices of the form
((1) 9). Theorem 6.6 of [Shi94] implies that Q((y) is the algebraic closure of Q in Fy and that

( )gN CdetA

3.5. Proof of Proposition 3.3. We first construct the inverse of 8 using elliptic curves; we shall
freely use definitions from §3.4. Let E be an elliptic curve defined over an algebraically closed field
k of characteristic 0. Take any non-zero N-torsion point P € E(k). If P = (z9,yp) with respect
to some Weierstrass model y? = 423 — cox — c3 of E/k, define hg(P) = cacs/(c3 — 27¢3) - wo. If
je ¢ {0,1728}, then one can show that hr(P) does not depend on the choice of model.

Let &€ be the elliptic curve over F; = Q(j) defined by the Weierstrass equation
275 . 275
Jj— 1728 j— 1728’
it has j-invariant j. Fix an algebraic closed field K that contains Fy 2 Q(j) and let £[N] be the
N-torsion subgroup of £(K).

Lemma 3.8. There is a basis {P1, P} of the Z/NZ-module E[N] such that he(rP) + sPs) =
foynsny for all (r,s) € Z* — NZ2.

Proof. Let K be the extension of Fx generated by the functions g2(7), g3(7), o(7/N; 1), ¢’ (7/N; T),
p(1/N;7) and ©'(1/N;7). We may assume that K D K. Let E be the elliptic curve over K de-
fined by y? = 42 — go(7)x — g3(7); its j-invariant is j = j(7). The curves E and £ are isomorphic
over K since they both have j-invariant j. Since j ¢ {0,1728}, it suffices to prove the lemma for
FE instead of £.

Define the pairs

Py = (p(r/N;7),¢/(r/N;7))  and Py = (p(1/N;7),0'(1/N; 7).

We claim that P; and P» form a basis of the Z/NZ-module of N-torsion in F(K). To prove the
claim it suffices to prove the analogous results after specializing the coefficients of E and the entries
of P; and P, by an arbitrary 79 € b (since the claim comes down to verifying certain polynomial
equations whose variables are the coefficients of the model of E' and the entries of the points). So
fix an arbitrary 7y € b. Specializing the model of E at 7y gives an elliptic curve E, over C defined
by y? = 42® — go(70)x — g3(70). From Weierstrass, we know that the map

C/Ar = Er(C), 2+ (p(2:70), ¢ (2:70)),
17
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with 0 mapping to the point at infinity, gives an isomorphism of complex Lie groups. In particular,
the points Py -, = (p(10/N;70), ' (10/N;70)) and P -, = (p(1/N;70), ¢'(1/N;70)) give a basis for
the N-torsion in E; (C). This is enough to prove our claim. Moreover, we have rP; -, + sPs 5, =
(p(r/N 10+ 8/N;70), ¢ (r/N - 79 + s/N;70)) for all (r,s) € Z? — NZ>. Therefore,

hi,, (rPL+ sPy) = ga(70)g3(70)/(92(70) — 27g3(70)?) - 9(r/N - 70 + s/N;70) = fir/n,5/n) (T0)-
for all (r,s) € Z?—NZ. Since this holds for all 7y € b, we deduce that hg(rP+sP;) = fe/Nsny- O

Let py: Gal(K/Q(j)) — GL2(Z/NZ) be the representation describing the Galois action on E[N]

with respect to the basis { Py, P»} of Lemma 3.8. The fixed field of the kernel of Gal(K/Q(j)) £%
GL2(Z/NZ) — GLa(Z/NZ)/{+£I} is generated by the z-coordinates of the non-zero points in E[N].
By (3.1) and Lemma 3.8, the extension Fx of Q(j) is generated by the z-coordinates of the non-zero
points in E[N]. Therefore, the representation py induces an injective homomorphism

(3-3) pn: Gal(Fn/Q(j)) = GL2(Z/NZ)/{+I}.
In fact, (3.3) is an isomorphism since the groups have the same cardinality by Proposition 3.1.

Lemma 3.9. The homomorphism py is an isomorphism. Moreover, the inverse of py is the
homomorphism O : GLa(Z/NZ)/{xl} — Gal(Fn/Q(j)).

Proof. Take any o € Gal(K/Q(j)) and set ¢ := o|r,. There are integers a,b,c,d € Z such that
o(P1) = aPy + c¢P;y and o(Ps) = bP;) + dPs, so pn(0) = A, where A € GLy(Z/NZ) is the image of
(2%) modulo N. Therefore, py(5) is the class of A in GLa(Z/NZ)/{£I}. We need to show that
On(A) =5.

Take any pair of integers (r,s) € Z? — NZ2?. We have

o(rPy+ sPy) =ro(P1) + so(P) = (ra+ sb)P1 + (rc+ sd) P.

Comparing z-coordinates and using Lemma 3.8, we find that & (f(/n,s/n)) = 0(f(r/n,s/n)) 18 equal
to f((ra+sb)/N,(rc+sd)/N) = f(r/N,s/N)At which is QN(A)f('r/N,s/N) from §3.4. Since the extension
Fn/Q(j) is generated by the functions f, with a € Z? — NZ?, we deduce that 05 (A4) = 5. O

Define the Q-variety
U :=Ag— {0,1728} = SpecQ[j, i ', (j — 1728)'];

note that we are now viewing j as simply a transcendental variable. The equation (3.2) defines a
(relative) elliptic curve 7: & — U. The fiber of & — U over the generic fiber of U is the elliptic
curve £/Q(j5).

Let 1 be the geometric generic point of U corresponding to the algebraically closed extension K
of Fn. Let &[N]| be the N-torsion subscheme of &. We can identify the fiber of &[N] — U at 7
with the group E[N]. Let 71 (U,7) be the étale fundamental group of U. We can view &[N] as a
rank 2 lisse sheaf of Z/NZ-modules U and it hence corresponds to a representation

on: m(U,7) — Aut(E[N]) = GLy(Z/NZ)

where the isomorphism uses the basis {P;, P} of Lemma 3.8. Taking the quotient by the group
generated by —I, we obtain a homomorphism

on: m(U,m) — GLao(Z/NZ) [{£I}.

Note that the representation Gal(K/Q(j)) — GL2(Z/NZ)/{+I} coming from py factors through
the homomorphism pp. So by Proposition 3.1 and Lemma 3.9, the representation g, is surjective
and satisfies o (m1(Ug)) = SLo(Z/NZ)/{+1}.

18



Now take any subgroup G of GL2(Z/NZ) that satisfies —I € G and det(G) = (Z/NZ)*. Using
oOn, the group G/{£I} corresponds to an étale morphism 7: Yo — U. The smooth projective
closure of Yg is thus Xg and the morphism Xg — IP’@ arising from 7 is simply 7g.

Take any rational point u € U(Q) = Q — {0,1728}. Viewed as a morphism SpecQ — U, the
point v induces a homomorphism 1w, : GalQ — m1(U); we are suppressing base points so everything
is uniquely defined only up to conjugacy. Composing u, with oy we obtain a homomorphism
Bu: Galg — GL2(Z/NZ)/{x1l}. Observe that the group 3,(Galg) is conjugate to a subgroup of
G/{+£I} if and only if u lies in 71 (Y5 (Q)) = m¢(Xa(Q)) — {0, 1728, co}.

The fiber of & — U over u is the elliptic curve &,/Q obtained by setting j to w in (3.2). Compos-
ing pg, n: Galg = GL2(Z/NZ) with the quotient map GLy(Z/NZ) — GL2(Z/NZ)/{x1I} gives a
homomorphism that agrees with 3, up to conjugation. Since —I € G, we find that pg, n(Galg) is
conjugate in GL2(Z/NZ) to a subgroup of G if and only if u € 7¢(Xg(Q)).

Finally, let £/Q be any elliptic curve with j-invariant u. The curve &,/Q also has j-invariant u.
As noted in the introduction, since F and &, are elliptic curves over Q with common j-invariant
u ¢ {0,1728}, the groups +pp n(Galg) and £pg, n(Galg) must be conjugate. This completes the
proof of Proposition 3.3.

4. CLASSIFICATION UP TO A SIGN

In this section, we prove the parts of the theorems of §1 that involve the groups +pg ((Galg)
for an elliptic curve E/Q. In the notation of §2, the group +pg ((Galg) is either applicable or is
the full group GLa(F;). We consider the primes ¢ separately and keep the notation of the relevant
subsection of §1.

One of the main tasks is to construct modular curves of genus 0. We will do this by finding
functions h € Fy — Q(j) such that j = J(h) for some J € Q(¢t). Let H be the subgroup of GLy(Fy)
consisting of elements that fix A under the action from Proposition 3.1. By Lemma 3.4, the group H
is an applicable subgroup of GLy(Fy). Furthermore, Xy has function field Q(h) and the morphism
g Xg — I% is described by the inclusion Q(h) 2 Q(j). Soif E/Q is a non-CM elliptic curve, then
pe(Galg) is conjugate to a subgroup of H if and only if jg belongs to 7 (Xu(Q)) = J(QU {oo}).

We will need to recognize H as a conjugate of one of our applicable subgroups G; of GLa(Fy).
The degree of 7y, which is the same as the degree of J(t), is equal to the index [GLa(Fy) : H]; this
observation will immediately rule out most candidates. We will also make use of Proposition 3.3;
observe that the set 7 (X (Q)) depends only on the conjugacy class of H.

Most of this section involves basic algebraic verifications (which are straightforward to check
with a computer, see the link in §1.10 for many such details); much of the work, which we will not
touch on, is finding the various equations in the first place.

4.1. £ = 2. Fix notation as in §1.1. Up to conjugacy, GG1, G2 and G3 are the proper subgroups of
GLy(F2).
e Define the function

hi(7) := 160(27)8/n(1/2)® = 16(¢"/? + 8¢ + 44¢>/* +192¢* + 718¢°/2 + - ).

By Lemmas 3.6 and 3.7(i), we have Q(X;(2)) = Q(h1). We have Cs(2) = G1, so Q(X¢g,) =
Q(h1). The extension Q(hy1)/Q(j) has degree 6, so there is a unique rational function J(t) €
Q(t) such that j = J(h1). We have J(t) ( )/ f2(t) for relatively prime fi, fo € Q[t] of
degree at most 6. Expanding the g-expansion of j fa(h1) — f(h1) = J(h1) fa(h1) — fi(h1) =0
gives many linear equations in the coefficients of f; and fs. Using enough terms of the
g-expansion, we can compute the coefficients of f; and f» (they are unique up to scaling fi
and f2 by some constant in Q*). Doing this, we found that Ji(hy) = j.
e Define hy := h?/(h1 + 1). Since Jo(t2/(t + 1)) = J1(t), we have Jo(h2) = j.
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e Define h3 := F(hy) where F(t) = (—16t3 — 24t> +24t +16) /(t> +t). Since J3(F(t)) = Ji(t),
we have J3(h3) = j.

For each integer 1 < ¢ < 3, let H; be the subgroup of GLy(F2) that fixes h;. By Lemma 3.4, H;
is an applicable subgroup of GLy(F2) with index equal to the degree of J;(t). By comparing the
degree of J;(t) with our list of proper subgroups, we deduce that H; is conjugate to G; in GLo(F3).

Theorem 1.1 now follows from Lemma 3.4(iii); we can ignore ¢ = oo since J;(00) = o0.

4.2. £ = 3. Fix notation as in §1.2. Up to conjugacy, the groups G; with 1 < ¢ < 4 are the
applicable subgroups of GLy(F3).

e Define the function hy := 1/3 - n(7/3)3/n(37)3. By Lemmas 3.6 and 3.7(ii), we have
Q(X5(3)) = Q(h1). We have Cs(3) = G, so Q(X¢g,) = Q(h1). The extension Q(h1)/Q(7)
has degree 12, so there is a unique rational function J(t) € Q(¢) such that j = J(hy1). We
have J(t) = f1(t)/f2(t) for relatively prime f1, fo € Q[t] of degree at most 12. Expanding
the g-expansion of jfa(h1) — f(h1) = J(h1) fa(h1) — fi(h1) = 0 gives many linear equations
in the coefficients of f; and fo. Using enough terms of the g-expansion, we can compute
the coefficients of fi and fy (they are unique up to scaling f; and fo by some constant in
Q*). Doing this, we found that Jy(h1) = j.

e Define ho = Fi(h1) where Fi(t) = (t* + 3t + 3)/t. Since Jo(Fi(t)) = Ji(t), we have
Ja(he) = j.

e Define hg = F5(h1) where F5(t) =

e Define hy = F3(ha) where F3(t)
Ji(hg) = 3.

Fix an integer 1 < i < 4, and let H; be the subgroup of GLy(F3) that fixes h;. By Lemma 3.4,
we find that H; is an applicable subgroup and the morphism 7y, : Xg, — IP’}@ is described by the
rational function J;(t). The index [GL2(F3) : H;| agrees with the degree of J;(t). By comparing
the degree of J;(t) with our list of applicable subgroups, we deduce that H; is conjugate to G; in
GLy(F3).

Theorem 1.2(ii) now follows from Lemma 3.4(iii); we can ignore ¢t = oo since J;(00) = co. A
computation shows that if H is a proper subgroup of G; satisfying +H = G;, then ¢ € {1,3} and
H is one of the groups H; j; this proves Theorem 1.2(i).

t(t>+3t+3). Since J3(Fy(t)) = J1(t), we have J3(h3) = j.
= 3(t + 1)(t — 3)/t. Since Jy(F3(t)) = Jao(t), we have

4.3. ¢ =5. Fix notation as in §1.3. Up to conjugacy, the applicable subgroups of GL2(F5) are the
groups G; with 1 <14 < 9. Recall that the Rodgers-Ramanunjan continued fraction is

1 2
r(r) == q'/5 . ¢ 9 9
1+ 14+ 14+ 14+ 1+
The function

h(r)=1/r(r)=q¢  PA+q-++¢" ¢ —26° +2¢0 +2¢" +--+)
is a modular function of level 5 and satisfies Ji(h1) = j; we refer to Duke [Duk05] for an excellent
exposition. An expression for hi(7) in terms of Klein forms can be found in [CCO6].
Set w = (1+v5)/2 € Q).
e Define the function hy = h; — 1 — 1/hy. We have Jo(t — 1 — 1/t) = J1(t), so Ja(he) = j.
(As noted in equation (7.2) of [Duk05], ha equals n(7/5)/n(57).)
e Define hg = Fy(hg) where
(=34+w)t—5
t+(3—w)
We have J3(Fi(t)) = Ja(t) and hence J3(hsz) = j.
e Define hy = ha + 5/ha. We have Jy(t +5/t) = Ja(t) and hence Jy(hy) = j.
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e Define hs = hi. We have J5(t°) = Ji(t) and hence J5(hs) = j.
e Define hg = Fy(hs) where
—(w—1)t+1
Byty=—— 2 1°
2(t) t+ (w—1)°
We have Js(Fa(t)) = J5(t) and hence Jg(he) = j. (In the notation of [Duk05, §8], we have
b= he.)
e Define hy = F3(hg) where
3 +10t% + 25t + 25
Fy(t) =

23 4+ 102 + 25¢ + 25
We have J;(F5(t)) = J3(t) and hence J7(h7) = j.

Define hg = hs — 11 — hy'. We have Jg(t — 11 — ¢t=') = J5(¢) and hence Js(hs) = j. (As
noted in equation (7.7) of [Duk05], hg equals (n(7)/n(57))8.)

Define hg = Fy(h4) where

(t+5)(t? —5)
Fy(t) = 2% 7 9)
W= 55
We have Jo(Fy(t)) = Ja(t) and hence Jy(hg) = j.

Fix an integer 1 < i < 9. Let H; be the subgroup of GLy(F5) that fixes h;. By Lemma 3.4,
we find that H; is an applicable subgroup and the morphism 7g,: Xpy, — P(b is described by the
rational function J;(t).

Lemma 4.1. The groups H; and G; are conjugate in GLo(F5) for each 1 <1 <9.

Proof. The index [GLa(F5) : H;] agrees with the degree of J;(t). By comparing the degree of J;(t)
with our list of applicable subgroups, we deduce that H; is conjugate to G; in GLa(F5) for all
i€ {1,4,7,8,9).

The groups Hs and Hg are not conjugate since one can check that the image of P1(Q) = QU{oo}
under J5(t) and Jg(t) are different. The groups Hs and Hg have index 12 in GLy(F5) and are not
conjugate, so they are conjugate to G5 and Gg (though we need to determine which is which). The
elliptic curve given by the Weierstrass equation y? + (1 —t)xy — ty = 2> — tz? has j-invariant Jg(t)
and the point (0,0) has order 5. Therefore, Hg is conjugate to G¢ and thus Hjs is conjugate to Gs.

The groups Hy and Hj are not conjugate since one can check that the image of P1(Q) = QU{oo}
under Jo(t) and J3(t) are different. The groups Hs and Hs have index 30 in GL2(F5) and are not
conjugate, so they are conjugate to G2 and G3 (though we need to determine which is which). Since
h7 = F3(hs) and F3(t) belongs to Q(t), we find that Hs is a subgroup of H7;. We already know
that H7 is conjugate to Nys(5) and one can check that Go = C(5) is not conjugate to a subgroup
of Nps(5). Therefore, Hs is conjugate to G3 and thus Hj is conjugate to Ga. ]

Theorem 1.4(ii) now follows from Lemma 3.4(iii); we have J;(co) = oo for ¢ ¢ {3,7} and we
can ignore the values J3(0co) = 0 and J7(co) = 8000 since they are the j-invariants of CM elliptic
curves. A direct computation shows that if H is a proper subgroup of G; satisfying £+ H = G, then
i €{1,5,6} and H is one of the groups H; ;; this proves Theorem 1.4(i).

4.4. ¢ =7. Fix notation as in §1.4. Up to conjugacy, the applicable subgroups of GLo(F7) are the
groups G; with 1 <14 <7 from §1.4 and the groups:

Let Gg be the subgroup of GLy(F7) consisting of matrices of the form =+ (§?).
Let Gy be the subgroup of GL2(F7) consisting of matrices of the form (8 fa).
Let G be the subgroup of GLy(F7) generated by (g 52) and ((1) f)l).

Let G11 be the subgroup Cs(7) of GLa(F7).
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e Let G12 be the subgroup of GLy(F7) generated by (1 ') and (§ ;).
For : = 8,9,10,11 and 12, the index [GL2(F7) : G;] is 168, 168, 84, 56 and 42, respectively.

The Klein quartic is the curve X in ]P’(%2 defined by the equation z3y + y32 + 23z = 0; it is a
non-singular curve of genus 3. The relevance to us is that X" is isomorphic to the modular curve
X(7) := Xgq; we refer to Elkies [E1k99] for a lucid exposition. In §4 of [E1k99], Elkies defines a
convenient basis x, y and z for the space of cusp forms of I'(7) which satisfy the equation of the
Klein quartic and have product expansions

o0
xy,z=e¢"[[(1-¢"*1-¢") ] (-¢"
n=l nE:tg(??nod 7

where (g,a,n9) is (—1,4,1), (1,2,2) or (1,1,4) for x, y or z, respectively. The coordinates (x :y: z)
then give the desired isomorphism X (7) — X.

Define
hy = —(y’2)/x* =q ' +3+4q+3¢° —5¢" = 74" + .. .;
it is a modular function of level 7. Define h7 := F;(h4) where

From equations (4.20) and (4.24) of [E1k99], with a correction in the sign of (4.23) of loc. cit., we
have J7(h7) = j. Since J7(Fi(t)) = Ju(t), we have Jy(hy) = j.
Define hs := Fs(hy4) and hs := F3(hy4), where

_Bt-(B-1) __t—=n
I I A T

with 8 =44+ 3¢ +3G 1+ G+ ¢G2and v =+ ¢+ G+ ¢2+ 1. Since J3(Fa(t)) = Ju(t) and
J5(F3(t)) = J4(t), we have Jg(hg) :j and J5(h5) = j

Fy(t)

For i € {3,4,5,7}, let H; be the subgroup of GLg(FF7) that fixes h;. We have shown that
Ji(h;) = j. By Lemma 3.4, we find that H; is an applicable subgroup and that the morphism
7w, : Xu, — Pg is described by the rational function J;(t).

Lemma 4.2. The groups H; and G; are conjugate in GLo(F7) for all i € {3,4,5,7}.

Proof. The index of H; in GLy(F7) agrees with the degree of J;(t) which is 24 or 8 if i € {3,4,5}
or i = 7, respectively. By our list of applicable subgroups, we deduce that H7 is conjugate to G7 in
GL2(F7). The groups Hs, Hy and Hj are not conjugate in GLo(F7) (since one can show that the
images of P}(Q) = QU {oo} under J3, J; and J5 are pairwise distinct). By our list of applicable
subgroups, the groups Hs, H4 and Hy are conjugate to the three subgroups Gs3, G4 and Gs; we
still need to identify Hs with Gg, etc.

The modular function hy € F7 is a Laurent series in ¢ and has rational coefficients. Using
Proposition 3.1, this implies that H4 contains the group of matrices of the form + (1 9) in GLy(F7).
Therefore, Hy must be conjugate to G4 in GLo(FF7). The elliptic curve given by the Weierstrass
equation y2 + (1 +t —t3)zy + (12 — t3)y = 23 + (t* — t3)2? has j-invariant J3(¢) and the point (0,0)
has order 7, so Hs is conjugate to GGs. Therefore, Hy is conjugate to Gs. O

Following Elkies ([E1k99, p.68]), we multiply the equation of the Klein curve to obtain (x3y +
y3z +23x) (x3z + 23y +y3x) = 0. Noting that the left hand side is a symmetric polynomial in x, y and
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z, one can show that s§ + s3(s] — 5s3sg + 5185 + Ts?s3) = 0 where 51 = x+y +2, s2 = xy +yz + zx
and s3 = xyz. We now deviate from Elkies’ treatment. Divide by s%s% and rearrange to obtain

2 (9 2.9 2 2 2 2
S S S S S S
(—2 ) +(—1> e e S 1)
5183 52 5183 s2 8153 5183

We thus have v? + (h3 — 5ha + 1)v + 7 = 0, where

ho = 52 [s5 = g7+ 24+ 217 + @217+ 2g37 + 347 + 4T 4 5¢57 +7q + 8% + - -
and v := s3/(s1s3) are modular functions. We claim that
(4.1) hy 4 (h3 — 4h3 4 3hy + 1)((h3 — 5ho + 1)v +7) = 0.

This can be verified algebraically: In the left-hand side of (4.1), replace hy by Fi(—y?z/x3), ho
by (z +y + 2)%/(zy + yz + zx), and v by (zy + yz + 22)%/((z + y + 2)xyz); the numerator of the
resulting rational function is divisible by xy® + yz3 + za3.

Completing the square in the equation v? + (h% — bhg + 1)v+ 7 =0, we have

(4.2) w? = hj — 10h3 + 27h3 — 10hy — 27,
where w := 2v + (h3 — 5hy + 1). From (4.1), we find that
(4.3) hy = (h3 — 4h3 + 3ho + 1)((h3 — 10h3 + 27h3 — 10hy — 13) — (h3 — 5ho + 1)w).

We have j = J7(h7), so (4.2) and (4.3) imply that j can be written in the form a(hs) + B(hs)w for
rational functions «a(t) and 5(¢). A direct computation shows that a(t) = Ja2(t) and B(t) = 0, and
hence Ja(hg2) = j.

Let Hs be the subgroup of GLa(FF7) that fixes hy. We have Ja(h2) = j, so Lemma 3.4 implies
that Hy is an applicable subgroup and that the morphism 7g,: Xg, — IP’(%2 is described by the
rational function Ja(t). The index of Hy in GLa(F7) is 28 since it agrees with the degree of Ja(t).
By our list of applicable subgroups, we deduce that Hs is conjugate to Gy in GLa(F7).

Let Hy; be the subgroup of GLa(F7) that fixes hy and w. The group Hj; is an index 2 subgroup
of Hj since the extension Q(ha,w)/Q(h2) has degree 2. The group Hi; contains Gg since Q(hg, w)
is contained in Q(x/z,y/z) which is the function field of X (7); in particular, Hi; is applicable. From
our classification of applicable subgroups, we find that Hi; is conjugate to G11. The modular curve
Xy, thus has function field Q(hg,w) and is hence isomorphic to the smooth projective curve over
Q with affine model

(4.4) y? =zt — 1023 + 272% — 10z — 27.

The only rational points for the smooth model of (4.4) are the two points at infinity (one can show
that it is isomorphic to the quadratic twist by —7 of the curve E7; from §1.9, and that this curve
has only two rational points). Using that Ja(co) = oo, we find that the two rational points of
Xm,,, and hence of X¢g,,, are cusps. Therefore, there is no non-CM elliptic curve E/Q for which
pe7(Galg) is conjugate to a subgroup of Gi1; the same holds for the group Gg since Gg C G1.

Now consider the subfield K := Q(hg, w/+/—7) of F7. Let Hy be the subgroup of GLy(F7) that
fixes K. From the inclusions K O Q(hg2) O Q(j) and (4.2), we find that K is the function field of
the geometrically irreducible curve

(4.5) —7y? =2t — 1023 + 2722 — 10z — 27

defined over Q (with (z,y) = (hg,w/\/=7)). The curve Xp, is defined over Q since Q is al-

gebraically closed in K. The only rational points of the smooth projective model of (4.5) are

(x,y) = (5/2,£1/4) (one can show that it is isomorphic to the curve E7; from §1.9, and that

this curve has only two rational points). These two rational points on X, lie over the j-invariant
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Jo(5/2) = 33 -5-7°/27. This shows that for an elliptic curve E/Q, pg 7(Galg) is conjugate to a
subgroup of Hj in GLy(F7) if and only if jp = 33-5-7°/27. Since Xy, has a rational point that is
not a cusp, the group H; must be applicable and not conjugate to G11. The group H; is an index
2 subgroup of Hj since [Q(hs,w/v/—7) : Q(h2)] = 2. From our description of applicable groups, we
deduce that H; is conjugate to Gy.

Remark 4.3. The rational points on Xp, were first described by A. Sutherland in [Sut12]. An
elliptic curve E/Q with j-invariant 33 - 5 - 75/27 has the distinguished property of not having a
T-isogeny, yet its reduction at primes of good reduction all have a 7-isogeny.

From equation (4.35) of [E1k99], the modular curve X', (7) := X, has function field of the form
Q(x) and the morphism down to the j-line is given by Jg(x); note that there is a small typo in the
numerator of equation (4.35) of [E1k99] though the given expression for j — 1728 is correct.

Lemma 4.4. The rational points of the modular curve Xq,, are all CM.
Proof. The fiber in X,!,(7) over j = 1728 is the (non-reduced) subscheme given by
(20 — 142% + 212 4 28z + 7)(z — 3) (2! — 72® + 142? — 7w + 7) (2" — 142® + 562 + 21))* = 0;

this can be found by factoring Jg(x) — 1728. Define the modular curve X,,5(7) := X¢, (7). One can
show that the morphism X,,5(7) — X,'.(7) is ramified at precisely four points lying over j = 1728.
Since it is defined over Q, these four ramification points are the ones given by 2z* — 1423 + 2122 +
28z + 7 = 0. Therefore, X,,5(7) is defined by an equation

y? = (22 — 1423 4 2127 4 282 + 7)

for some squarefree ¢ € Z.

We claim that ¢ = —1. Consider an elliptic curve £/Q with j-invariant —2°. The value x = 1
is the unique rational solution to J(x) = —2'%. Setting x = 1, we have y? = 44c. Therefore, K =
Q(v/11c) is the unique quadratic extension of Q for which pe7(Galg) C Cps(7). Since jp = —215,
the curve E has CM by Q(v/—11) and hence pp,7(Galg,/=11)) = Cns(7) and pg,7(Galg) = Nns(7);
see §7. Therefore, K = Q(v/—11) and hence ¢ = —1 as claimed. (The above argument comes from

Schoof.)
Define the subfield L = Q(x,v) of F7 where v := y/+/—7; we have
(4.6) 0% = 22" — 1423 + 212% + 282 + 7.

Let G be the subgroup of GLy(F7) that fixes L; it is an index 2 subgroup of Gg = N,s(11) since
L/Q(x) has degree 2. The field Q is algebraically closed in L since L/Q(x) is a geometric extension.
Therefore, det(G) = F5. There are only two index 2 subgroups of Gg with full determinant; they
are G2 and Cys(7). The group G is thus G2 since Cp4(7) corresponds to the field Q(z,y).
Therefore, X¢,, has function field Q(z,v) with x and v related by (4.6). The smooth projective
curve defined by (4.6) has genus 1 and a rational point (z,v) = (0,1); it is thus an elliptic curve. A
computation shows that this elliptic curve is isomorphic to the curve E72 of §1.9. The curve E7 o
has only two rational points, so (z,v) = (0,41) are the only rational points of the curve defined
by (4.6). The lemma follows since Jg(0) = 0. O

If E£/Q is a non-CM elliptic curve, Lemma 4.4 shows that pg 7(Galg) is not conjugate to a sub-
group of GG12. The same holds for Gg and G1g since they are both subgroups of Gis.

Suppose that H is a proper subgroup of G; satisfying +H = G; for a fixed 1 < < 7. If i # 1,
then i € {3,4,5,7} and H is one of the groups H; ;. If i = 1, the H is either H;; or another
subgroup that is conjugate to H;; in GL2(F7). This completes the proof of Theorem 1.5(i) and
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(ii); we can ignore t = oo for 2 < i < 7 since J;(00) is either oo or the j-invariant of a CM elliptic
curve.

4.5. ¢ = 11. Fix notation as in §1.5. Up to conjugacy, the group GLo(Fi;) has four maximal
applicable subgroups: B(11), Ns(11), Nps(11) and a group He, whose image in PGLy(Fq1) is
isomorphic to &4.

4.5.1. Exceptional case. The curve Xg,(11) := XH64 has no rational points corresponding to a
non-CM elliptic curve; it is isomorphic to an elliptic curve which has only one rational point
[Lig77, Prop. 4.4.8.1] and this point corresponds to an elliptic curve with CM by +/—3.

4.5.2. Split case. The curve X (11) := XN, (11) has no rational points corresponding to a non-CM
elliptic curve; see [BPR11] for a more general result. Therefore, there are no non-CM elliptic curves
E/Q such that pg¢(Galg) is conjugate to a subgroup of Ny(11).

4.5.3. Non-split case. The modular curve X (11) := Xg, = XNno(11) has genus 1. Halberstadt
[Hal98] showed that the function field of X,(11) is of the form K := Q(z,y) with y? +y =
23 — 2 — Tz + 10 such that the inclusion Q(5) C Q(z,y) is given by j = J(z,y). Therefore, if F/Q
is a non-CM elliptic curve, then pg 11(Galg) is conjugate to a subgroup of Nps(11) if and only if
jg = J(P) for some point P € £(Q). We only need consider P # O since, as noted in [Hal98],
J(O) is the j-invariant of a CM elliptic curve.

Let G4 be the subgroup of G3 consisting of g € G = N,s(11) such that g € C,s(11) and
det(g) € (F)2, or g & Cuo(11) and det(g) ¢ (F3,)°.

Lemma 4.5. The modular curve Xg, has no rational points.

Proof. Define the modular curve X,s(11) := X¢, (11)- Proposition 1 of [DFGS14] shows that
Xns(11) can be defined by the equations y? +y = 23 — 22 — 72+ 10 and u? = — (423 + 72 — 62+ 19),
where K = Q(z,y).

Define the field L := K(v) with v = u/y/—11. We have L C Fj; since v/—11 € Q(¢11). Let G
be the subgroup of GLo(F11) that fixes L; it is an index 2 subgroup of G since L/K has degree
2. The field Q is algebraically closed in L since it is algebraically closed in K and L/K is a
geometric extension. Therefore, det(G) = F;|. There are only two index 2 subgroups of G3 with
full determinant; they are G4 and C),5(11). The group G is thus G4 since Cy5(11) corresponds to
the field K (u).

Therefore, X, has function field Q(x,y,v) where y? +y = 23 — 22 — 72 + 10 and v? = 11(42® +
722 — 62 + 19). We now homogenize our equations:

(4.7 Y2z +y2t =% — 2ty — Tw2® +£102°, 110z = (da® + Tatz — 6222 +192°).

Combining the two equations (4.7) to remove the x3 term, we find that 11v%z = (4y%2 + 4yz? +
11222 + 22222 — 2123). Factoring off z, we deduce that the following equations give a model of X¢,
in P2 :

Q

(4.8) vz +y2 =ad — 2%z — Te2? +1023, 1107 = (4% + dyz + 1122 + 2222 — 212%).

Suppose (z,y, z,v) € P3(Q) is a solution to (4.8). If z = 0, then we have 0 = 23 and 11v? = 432,
which is impossible since 44 is not a square in Q. So assume that z = 1. We can then recover the
equation v? = 11(423 + 72? — 62 + 19) which has no solutions (z,v) € Q?; it defines an elliptic curve
and a computation shows that its only rational point is the point at co. Therefore, X, (Q) =0. O

Let E/Q be a non-CM elliptic curve for which pg 11(Galg) is conjugate to a subgroup of Gs.
Suppose that pg 11(Galg) is conjugate to a subgroup of Gz. The group G5 has no index 2 subgroups
H that satisfy £ H = G3. Therefore, pg 11(Galg) is conjugate to a subgroup of a maximal applicable
subgroup of G3. Up to conjugacy, there are two maximal applicable subgroups of G3; one is G4 and
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the other is a subgroup G5 of index 3 in G3. The image G5 of G5 in PGLy(FF11) has order 8 and
is hence a 2-Sylow subgroup of PGLy(F11). Therefore, G5 lies in a subgroup of PGLy(F11) that is
isomorphic to &4 and hence G5 is conjugate to a subgroup of Hg,. However, we saw in §4.5.1 that
pe11(Galg) cannot be conjugate to a subgroup of Hg,. This implies that pg 11(Galg) is conjugate
to a subgroup of G4 which is impossible by Lemma 4.5. Therefore, pg 11(Galg) must be conjugate
to Gg.

4.5.4. Borel case. The modular curve Xp(11) is known to have exactly three rational points that
are not cusps; they lie above the j-invariants —2'°, —112 and —11 - 1313, cf. [BK75, p. 79]. An
elliptic curve with j-invariant —2'° has CM, so we need only consider the other two.

Consider the elliptic curve E/Q defined by y* + xy +y = 2% + 22 — 3052 + 7888; it has j-
invariant —112 and conductor 112. The division polynomial at 11 of E factors as the product of the
irreducible polynomial f(z) = 2° — 1292 +80023 48184722 — 421871z — 4132831 and an irreducible
polynomial g(z) of degree 55. Since 11 divides the degree of g(x), we find that pg 11(Galg) contains
an element of order 11. Therefore, there are unique characters x1, x2: Galg — Fy such that with
respect to an appropriate change of basis we have

(4.9) pE11(0) = <X1(ga) X;EJ)) )

We have x1x2 = w where w: Galg — F} is the character describing the Galois action on the 11-th
roots of unity (we have w(p) = p (mod 11) for primes p # 11). The characters x; and ys are
unramified at primes p { 11, so x1 = w® and x2 = w!'!~? for a unique integer 0 < a < 10. Let w € Q
be a fixed root of f(z). One can show that

P = (w, —(w* — 79w® — 3150w + 12193w + 1520110)/11%)

is an 11-torsion point of E(Q). The field Q(w) is a Galois extension of Q and that the group
generated by P is stable under the action of Galg. We thus have o(P) = x1(0)- P for all o € Galg,
and hence x;(Galg) is a group of order [Q(w) : Q] = 5.

We have az(E) = —1, so the roots of the polynomial det(xI — pg 11(Frobs)) = 22 — (—=1)z + 2
(mod 11) are 4 = 2% and 6 = 2° (mod 11). Since xi(Frobs) = 2% and x(Frobs) = 2117 are the
roots of det(xI — pg11(Frobg)) and 2 is a primitive root modulo 11, we have a € {2,9} and hence
{x1,x2} = {w? w’}. Since x1(Galg) has cardinality 5, we have x1 = w? and 2 = w”. Since 2 is a
primitive root modulo 11, the group pg 11(Galg) is generated by (202 209) =(32)and (1), ie., it
equals Hy 1. In particular, £pp 11(Galg) = G.

Consider the elliptic curve E/Q defined by y? + xy = 23 + 22 — 36322 + 82757; it has j-invariant
—11 - 1312 and conductor 112. The division polynomial at 11 of E factors as the product of the
irreducible polynomial f(z) = 25 —1292*+479323+997322 — 36948002 +52660939 and an irreducible
polynomial g(z) of degree 55. Since 11 divides the degree of g(x), we find that pg 11(Galg) contains
an element of order 11. Therefore, there are unique characters xi, x2: Galg — F{ such that with
respect to an appropriate change of basis we have (4.9). The characters y; and x2 are unramified
at primes p{ 11 and y1x2 = w, 50 x1 = w® and y2 = w'' ™% for a unique integer a € {0,1,...,9}.
Let w € Q be a fixed root of f(x). One can show that

P = (w, (w* — 79w® + 843w? + 45468w — 722625)/11%)

is an 11-torsion point of E(Q). The field Q(w) is a Galois extension of Q and that the group

generated by P is stable under the action of Galg. We thus have o(P) = x1(0)- P for all o € Galg,

and hence x1(Galg) is a group of order [Q(w) : Q] = 5. We have as(E) = 1, so the roots of the

polynomial det(z] — pg 11(Froby)) = 22 —1-2+2 (mod 11) are 5 = 2% and 7 = 27 (mod 11). Since
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x1(Froby) = 2% and x(Frobs) = 2!'7% are the roots of det(x] — pg 11(Frobs)) and 2 is a primitive
root modulo 11, we have a € {4,7} and hence {x1,x2} = {w?* w"}. Since x1(Galg) has cardinality
5, we have y; = w* and y2 = w”. Since 2 is a primitive root modulo 11, the group pg 11(Galg) is

generated by (2; 207) =(39) and ({ 1), i.e, it equals Hy . In particular, +pp 11(Galg) = Ga.

4.5.5. Polynomials for X,,(11). This subsection is dedicated to sketching Remark 1.7 and making
the polynomials explicit; fix notation as in §1.5. Define the polynomials:

A(x) = (2° — 92* + 1723 + 2022 — 732 4 43)'*,
B(z) = — (2% + 3z — 6)®(108000z*? + 237938402*% — 4132237222*" — 53770103682® + 2307997385292*
— 3137869050351z 4 232059117123352%% — 9093626864724621 + 3356364747159624
+ 163141522007487121° — 77447260791954132%7 — 3218815397602111238 + 236712051437217644237
— 168642869802225334423% 4+ 798480400202306355423% — 3044478413526386099623*
+ 96849826504401032248233 — 232064394883539673213232 + 2101755354133953538572!
+ 16096958063249464848262%° — 1176853368983764836010922% + 482911961228262597718172%
— 143943931899306373170309227 + 31582702578156323242085742¢ — 4215969797204859926291212:%°
— 2349298858801625476453062%* + 3668241437553022801950917x23 — 1422109146355380102477059922
+ 3914826456321573473061091 722! — 8753447206181034860931597422°
+ 1664742402196195753794853932'° — 2750407715730548342470363452'8
+ 399144725377223909937142938x'7 — 5118409603823581445958394582:16
+ 5816561655353342146657178162'° — 5862065780969812439806686542 4
+ 5234656558419010793704571 7523 — 4132008246328025033548079722:12
+ 2872708327753166439523357092! — 1750495771312690877957814532'°
+929165722689737691048156202° — 426364173233858922540330272°
+ 16754292456737738144357709z7 — 5570911068111617263502302x° + 15426488019953308741842362°
— 34781905342492833679306821 4 6168347532890333823917823 — 81170562507209372289852:
+ 708318740340941449799z — 30857360406231018655),
C(x) = (4o — 5) (2% + 3z — 6)5(922 — 28z + 23)3(2* — 523 + 74a? — 2452 + 223)3
- (42* — 923 — 22 + 21w — 32)3(252* — 1142% + 16722 — 86 + 20)°.
Proposition 4.6. For j € Q, we have J(P) = j for some point P € £(Q) — {O} if and only if
A(x)j% 4+ B(x)j + C(x) € Q[x] has a rational root.

Proof. Take (z,y) € € — {O}. Using the equation y? 4y = 23 — 2 — Tz 4 10, a direct computation
shows that J(x,y)A(x) = a(x)y+b(x) for unique a,b € Q[x]. Multiplying y?+y = 2> — 22— 72+ 10
by a?, we deduce that (JA —b)?+a(JA —b) —a?(z3 — 22 — 72 +10) = 0. Therefore, A%2J% 4 (—2b+
a)AJ +b? — ba — a®(z® — 22 — 7w + 10) = 0. Our polynomials B and C satisfy B = —2b + a and
C = (b* —ba — a®(x3 — 2% — Tz + 10))/A. We thus have

(4.10) A(x)J(z,y)* + B(z)J(2,y) + C(x) =0

for all (z,y) € £ — {O}.

First suppose that j = J(xg,y0) for some (xg,y0) € £(Q) — {O}. Then 0 = A(z0)J (0, 0)? +
B(x0)J(w0,y0) +C(10) = A(x0)j2+ B(x0)j+C(z0) and hence A(x)j?+ B(x)j+C(x) has a rational
root.

Now fix j € Q and suppose that there is an xg € Q such that A(x¢)j% + B(xo)j + C(z0) = 0.
Define A(x) := B(z)? —4A(x)C(x). A computation shows that A(x) = D(z)?(2® — 2% — Tz +41/4)
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for a polynomial D € Q[x] that has no rational roots. The rational number A(zg) = D(z)?(x} —
x3 — Trg + 41/4) is a square since j is a root of A(zo)X? + B(z0)X + C(:co) € QX ] Therefore,
v? = 23 — 22 — Txo +41/4 for some v € Q. With yo = v —1/2, we have y2 +yo = 2 — 23 — Tz + 10
and hence P := (x9,y0) is a point in £(Q) — {O}. We could have chose v with a dlfferent sign, so
P’ = (zg,—v —1/2) = (20, —yo — 1) also belongs to £(Q) — {O}.

We claim that J(P) # J(P’). Suppose that they are in fact equal. Using that J(x,y)A(z) =
a(x)y + b(z), we find that a(xo)yo = a(zo)(—yo — 1). Since a(z) has no rational roots, we must
have yp = —1/2 and hence v = 0. However, this is impossible since 23 — 2% — 72 + 41/4 has no
rational roots, so the claim follows. From (4.10), we find that J(P) and J(P’) are distinct roots of
A(20)X? + B(z0)X + C(x0). Since j is also a root of this quadratic polynomial, we deduce that
j = J(P)or j = J(P). .

4.6. ¢ = 13. We shall prove parts (i) and (ii) of Theorem 1.8 (part (iv) was explained in the
introduction); so we will focus on B(13) and its subgroups. We first rule out subgroups of Cs(13).

Lemma 4.7. There are no non-CM elliptic curves E/Q for which pg13(Galg) is conjugate in
GL2(F13) to a subgroup of Cs(13).

Proof. Kenku has proved that the only rational points of X(132) are cusps, cf. [Ken80, Ken81]. By
Lemma 3.6, we deduce that the only rational points of the modular curve X¢, (13 are cusps. (|

One can show that the applicable subgroups of B(13) = Gg that are not subgroups of Cs(13) are
G1, Ga, G3, G4, G5, and G; NG with ¢ € {1,2} and j € {3,4,5}. Note that these subgroups are
normal in B(13).

We now describe several modular function constructed by Lecacheux [Lec89, p.56]. Define

p(i5:7) — p(5:7) p(13:7) — 9(5:7)
f(T) —_ 113. 133' and 9(7_) — 113. 153.

p(i3:7) — o(35:7) o(13:7) — 0(13:7)

where p(z;7) is the Weierstrass gp-function at z of the lattice Z7 + Z C C. Define the functions
-1 -1 1-— -1
G-Diglg—D+1-0) 4 p=fL
(f =D —9) g—1

The functions hs and ho belong to Fi3 and satisfy Fy(ha) = F5(hs), where
By(t) = t4+(t—1)/t—=1/(t—1)—4 = (3—4t>+t4+1)/(t?—t) and F5(t) =t—1/t—3 = (£*=3t—1)/t;

this follows from [Lec89, p.56-57] with H = hs and h = ha.
Let hg be the function Fy(he) = Fs(hs); it is called a — 3 in [Lec89] and satisfies Jg(hg) = j,
cf. [Lec89, p.62]. Since Jo(t) = Js(Fa(t)) and J5(t) = Js(F5(t)), we have Jo(he) = j and J5(hs) = j.

h5 =

Define o := —({4 — (19 — ¢} — ¢} + 1. Define the rational functions
Fi(t) =13(t* —t)/(* —4t* +t+1) and ¢1(t) = (at +1—a)/(t — );

Define the modular function hy := ¢1(h2) € Fi3. One can check that Fy(¢1(t)) = F>(t) and hence
Fl(hl) Fg(hg) == h6 Slnce Jl( ) J6(F1( )) we have Jl(hl) = j
Define 3 := ({3 + (19 + (5 + ({5 + (%5 + ({5 + (5 + (f5 + 2. Define the rational functions

Fy(t) = (=52 + 72 + 8t —5) /(2 —4t> +t +1) and ¢3(t) = (Bt —1)/(t+ 3 —1).

Define the modular function hs := ¢3(ha) € Fi3. One can check that F3(¢3(t)) = Fa(t) and hence
Fg(hg) Fg(hz) B hﬁ Since Jg( ) J6(F3( )) we have Jg(h3) = ]
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Define v = (1 + v/13)/2; it belongs to Q((13) and moreover equals v = —(l4 — (%5 — (75 — (95 —
(§3 — ¢%;. Define the rational functions

Fy(t)=13t/(t* =3t —1) and ¢s(t) = ((2—Nt+1)/(t —2+7)).

Define the modular function hy := ¢4(hs) € Fi3. One can check that Fy(¢4(t)) = F5(¢) and hence
F4(h4) = F5(h5) = hﬁ. Since J4(t) = JG(F4(t)), we have J4(h4) = j

For 1 <i <6, let H; be the subgroup of GLy(F7) that fixes h;. We have shown that J;(h;) = j.
By Lemma 3.4, we find that H; is an applicable subgroup and that the morphism 7y, : Xg, — IP’}@
is described by the rational function J;(t).

Lemma 4.8. The groups H; and G; are conjugate in GLa(F13) for all 1 < i <6.

Proof. The index of Hg in GLa(F13) is equal to 14, i.e., the degree of Js as a morphism. Therefore,
Hg must be conjugate to B(13). The index [Hg : H;] equals the degree of F;(t), and is thus 3 if
i€{1,2,3} and 2 if i € {4,5}.

The groups Hy, Hy and Hs are not conjugate in GLg(IF13) since one can show that the images
of P1(Q) = QU {oo} under Ji, J and J3 are distinct. Therefore, Hy, Hy and Hy are conjugate to
G1, Gy and G3 which are the applicable subgroups of B(13) of index 2; however, we still need to
determine which group is conjugate to which.

Let E/Q be the elliptic curve defined by y? = 23 — 338z + 2392. The group pg13(Galg) is
conjugate to a subgroup of Hj since jg = J3(0). One can check that E/Q has good reduction
at 3 and that a3(E) = 0. Since 22 — a3(F) + 3 = (x — 6)(x + 6) (mod 13), we deduce that the
eigenvalues of the matrix pg 13(Frobs) are 6 and —6. For every matrix in G or G has an eigenvalue
in (Fy5)% = {£1,£5}. Since 6 and —6 do not belong to (IF;3)3, we deduce that Hj is not conjugate
to G1 and Go. Therefore, Hs is conjugate to G.

Let E/Q be the elliptic curve defined by y? = 2% — 22272 — 59534. We have jp = J2(2) and
JjE ¢ J1(QU {oo}). Therefore, pg 13(Galg) is conjugate to a subgroup of Hy and not conjugate to
a subgroup of H;. By computing the division polynomial of E at the prime 13, we find that E has
a point P of order 13 whose z-coordinate is 17 + 8y/17. So with respect to a basis of E[13] whose
first element is P, we find that pg 13(Galg) is a subgroup of G5. Therefore, Hy is conjugate to G,
and hence H; is conjugate to G.

The groups Hy and Hjy are not conjugate in GLy(F;3) since one can show that the images of
P}(Q) = QU {oc} under Jy and Js are distinct. Therefore, H; and Hs are conjugate to G4 and G
which are the applicable subgroups of B(13) of index 3; however, we still need to determine which
group is conjugate to which.

Let E/Q be the elliptic curve defined by y? = 23 — 3024z — 69552. We have jp = J5(2) and
JjE ¢ Ji(QU {oo}). Therefore, pg 13(Galg) is conjugate to a subgroup of Hs and not conjugate to
a subgroup of Hy. By computing the division polynomial of FE at the prime 13, we find that F has
a point P of order 13 whose z-coordinate w is a root of 23 — 3024z + 12096. The cubic extension
Q(w) of Q is Galois, so with respect to a basis of E[13] whose first element is P, we find that
pe13(Galg) is a subgroup of G'5. Therefore, Hj is conjugate to G5, and hence Hy is conjugate to
Gy. O

We have thus completed the proof of Theorem 1.8(ii); we can ignore ¢ = oo since J;(c0) = oo for
i # 3 and J3(c0) = J3(0). If H is a proper subgroup of G; satisfying +H = G;, then one can show
that ¢ € {4,5} and H is one of the groups H; ;.

To complete the proof of Theorem 1.8(i), we need only show that the modular curves X¢;ng;,
with fixed i € {1,2} and j € {3,4,5}, have no rational points other than cusps. It suffices to prove
the same thing for the modular curves Xg,n Hj-
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The function field of Xp,nn; is Q(hi, hj) and the generators h; and h; satisfy the relation Fi(h;) =
he = Fj(h;). The smooth projective (and geometrically irreducible) curve over Q arising from the
equation Fj(x) = Fj(y) is thus a model of Xpy,np,-

The following Magma code shows that if (z,y) € Q? is a solution of F;(x) = Fj(y) (where we say
that both sides equal oo if the denominators vanish), then y = 0. The code considers the projective
(and possibly singular) curve C; ; in IP’?Q defined by the affine equation Fj(z) = Fj(y) (we first clear
denominators and homogenize). We then find a genus 2 curve C' that is birational with C; ; and is
defined by some Weierstrass equation y? = f(x) with f(z) € Q[z] a separable polynomial of degree
5 or 6. We then check that the Jacobian J of C has rank 0, equivalently, that J(Q) is a finite group
(Magma accomplishes this by computing the 2-Selmer group of J). Using that J(Q) has rank 0, the
function ChabautyO finds all the rational points on C'. Using the birational isomorphism between
C and C; j, we can determine the rational points of C.

K<t>:=FunctionField(Rationals());
F:=[13*%(£"2-t) /(£"3-4xt"2+t+1), (£"3-4*t"2+t+1)/(t"2-t),
(5%t 3+7*t"2+8%t-5) / (£"3-4*t"2+t+1), 13%t/(t"2-3*t-1), (£°2-3*t-1)/t 1;
P2<x,y,z>:=ProjectiveSpace(Rationals(),2);
for i in [1,2,3], j in [4,5] do
f:=Numerator(Evaluate(F[i],x/z)- Evaluate(F[jl,y/2));
while Evaluate(f,z,0) eq O do f:= f div z; end while;
CO:=Curve (P2,f);
b,Cl,f1:=IsHyperelliptic(C0); C2,f2:=SimplifiedModel(C1);
Jac:=Jacobian(C2); RankBound (Jac) eq O;
S:=Chabauty0(Jac) ;
b,gl:=IsInvertible(f1); b,g2:=IsInvertible(£f2);
T:=g1(g2(8) join SingularPoints(C1)) join SingularPoints(CO);
{P: P in T | P[2] ne O and P[3] ne 0} eq {};
end for;

We find that if Fj(z) = F;(y) for some z,y € QU {oo}, then y = 0 or y = co. Thus the only
rational points of Xp,npg, are cusps since J;(0) = Jj(oo) = oo for j € {4,5}.

4.7. ¢ = 17. We now prove Theorem 1.10(i). Let E/Q be the elliptic curve defined by the
Weierstrass equation y? + zy +y = 23 — 1908912 — 36002922; it has j-invariant —17 - 3733 /217
and conductor 2 - 52 - 172. The division polynomial of E at 17 factors as a product of f(z) =
xt + 48223 + 114422 — 158098422 — 958623689 with irreducible polynomials of degree 4 and 8 - 17.
Fix a point P € E(Q) whose z-coordinate w is a root of f(z); it is a 17-torsion point. Let C be the
cyclic group of order 17 generated by P; it is stable under the Galg action. Let x1: Galg — Fy
be the homomorphism such that o(P) = xi(o) - P for 0 € Galg. One can show that the degree
4 extension Q(w)/Q is Galois, so x1(Galg) has cardinality 4 or 8. There is a second character
x2: Galg — F7; such that, with respect to an appropriate change of basis, we have
ppar(@) = (07 i)

The cardinality of pg 17(Galg) is divisible by 17 since the division polynomial of E at 17 has an
irreducible factor whose degree is divisible by 17. We have x1x2 = w where w: Galg — Fy; is
the character describing the Galois action on the 17-th roots of unity (we have w(Frob,) = p for
primes p # 17). The characters x; and xo are unramified at primes p{2-5-17, so x1 = w%x and

x2 = w4 ! for some integer 0 < a < 16 and some character x: Galg — F;% unramified at

p12-5.
Let Hy and Hj be the subgroup of GLa(FFy) consisting of matrices of the form

(w(g)“w(a)%w) and (Xlé")m(g)fl)’
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respectively, with o € Galg. Since w and x are ramified at different primes, we find that the image
of pp e is generated by (1) and the groups H; and Ho.

The character x is unramified at p { 2-5 and has image in a cyclic group of order 16. Therefore, x
must factor through the group Gal(Q((g4,(5)/Q). Since 641 =1 (mod 64-5), we have x(Frobgs1) =
1. Therefore, x1(Frobgs1) = w(Frobes1)® - 1 = 641 (mod 17) is a root of

2% — aga1 (E)x + 641 = 2% — (—9)x + 641 = (z — 641°%)(x — 641')  (mod 17),

and hence a € {6,11} since 641 is a primitive root modulo 17. If a = 11, then x1(Galg) = F;;
which is impossible since the cardinality of x;(Galg) is 4 or 8. Therefore, a = 6. The group

H1 thus consists of matrices of the form (‘306 691) with ¢ € F{, and in particular is generated by

(% 9)=G8):
05

To complete the proof that pg 17(Galg) is G1, it suffices to show that Hy is generated by (61 0 );
equivalently, to show that the image of x is cyclic of order 4. As noted earlier, x factors through the
group Gal(Q((e4,¢5)/Q) = (Z/64 - 5Z)*. One can then show that Gal(Q((p4,(5)/Q) is generated
by Frobios, Frobis; and Frobsyp;. The primes p € {103,137,307} were chosen to be congruent to
1 modulo 17, and hence x(Frob,) = x1(Frob,) is a root of 2* — a,(E)x + p modulo 17. It is then
straightforward to check that x(Frobigs), x(Frobis7) and x(Frobspr) all have order 4.

The elliptic curve E’'/Q defined by the Weierstrass equation y? +xy +y = 23 — 3041z 4 64278; it
has j-invariant —17%-1013/2. One can show that E/C is isomorphic to E’. The group pgr 17(Galg)
is thus conjugate to Go in GLa(F17).

Finally we note that G; and G5 have no index 2 subgroups that do not contain —1.

4.8. ¢ = 37. We now prove Theorem 1.10(ii). Let E/Q be the elliptic curve defined by the equation
y? + 2y +vy = 2 + 2% — 8z + 6; it has j-invariant —7 - 113 and conductor 5% - 72. The division
polynomial of E at 17 factors as a product of f(z) := 2% — 152° — 90x* — 502 + 22522 + 1252 — 125
with irreducible polynomials of degree 6, 6 and 18 - 37. Fix a point P € E(Q) whose z-coordinate
w is a root of f(x); it is a 37-torsion point. Let C' be the cyclic group of order 37 generated by P;
it is stable under the Galg action.

Let x1: Galg — F3; be the homomorphism such that o(P) = xi(o) - P for ¢ € Galg. One
can show that the degree 6 extension Q(w)/Q is Galois, so x1(Galg) has cardinality 6 or 12; in
particular y1(Galg) is a subgroup of (F3;)3. There is a second character x2: Galg — F3; such
that, with respect to an appropriate change of basis, we have

pes(0) = <X1(§U) x;(:f)) '

The cardinality of pg 37(Galg) is divisible by 37 since the division polynomial of E at 37 has an
irreducible factor whose degree is divisible by 37. So to prove that pg 37(Galg) = G3, it suffices to
show that the homomorphism x; x x2: Galg — (F;)? x F3; is surjective.

The characters y; and x2 are unramified at primes pt5-7-37. By Proposition 11 of [Ser72], we
have {x1, x2} = {&, @™ -w} where a: Galg — F3, is a character unramified at primes p{5-7 and
w: Galg — F3; is the character describing the Galois action on the 37-th roots of unity. Since « is
unramified at 37, we find that the character a ! - w is surjective and that (o x (a™! - w))(Galg) =
a(Galg) x FJ;. Since x1 is not surjective, we must have x; = a and ya = a™! - w. It thus suffices
to show that the image of o contains an element of order 12. The fixed field of the kernel of «
is contained in Q((s,(7) since it is unramified at p 1 5 - 7 and has image relatively prime to 5 - 7.
Since 107 = 2 (mod 35), we have o(Froby) = a(Frobig7). Therefore, o(Frobs) is a common root of
2?2 —ay(E)r +2 = 2% + 2+ 2 and 2% — a197(E)z + 107 = 2% + 11z + 107 modulo 37. This implies
that a(Frobs) equals 8 € F3;, which has order 12.
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One can show that the quotient of E by C is the elliptic curve E'/Q defined by 42 + 2y +y =
23 + 2? — 208083z — 36621194; it has j-invariant —7 - 1373 - 20833. The group pgr 37(Galg) is thus
conjugate in GLg(F37) to Gy.

Finally we note that G3 and G4 have no index 2 subgroups that do not contain —1.

5. QUADRATIC TWISTS

Fix an elliptic curve E/Q with jg ¢ {0,1728} and an integer N > 3.
Define the group G := +pg y(Galg) and let H be the set of proper subgroups H of G that satisfy
+H = G. For each group H € H, we obtain a character

XE,H : Gal(@ — {:l:l}

by composing pp ny with the quotient map G — G/H = {£1}. The fixed field of the kernel of the
character xg, g is of the form Q(y/dg i) for a unique squarefree integer dp . Define the set

Dg = {dE,H3 H € H}

Using +pg n(Galg) = G, we find that different groups H € H give rise to distinct characters x g g
and thus |Dg| = [H].

5.1. Twists with smaller image. For a squarefree integer d, let E;/Q be a quadratic twist of E/Q
by d. By choosing an appropriate basis of E;[¢], we may assume that pp, v: Galg — GL2(Z/NZ)
satisfies
PE4,N = Xd ' PE,N,

where x4: Galg — {%1} is the character corresponding to the extension Q(v/d)/Q. We have
+pp, N(Galg) = £pp n(Galg) = G. Therefore, pg, n(Galg) is equal to either G or to one of the
subgroups H € H.

We now show that D is precisely the set of squarefree integers d for which the image of pg, N
is not conjugate to G.

Lemma 5.1. Taoke any squarefree integer d.
(i) We have d € Dg if and only if the group pg, n(Galg) is conjugate in GLo(Z/NZ) to a

proper subgroup of G.
(ii) If d=dg,g for some H € H, then pg, nv(Galg) is conjugate in GLa(Z/NZ) to H.

Proof. Take any group H € H. Composing pg, n: Galg — G with the quotient map G — G/H =
{£1} gives the character x4 - Xg,u. Therefore, pg, n(Galg) is a subgroup of H (and hence equal
to H) if and only if xg uy = xq; equivalently, d = dg . Parts (i) and (ii) are now immediate. [
Since |Dg| = |H|, we deduce from Lemma 5.1 that the map
H — DE, H— dE7H

is a bijection.

Remark 5.2. Observe that pg, n(Galg) being conjugate to H in GLy(Z/NZ) need not imply that
d = dp,g. For example, it is possibly for distinct groups in H to be conjugate in GL2(Z/NZ).

5.2. Computing Dg. Now assume that N > 3 is odd; we shall explain how to compute Dg (we
will later be interested in the case where N is an odd prime). Let Mg be set of squarefree integers
that are divisible only by primes p such that p|N or such that E has bad reduction at p.

For each » > 1, let D, be the set of d € Mg such that

(5.1) ap(E) # -2 (g) (mod N)

holds for all primes p < r for which F has good reduction and p =1 (mod N).
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Lemma 5.3. Suppose that N is odd. We have Dg C D, with equality holding for all sufficiently
large 7.

Proof. Define 2 := N, D,; it is the set of d € Mg such that (5.1) holds for all primes p = 1 (mod N)
for which E has good reduction. We have D, C D, if r > 7', so it suffices to prove that ¥ = Dg.

Take any d € 2. We have a,(Ey) = (%)ap(E) # —2 (mod N) for all primes p = 1 (mod N)
for which E has good reduction. By the Chebotarev density theorem, there are no elements
g € pg, N(Galg) satisfying det(g) = 1 and tr(g) = —2. In particular, the group pg, nv(Galg) does
not contain —I and hence d € D by Lemma 5.1(i). Therefore, 2 C Dg.

We have Di C Mp since each character x g g factors through pg y (and is hence unramified at
all primes p{ N for which E has good reduction).

Now take any d € Dy — 2. There is thus a prime p =1 (mod N) for which E has good reduction

and a,(Eyq) = (g) ap(E) = =2 (mod N). Define g := pg, n(Froby); it has trace —2 and determinant

1. Since N is odd, some power of g is equal to —I. Therefore, pg, v(Galg) = £pg, v(Galg) = G
which contradicts that d € Dg. Therefore, Dy — Z is empty and hence D C 2. ]
One can compute the finite sets D, for larger and larger values of r until |D,| = |H| and then

Dg = D,. This works since we always have an inclusion Dg C D, by Lemma 5.3, and equality
holds when |D,| = |H| since |Dg| = |H|.

When N is a prime, the integers in Dg come in pairs.

Lemma 5.4. Suppose N = { is an odd prime. Let DY, be the set of d € D for which €1 d. Then
Dp= | {d (-1)“"V2¢-a}.

deDl;

Proof. Define £* := (—1)~1/2¢. Take any d € Dr. We need to show that d¢* or d/¢* belong to
Dg (whichever one is a squarefree integer). After possibly replacing E by E4, we may assume that
d = 1 and hence we need only verify that £* € Dg.

So assume that pg ¢(Galg) is a proper subgroup of G' and hence is equal to one of the H € H.
We need to show that ppr ¢(Galg) is also a proper subgroup of G, where E' := Ej«.

The field Q(v#*) € Q(¢;) is a subfield of both Q(E[¢]) and Q(E'[¢]). Since E and E’ are
isomorphic over Q(v/£*), we deduce that [Q(E'[{]) : Q] = [Q(E[/]) : Q]. Therefore,

e 0(Galg)| = [Q(E'E]) : Q] = [Q(E[]) : Q] = |pEe(Galg)| = |H| = |G]/2.
By cardinality assumption, we deduce that ppr ¢(Galg) is conjugate to a proper subgroup of G. [

Remark 5.5. One could also use the methods of this section to help determine H. For example,
if D, = () for some r, then H = (). Suppose we are in the setting, like what happens often in the
introduction, where we know that |H| > 2 because we have two explicit elements of 7. Then to
verify that || = 2, one need only find an r such that |D,| = 2.

5.3. Some examples.

5.3.1. Take £ = 7. Let E/Q be the elliptic curve defined by y?> = 2% — 5373z — 5472106; it has
j-invariant 3% - 5-7°/27 and conductor 2 - 52 - 72. From the part of Theorem 1.5 proved in §4.4, we
know that +pg 7(Galg) is conjugate to the group G of §1.4. Let H be the set of proper subgroups
H of G1 such that £H = G1. The set H consists of two groups; they are both conjugate in GLy(F7)
to the group Hj; of §1.4. The curve E is denoted by &; in §1.4.

We have Dp C Mp = {£1,42,+5,£7,4+10,£14, 435, £70}. The primes 211, 239 and 337 are
congruent to 1 modulo ¢. One can check that

agu(E) =16=2 (mod 7), aggg(E) =—-5=2 (mod 7), (1337(E) =-5=2 (mod 7).
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So if d € D337, then (%) =1, (ﬁ) =1 and (3%7) = 1. Checking the d € Mg, we find that
Dsz7 C {1,—7}. Since |H| = 2, we deduce that D = {1, —T7}.

Now let E'/Q be any elliptic curve with j-invariant 3% - 5 - 7°/27. Using Lemma 5.1, we deduce
that pgpr 7(Galg) is conjugate to Gy if and only if E’ is not isomorphic to E or its quadratic twist

by —7. When pg 7(Galg) is not conjugate to G1 it must be conjugate to Hy ;1 in GLg(F7).

5.3.2. Take ¢ =11. Let G, Hy,1 and Hj o be the groups from §1.5. The set H of proper subgroups
H of Gy for which +H = G is equal to {Hy 1, H12}.

Let F/Q be the elliptic curve defined by y?+zy-+y = 23+12—3052+7888; it has j-invariant —112
and is isomorphic to the curve & of §1.5. In §4.5.4, we showed that pg 11(Galg) and +pg 11(Galg)
are conjugate in GLo(IF11) to H; 1 and Gy, respectively.

Using Lemma 5.4 and |Dg| = |H|, we deduce that Dy = {1,—11}. Lemma 5.1 implies that if
E'/Q has j-invariant —11%, then pgr 11(Galg) is not conjugate to G if and only if E’ is isomorphic
to E or its quadratic twist by —11. If E’ is isomorphic to E or its twist by —11, then ppr 11(Galg)
is conjugate in GLg(F11) to Hy 1 or Hj 2, respectively.

5.3.3. Take ¢ =11. Let G2, Hz; and Hz2 be the subgroups of GLg(F;;) from §1.5. The set H of
proper subgroups H of Gy for which +H = G is equal to {Hs 1, Ha2}.

Let E/Q be the elliptic curve defined by y? + zy = 2 + 22 — 36322 + 82757; it has j-invariant
—11-1313 and is isomorphic to the curve & of §1.5. In §4.5.4, we showed that pg 11(Galg) and
+pp11(Galg) are conjugate in GLa(F11) to Ha 1 and G, respectively.

Using Lemma 5.4 and |Dg| = |H|, we deduce that Dg = {1,—11}. Lemma 5.1 implies that
if F'/Q has j-invariant —11 - 1313, then pgr11(Galg) is not conjugate to Go if and only if E’ is
isomorphic to E or its quadratic twist by —11. If E’ is isomorphic to F or its twist by —11, then
per11(Galg) is conjugate in GLa(F11) to Ha or Ha o, respectively.

6. QUADRATIC TWISTS OF FAMILIES

In this section, we complete the proof of the theorems from §1.

6.1. General setting. Fix an integer N > 3 and an applicable subgroup G of GLy(Z/NZ). Let
‘H be the set of proper subgroups H of GG that satisfy +H = G.

Assume that the morphism 7g: Xg — IP’(%@ arises from a rational function J(t) € Q(t), i.e., the
function field of X¢ is of the form Q(h) where j = J(h).

Let g(t) be a rational function Q(¢) such that
a(t) :== =3g(t)2J(t)/(J(t) —1728) and  b(t) := —2g(t)3J(t)/(J(t) — 1728)

belong to Z[t], and for which there is no irreducible element 7 of the ring Z[t] such that 72 divides
a and 7 divides b. After possibly changing ¢ by a sign, we may assume that ¢ is the quotient
of two polynomials with positive leading coefficient; the function g(¢) is now uniquely determined.
Define A := —16(4a® + 27b%); it is a polynomial in Z[t] and equals 2'236.J(¢)2/(J(t) — 1728)3g(t)°.
Let .# be the set of squarefree f(t) € Z[t] which divide NA(t).

Take any u € Q for which J(u) ¢ {0,1728,00}. We have A(u) # 0 and hence f(u) # 0 for all
f € #. Let E,/Q be the elliptic curve defined by the Weierstrass equation y? = 2% + a(u)z + b(u);
note that A(u) # 0 since J(u) ¢ {0,1728,00}. One can readily check that the curve E, has j-
invariant J(u). Warning: this is not to be confused with the quadratic twist notation we used in
§5.
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Proposition 6.1. There is an injective map
H—#, H— fu

such that for any v € Q with J(u) ¢ {0,1728, 00} and £pg, n(Galg) conjugate to G in GLo(Z/NZ),
the following hold:
(a) If E'/Q is an elliptic curve with j-invariant J(u), then pp ny(Galg) is conjugate to G in
GL2(Z/NZ) if and only if E' is not isomorphic to the quadratic twist of E, by fr(u) for
oll H e H.
(b) If E'/Q is isomorphic to the quadratic twist of E, by f(u) for some H € H, then pgr n(Galg)
is conjugate to H in GLa(Z/NZ).
The sets {fu(u) : H € H} and Dg, represent the same cosets in Q* /(Q*)?2, with Dg, defined as
in §5.

Proof. Define the scheme U := SpecZ[t, N~!, A(t)~!]. By taking the square root of a polynomial
f € ., we obtain an étale extension of U of degree 1 or 2; we denote the corresponding quadratic
character by xs: m(U) = {£1}. Conversely, every (continuous) character m1(U) — {£1} is of the
form x; for a unique f € .#. (Note that 2 always divides A(t)).
The Weierstrass equation
y* =2 + a(t)x + b(t)

defines a relative elliptic curve E — U. Let E[N] be the N-torsion subscheme of E. The morphism
E[N] — U allows us to view E[N] as a lisse sheaf of Z/NZ-modules on U that is free of rank 2.
The sheaf E[N] then gives rise to a representation

PN : ﬂl(U) — GLQ(Z/NZ)

that is uniquely defined up to conjugacy (we will suppress the base point in our fundamental group
since we are only interested in py up to conjugacy).

We now consider specializations of E. Take any u € U(Q), i.e., an element u € Q with A(u) # 0.
One can show that elements u € U(Q) can also be described as those u € Q for which J(u) ¢
{0,1728,00}. We can specialize E at u to obtain the elliptic curve that we have denoted E, /Q; it
is defined by y? = 23 + a(u)x + b(u) and has j-invariant J(u).

Let py,n: Galg — GL2(Z/NZ) be the specialization of py at u; it is obtained by composing
the homomorphism u,: Galg — 71 (U) coming from u € U(Q) with py. The homomorphism p, v
agrees, up to conjugacy, with the representation pg, n that describes the Galois action on the
N-torsion points of E,. So taking pg, v = pu n, specialization gives an inclusion pg, n(Galg) C
pn(m1(U)).

We claim that +pn(71(U)) and G are conjugate in GLo(Z/NZ). By Lemma 3.5, the group
+pp, n(Galg) is conjugate to G in GLy(Z/NZ) for “most” u € Q. By Hilbert’s irreducibility
theorem, the group +pg, nv(Galg) equals £pn(m(U)) for “most” u € Q. This proves the claim.

We may thus assume that G = +pn(71(U)) and hence we have a representation py: 71 (U) — G.
Specializations thus give inclusions pg, n(Galg) C G. Take any H € H and let xp: m(U) — {£1}
be the character obtained by composing py with the quotient map G — G/H = {+1}. We thus
have xg = x ¢, for a unique polynomial fy € .Z.

Specializing x g at u, we obtain the character xg, g: Galg — {1} from §5. With notation as
in §5, we find that the integer dp, g lies in the same class in Q*/(Q*)? as fg(u). Therefore, the
classes of Dg, in Q*/(Q*)? are represented by the set {fr(u) : H € H}. Parts (a) and (b) are
now immediate consequences of Lemma 5.1. (|

We claim that the set of polynomials

F o ={fug:HeH}
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is uniquely determined and has cardinality |#|. By Hilbert irreducibility, one can chose u € U(Q)
such that +pp, n(Galg) = G and such that the map .2 — Q*/(Q*)?, f + f(u)-(Q*)? is injective.
The uniqueness of .% then follows from part (a) of Proposition 6.1.

6.2. Computing .. We now focus on the case where N is a prime ¢ € {3,5,7,13}. Fix notation
as in the subsection of §1 for the given ¢.

Let G be one of the subgroups G; of GLa(Fy) in §1 for which there is a corresponding rational
function J(t) := J;(t) € Q(t) — Q. The group G is applicable and in particular contains —I.

We take notation as in §6.1. In particular, H is the set of proper subgroups H of G such that
+H = G. We shall assume that H # 0 (otherwise .# = 0)); this holds when

(¢,i) € {(3,1),(3,3),(5,1),(5,5),(5,6), (7,1),(7,3),(7,4),(7,5), (7,7), (13,4), (13,5) } .

In each of these cases, one can check that |H| = 2.

We now explain how to compute the set .7 = {fy : H € H}; it has cardinality |H| = 2. Take
any u € Q with J(u) ¢ {0,1728, 00} such that J(u) ¢ J;(Q) for all j < 7. From the parts of the
main theorems proved in §4, this implies that +pg, ((Galg) is conjugate to G. Let Dg, be the
(computable!) set from §5. From Proposition 6.1, we find that

(6.1) F CAf e flu) € dQ)? for some d € Dg, }.

By considering (6.1) with many such u € Q, one is eventually left with only || candidates f € #
to be of the form fz; this then produces the set {fy : H € H} of order |H| (for our examples, one
only needs to check u € {1,2,3,4}). One could also work with a single u € Q chosen so that the
map .F — Q% /(Q*)2, f+— f(u) - (Q*)? is injective. This method thus produces .Z.

Doing the above computations, we find that

{fu:-HeH}={fi,l"fr1}

for a unique polynomial f; € .#, where £* := (—1)(=1/2.¢; this can also be deduced from |[H| = 2
and Lemma 5.4. We thus have fi; = fu, and £*f; = fas,, where H = {My, Ma}.

Let h be the largest element of Z[t], in terms of divisibility, with positive leading coefficient such
that h* divides af? and hS divides bf}; define A := (af?)/h* and B := (bf})/h% in Z[t]. The
Weierstrass equation

y? =23 + A(t)x + B(t)
is precisely the equation given for & ; in the subsection of §1 corresponding to the prime ¢. (For
code verifying these claims, see the link given in §1.10.)

For u € Q with J(u) ¢ {0,1728, 00}, let &, be the elliptic curve over Q defined by setting ¢
equal to u. Let E'/Q be any elliptic curve with jp ¢ {0,1728} for which +ppr ,(Galg) is conjugate
to G in GLa(Fy). From the parts of the main theorems proved in §4, we have jp = J(u) for some
u € Q. The curve E, /Q also has j-invariant J(u). The twist of E, by f1(u) is isomorphic to the the
curve & ,,/Q. By Proposition 6.1, we deduce that pgr ¢(Galg) is conjugate to G if and only if E’ is
not isomorphic to &; ,, and not isomorphic to the quadratic twist of &; ,, by £*. By Proposition 6.1,
pe ¢(Galg) is conjugate to My or My when E’ is isomorphic to &, or the quadratic twist of &,
by £*, respectively.

It thus remains to determine M7 and M.

If (¢,i) € {(3,1),(7,1)}, then M; and My are both conjugate to H;; since the two groups in
H are conjugate in GLa(Fy). We shall now assume that (¢,7) ¢ {(3,1),(7,1)}. We then have
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H ={H;1,H;>}. It thus remains to prove that M; = H;; (and hence My = H; 3).

Suppose that (¢,i) € {(57 1),(5,5),(5,6),(7,3),(7,4), (13,4), (13,5)}. Take u, p and a as in Table
2 below for the pair (¢,1).

() | 5,1) | (5,5) | (5,6) | (7,3) | (7.4) | (13,4) | (13,5)

U H 1 2 1 2 2 1 1

P 2 3 2 3 3 2 2

a —2 —1 —2 -3 -3 2 2
TABLE 2.

The element v € Q is chosen so that J;(u) ¢ {0,1728,00} and such that J;(u) ¢ J;(QU {oo})
for all j < i. Define the elliptic curve E := &;,,/Q. By our choice of u, the group pg(Galg) is
conjugate in GLy(Fy) to M.

The curve has good reduction at the prime p and we have a = a,(E). Let t, be the image of
(a,p) in F%; it equals (tr(A),det(A)) with A := pp¢(Froby) € M;. A direct computation shows
that ¢, ¢ {(tr(A),det(A)) : A € H;2}. Therefore, M; is not conjugate to H;». So M; must be
conjugate to H; 1 and hence Ms is conjugate to H; o.

Finally, consider the remaining pairs (¢,4) € {(3,3), (7,5),(7,7)}.

Consider (£,i) = (3,3). The pair (3(u + 1)2,4u(u + 1)?) is a point of order 3 of &, for all u.
This implies that M; is conjugate in GLa(F3) to a subgroup of (§*). So M; # H;2 and hence
M, = Hi,l-

We may now suppose that £ =7 and ¢ € {5,7}.

Take i = 5. Let E'/Q be the elliptic curve defined by y? = 2% — 2835(—7)%x — 71442(—7)3; it
is the quadratic twist of & by —7. Using Theorem 1.5(ii), which we proved in §4, we find that
+prr 7(Galg) is conjugate to G's. The group pgr 7(Galg) is thus conjugate to M. So to prove that
M, = H, 2, and hence M; = H; 1, we need only verify that E’ has a 7-torsion point defined over
some cubic field. Let w € Q be a root of the irreducible polynomial 22 — 44122 — 83349z +22754277.
The pair (w, 21w — 1323) is a point of order 7 on E’.

Finally, take i = 7. Let E’/Q be the elliptic curve defined by y? = 23 — 17870609043(—7)%z —
919511455160466(—7)3; it is the quadratic twist of €71 by —7. Using Theorem 1.5(ii), which we
proved in §4, we find that £pp 7(Galg) is conjugate to G7. The group pgr 7(Galg) is thus conjugate
to Ms. So to prove that My = H; o, and hence M; = H; 1, we need only verify that E’ has a 7-
torsion point defined over some cubic field. Let w € Q be a root of the irreducible polynomial
23 — 175032922 4 1015924207851 — 195667237639563291. The pair (w, 1323w — 714884373) is a
point of order 7 on E'.

7. PROOF OF PROPOSITIONS FROM §1.9

Let E be an elliptic curve defined over Q that has complex multiplication. Let R be the ring of
endomorphisms of E@. Let k C Q be the minimal extension of Q over which all the endomorphisms
of E@ are defined; it is an imaginary quadratic field. Moreover, we can identify k£ with R ®z Q
(the action of R on the Lie algebra of Fj gives a ring homomorphism R — k that extends to an
isomorphism R ®7 Q — k). The field k has discriminant —D.

Take any odd prime £. For each integer n > 1, let E[¢"] be the ¢"-torsion subgroup of E(Q).
The (-adic Tate module Ty(E) of E is the inverse limit of the groups E[¢"] with multiplication by ¢
giving transition maps E[¢"*1] — E[{]; it is a free Z,-module of rank 2. The natural Galois action
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on Ty(E) can be expressed in terms of a representation
PE = Gal, — Autze (Tg(E))

The ring R acts on each of the E[¢"] and this induces a faithful action of R on T;(E).

The Tate module Ty(F) is actually a free module over Ry := R ®z Zy of rank 1 (see the remarks
at the end of §4 of [ST68]). We can thus make an identification Autg,(T¢(F)) = R,. The ac-
tions of Gal, = Gal(Q/k) and Ry on T;(E) commute, so the restriction of pg s to Galy gives a
representation

Gal, — AUtRZ (Ty(E)) = R;.
Lemma 7.1.

(i) If E has good reduction at £, then pgg~(Galy) = R .
(ii) If jg # 0, then pg g (Galy) is an open subgroup of R whose index is a power of 2.

Proof. Since ReX is commutative, we can factor pg ge|qGal, through the maximal abelian quotient
of Galg. Composing with the reciprocity map of class field theory, we obtain a continuous repre-
sentation gp g~ : Ay — R}, where A} is the group of ideles of k. Define k; := k ®7 Qp = | L
where the product is over the places v of k lying over ¢ and k, is the completion of k£ at v. For
an idele a € A}, let a; be the component of a in k. From [ST68, Theorems 10 & 11], there is a
unique homomorphism e: A — k> such that op ¢~ (a) = e(a)a, ' for a € A}. The homomorphism
e satisfies e(z) = x for all € k™ and its kernel is open in A, We identify R =[], O;, where

O, is the valuation ring of k,,, with a subgroup of A} (by letting the coordinates at the places v { ¢
of k be 1). Let B be the kernel of €|R2<.

First suppose that E has good reduction at ¢, and hence at all places v|¢ of k. By the first
corollary of Theorem 11 in [ST68], we deduce that that ¢ is unramified at all v|¢. Therefore,
B = R} and hence gg ¢~ (R, ) = R, . Therefore, pg ¢ (Galy) contains, and hence is equal to, R}

Now suppose that jg # 0. Since £ is odd and jg # 0, the subgroup of R[{/~!]* consisting of
roots of unity has order 2 or 4. By Theorem 11(ii) and Theorem 6(b) in [ST68], we find that B is
an open subgroup of R, with index a power of 2. So gg~(B) = B and hence pg~(Gal;) 2 B.
Therefore, pg ¢ (Galy) is an open subgroup of R, whose index is a power of 2. U

The following gives constraints on the elements of pg s (Galg — Galy). Since R is a quadratic
order, there is an element 3 € R — Z such that 82 € Z; note that /3 is not defined over Q. We can
view 3 as an endomorphism of Ty(E).

Lemma 7.2. For any o € Galg — Galy, we have pg g~ (0)B = —Pppe~(0) and tr(pge=(0)) = 0.

Proof. Take any o € Galg — Galy. The group Galg acts on R and we have o(f) = —f since e
and (3 is not defined over Q (but is defined over k). So for each P € E[("], we have o(B(P)) =
o(B)(o(P)) = —p(c(P)). Taking an inverse limit, we deduce that pg ¢~ (0)8 = —fpge~(c). In
Autg, (Ty(E) ®z, Q) = GL2(Qy), we have pg = (o) = —Bpp e (0)B~L. Taking traces we deduce
that tr(pg (o)) = —tr(pge~(0)) and hence tr(pg (o)) = 0. O

Lemma 7.3. Suppose that £1 D and that E has good reduction at {.
(i) If € splits in k, then pg(Galg) is conjugate in GLa(Fy) to Ny(¢).
(i) If ¢ is inert in k, then ppo(Galg) is conjugate in GLa(F;) to Nys(f).

Proof. Lemma 7.1 implies that the group C' := pp (Galy) is isomorphic to (R/¢R)*. The ring
R/(R is isomorphic to Fy x Fy or Fy2 when ¢ splits or is inert in k, respectively. Therefore, C is a
Cartan subgroup of GLo(TFy); it is split if and only if ¢ splits in k. Let N be the normalizer of C'
in GLy(FF¢). The group C = pg ¢(Galy) is normal in pg ¢(Galg) since k/Q is a Galois extension, so
pE7g(GalQ) C N.
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It remains to show that pg ¢(Galg) = N. Suppose that pg ¢(Galg) # N, and hence pg ((Galg) =
C = ppy(Galg). This implies that the actions of Galg and R on E[¢] commute. However, this
contradicts Lemma 7.2 which implies that the actions of ¢ € Galg — Gal, and 8 on E[{] anti-
commute. Therefore, pg (Galg) = N. O

We now describe the commutator subgroup of the normalizer N of a Cartan subgroup C of
GL2(Fy). Let e: N — N/C = {£1} be the quotient map, and define the homomorphism

o: N = {£1} xF), A~ (e(A),det(A));
it is surjective.

Lemma 7.4.

(i) The commutator subgroup of N is ker ¢, i.e., the subgroup of C consisting of matrices with
determinant 1.
(ii) If H is a subgroup of N satisfying +H = N, then H = N.

Proof. The kernel of ¢ contains the commutator subgroup of IV since the image of ¢ is abelian. It

suffices to show that every element in ker ¢ is a commutator. If N is conjugate to Ng(¢), this is

. . . -1 —1
immediate since (95) (§0)(95)" (62) = (§41)-

We now consider the non-split case. We may take C' = C(¢), N = N({) and with the explicit
e € F/ as given in the notation section of §1. Fix 3 € Fyp2 for which (% =¢. The map C(f) — FZQ,
(‘g If) — a + bf is a group isomorphism. Fix any B € N({) — C({). One can check that the map

(7.1) C(l) — C(), Aw BAB'A7!

corresponds to the homomorphism F% — F%, a — af~!. In particular, the image of the ma
p j o p g p

(7.1) is the unique (cyclic) subgroup of C(¢) of order ¢ 4 1; these are the matrices in C'(¢) with
determinant 1. This completes the proof of (i).

Finally, let H be a subgroup of N satisfying £H = N. The group H is normal in N and N/H
is abelian, so H contains the commutator subgroup of N. From (i), the commutator subgroup of
N, and hence H, contains —I. Therefore, H = +H = N. ]

7.1. Proof of Proposition 1.14(i) and (ii). Let E/Q be an CM elliptic curve with jg # 0. The
curve F is thus a twist of one of the curves Ep r/Q from Table 1. Take any odd prime ¢{ D. The
curve Ep r has good reduction at £. By Lemma 7.3, the group pEDyfjg(GalQ) is the normalizer N
of a Cartan subgroup C of GLa(F,). Also the Cartan subgroup C' is split or non-split if ¢ is split
or inert, respectively, in k.

First suppose that jg # 1728. Since jgr ¢ {0,1728}, the curve E is a quadratic twist of Ep . As
noted in the introduction, this implies that £pp (Galg) and +pp,, ; «(Galg) = N are conjugate in
GLo(Fy). After first conjugating pg ¢(Galg), we may assume that N = +pp (Galg). By Lemma 7.4,
we have pg¢(Galg) = N.

Now suppose that jp = 1728. Let u4 be the group of 4-th roots of unity in R. The elliptic curve
E/Q can be defined by an equation of the form y? = 2 4 dz for some non-zero integer d, i.e., E is
a quartic twist of Ey4 1. There is thus a character a: Galp — g € R™ such that the representations
pee~ and o - pp, o Galp — R) are equal. We have pg, | s~ (Galy) = R/ by Lemma 7.1(i),
so the image of pg ¢~ (Galg) in R /{£1} has index 1 or 2. Therefore, the image of pg ¢(Gali) in
C/{+£I} has index 1 or 2. We have pg ¢(Galg) € C since otherwise the actions of Galg and R on
E[] would commute (which is impossible by Lemma 7.2). Therefore, the image of pg ¢(Galg) in
N/{£I} is an index 1 or 2 subgroup.

The group G := +pg ¢(Galg) thus has index 1 or 2 in N. Since pg ¢(Gal,) C C and pg (Galg) €
C, the quadratic character eopp: Galg — {£1} corresponds to the extension k = Q(i) of Q. The
homomorphism det opp¢: Galg — F/ is surjective and factors through Gal(Q(¢,)/Q). We have
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Q(i1)NQ(¢r) = Q@ since £ is odd, so p(pre(Galg)) = {£1} xF;* and hence p(G) = {1} xF;. Since
[N : G] < 2, the group G is normal in N with abelian quotient N/G. In particular, G contains the
commutator subgroup of N. By Lemma 7.4, we deduce that G contains the kernel of . Since G
contains the kernel of ¢ and ¢(G) = {+1} x F, we have G = N. By Lemma 7.4, we conclude that

pe(Galg) = N.

7.2. Proof of Proposition 1.14(iii). We first consider the elliptic curve E = Ep ; over Q from
Table 1 with D = ¢, where ¢ is an odd prime and jg # 0. We have k = Q(v/—/).

Lemma 7.5. The group £pg¢(Galg) is conjugate to G.

Proof. Let (3 be the image of fy/—D in R/{R. Since £ is odd, the Fy-module R/{R has basis {3, 1}
and Bz = 0. Using this basis, we find that R/¢R is isomorphic to the subring A := F, (§ §)®F, ({ 9)
of M(FF;). Using that pg ¢~ (Galy) C R/, we deduce that pg ,(Galy) is conjugate in GLa(F;) to a
subgroup of A*. We may thus assume that

pee(Galy) C A ={(g):a e F),beF}

By Lemma 7.1(ii), we deduce that [A* : pg ¢(Gal)] is a power of 2 and hence pg ¢(Galy) contains the
order ¢ group ((31)). The order of pg ¢(Galy) is divisible by (¢—1)/2 since det(pg ¢(Galy)) = (F,)?,
so pg¢(Galy) contains {(8 3) ja € (F;)Q,b € F¢}. Therefore, +pp ¢(Galy) = A since —1 is not a
square in Fy (we have £ =3 (mod 4)).

Fix any o € Galg — Gal,. The matrix g = pg (o) is upper triangular since the Borel subgroup
B(¢) is the normalizer of A* = +pg ,(Gal) in GLy(F;). We have tr(g) = 0 by Lemma 7.2, so
g= (8 _ba) for some a € F; and b € Fy. The group +ppg ¢(Galg) is generated by g and A* and is
thus G. O

The subgroups H of G that satisfy +H = G are Hy, Hy and G.
Lemma 7.6. The groups pg¢(Galg) and Hy are conjugate in GLo(Fy).

Proof. By Lemma 7.5, we may assume that +pg ¢(Galg) = G. There are thus unique characters

1, Galg — FJ such that pgy = (%1 JQ). Let f € Q[z] be the /-th division polynomial of

E/Q; it is a polynomial of degree (¢2 —1)/2 whose roots in Q are the z-coordinates of the non-zero
points in E[¢]. Since +pg (Galg) = G, we find that f = f; fo where the polynomials fi, fo € Q[z]
are irreducible, and f; has degree (¢ — 1)/2. We may take f; so that it is monic. Take any root
a € Q of fi and choose a point P = (a,b) in E[¢]. We have o(P) = v;(o)P for all o € Galg.
Therefore, Q(a, b) is the fixed field in Q of ker ;.

Suppose that £ = 3. The point (3, —2) of E3 2 has order 3. The point (12, —4) of Es3 3 has order
3. Therefore, Q(a,b) = Q.

Suppose that £ = 7. For the curve E7 1 we have computed that f; = 23 —44122 4593392 —2523451.
If a € Q is a root of f1, then one can check that (a, —7a +49) belongs to E. For the curve E7 2 we
have computed that f; = 2% — 4922 — 1029z + 31213. If a € Q is a root of f;, then one can check
that (a,21a — 2107) belongs to E. In both cases, we have [Q(a,b) : Q] = 3.

Suppose that ¢ > 7. Dieulefait, Gonzalez-Jiménez and Jiménez-Urroz have computed Q(a,b)
and found it to be equal to the maximal totally real subfield Q(¢s)™ of Q((), cf. Lemma 4 of
[DGJJU11]. They also give a link to files containing an explicit polynomial f;. In particular,
[Q(a,b) : Q] = (¢—1)/2. (However, note that the conclusions on the image of pg ¢ in Proposition 9
of [DGJJU11] are not correct.)

In all cases, the image of ¢, has order [Q(a,b) : Q] = (¢ —1)/2, so the group pg ¢(Galg) cannot
be G or Hy. Therefore, pg(Galg) = H;. O
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Take any elliptic curve E’/Q with the same j-invariant as E = Ep y; it is a quadratic twist. Now
take Dg as in §5. Since #Dg = #{H1, H2} = 2, we deduce from Lemma 5.4 (and ¢ =3 (mod 4))
that Dp = {1, —}.

Since Dg = {1,—/}, we deduce from Lemma 7.6 that if E’/Q is not isomorphic to E or its
quadratic twist by —¢, then pg ¢(Galg) is conjugate to ppg ¢(Galg) = £H; = G. If E' is isomorphic
to E or its quadratic twist by —¢, then pg ((Galg) is conjugate to Hy or Ha, respectively.

7.3. Proof of Proposition 1.15. If E/Q is given by 4% = f(z) with f(x) € Q[z] a separable cubic,
then pg 2(Galg) is isomorphic to the groups Gal(f), i.e., the Galois group of the splitting field of
f over Q. Observe that GLy(F2) = &3. It thus suffices to compute Gal(f) since the cardinality of
a subgroup of &3 determines it up to conjugacy.

For the jp = 1728 case, we have f(z) = 2° — dx = z(2? — d). We have Gal(f) = Gal(Q(/d)/Q)
which has order 1 or 2 when d is a square or non-square, respectively.

For the jp = 0 case, we have f(z) = 2% + d. We have Gal(f) = Gal(Q(Vd,(3)/Q) =
Gal(Q(V/d, v/=3) which has order 2 or 6 when d is a cube or non-cube, respectively.

For jg ¢ {0,1728}, the group pg 2(Galg) does not change if we replace E by a quadratic twist
(since —I = I (mod ¢)), so one need only consider the specific curve £ = Ep ¢. Using the f(z) of
Table 1, one can check that Gal(f) has order 2 for the j-invariants listed in (i) and otherwise has
order 6.

Proposition 1.15 is now a direct consequence of the above computations.

7.4. Proof of Proposition 1.16. Take any prime ¢ > 5; we will deal with £ = 3 in §7.4.1. We
first consider an elliptic curve E;/Q defined by the equation

y? = 2% + 164>

for a fixed cube-free integer d > 1. We have R = Z[w] and k = Q(w), where w := (=14 +/=3)/2 is
a cube root of unity in k. The ring R is a PID.

If ¢ is congruent to 1 or 2 modulo 3, define C(¢) be the Cartan subgroup Cs(¢) or Cps(¢),
respectively. Let N(¢) be the normalizer of C(¢) in GLa(F,).

Lemma 7.7. After replacing pg, ¢ by a conjugate representation, we will have pg, ¢(Galg) C N(¢)
and pg, (Galy) C C(¢) with
[N(€) : pE,e(Galg)] = [C(£) : pp,e(Galy)] € {1,3}.

Proof. We have Ey = E3;. By Lemma 7.3, we have pg, /(Galg) = N(¢). The curves E; and E
are isomorphic over Q(v/d), so pEd,Z(GalQ( %)) is conjugate to a subgroup of N(¥) of index 1 or 3.

Therefore, pg, ((Galg) is conjugate to a subgroup of N (¢) of index 1 or 3. Since pg q.¢(Galg) € C(¢)
and pg q.(Galy) C C(¢), we deduce that [N(?) : pg, (Galg)] = [C(€) : pEg,(Gal)]. O

To determine the index in Lemma 7.7, we first compute some cubic residue symbols. Recall that
we have already defined a representation pg, ¢ : Galp — R/ .

Lemma 7.8. Let A be a prime of R dividing £ that satisfies A = 2 (mod 3R). Take any non-zero
prime ideal p t 6d¢ of R. We have p = Rm for some m =2 (mod 3R). Then

2(£€—1)

pE, e (Froby) _ d” 3 A
A 3 T 37

where we are using cubic residue characters and the field R/AR has order (€.
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Proof. By Example 10.6 of [Sil94, II §10], we have pg, s (Froby) = —(4'17?d2)6 -, where we are
using the 6-th power residue symbol. Therefore,

B 2
d d d
prstiony) = (1) 5= (7) 2= ~(7) »
6 3 3

and hence
-1 -1 e_
pr=(Froby)\  (—(B)gm\ ()T (m\ (BT A a7
A 3 N A 3 A\7 3 A s A\7 3 )4 N s 3’
where we have used cubic reciprocity. O

Lemma 7.9. Suppose that { =2 (mod 3). Then the group pg, (Galy) has index 3 in C(¢) if and
only if { =2 (mod 9) andd =¥, or £ =5 (mod 9) and d = ¢>. Note that C(f) has a unique index
3 subgroup.

Proof. Using Lemma 7.7 and ¢ > 5, we find that pg, /(Galy) is an index 3 subgroup of C'(¢) if and
only if pg, ¢ (Galy) lies in a closed subgroup of R of index 3. We have C({) = Cys(¢) since £ = 2
(mod 3), so R, has a unique index 3 closed subgroup, i.e., the group of a € R} with (%)3 =1.

By the Chebotarev density theorem and Lemma 7.8 with A = ¢, we deduce that pg, ¢(Galy) is
an index 3 subgroup of C'(¢) if and only if d2@=1/3¢ is a cube in R/p for all primes p 1 6d¢ of R;
equivalently, d2=1/3¢ is a cube in R. Since d2**~1/3¢ is a rational integer, it is a cube in R if
and only if it is a cube in Z.

We have 2(£2—1)/3 = 2(¢+1)/3 (mod 3), so we need only determine when the integer d2(¢+1)/3¢
is a cube. In the following, we use that d > 1 is cube-free and that Z has unique factorization. If
¢ =2+ 9m, then d*t6™¢ is a cube if and only if d = £. If £ = 5+ 9m, then d*t%™¢ is a cube if and
only if d = ¢2. If £ = 8 + 9m, then d5t6™¢ is never a cube. O

Lemma 7.10. Suppose that { =1 (mod 3). Then the group pg, (Galg) has index 3 in C(£) if and
only if =4 (mod 9) and d =¢%, or =7 (mod 9) and d = {.

The group pg,¢(Galy) is conjugate to C(€) = Cs(£) or the subgroup consisting of matrices of the
form (&9) with a/b € F) a cube.
Proof. Using Lemma 7.7 and ¢ > 5, we find that pg, ((Galg) is an index 3 subgroup of C(¢) if
and only if pg, ¢ (Galy) lies in a closed subgroup of R of index 3. Let us describe the index 3
subgroups of R;. Since £ = 1 (mod 3), we have £ = A\ Ay for irreducibles A\; € R that we may
choose to be congruent to 2 modulo 3R. We have R, = Ry x R . The cubic residue symbol
(TZ) defines a homomorphism ¢;: R — p3 := (w). Since £ > 5, we find that every non-trivial
homomorphism R — pug is of the form ¢, := ¢{'¢5? with e = (e1,e2) € {0,1,2}* — {(0,0)}.
Therefore, pg, ¢(Galy) is an index 3 subgroup of C(¢) if and only if pg, ¢~ (Galy) C ker ¢, for some
e # (0,0).

2(0—1)
By Lemma 7.8, we have (%&Fﬁb”)?’ = %)3 and hence
2(¢—1) e1r  2(e-1) e2 2(0—1)(eq +ea)
d 3 A\ d" 3 Ag d 3 ATPAS2
7.2 (o8] F b = =
(7.2) Pe(pE, o (Froby)) ( - )3( - >3 ( - ,

for all p 1 6d¢. Using the Chebotarev density theorem, we deduce that pg, s (Galy) C ker ¢ if and

2(¢—1)(e1tea)

only if B:=d 3 A' A2 is a cube in R.
First suppose that e; # ez. Let vy, : R — Z be the valuation for the prime A; and let v,: Q% — Z
be the valuation for £. We have
ox,(B) = e; + WUM(@ —e; + ww(d)_
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We have e; # ez (mod 3) since e; # ez, so vy, () # 0 (mod 3) for some ¢ € {1,2}. Therefore,
B € R is not a cube.

Now suppose that e; = e2. We may assume that e; = ez = 1 since ¢(3 9 is the square of ¢ ;)
and hence have the same kernel. So 8 = d*¢~1/3¢. Since 3 is a rational integer, it is a cube in Z
if and only if it is a cube in R. If £ = 1+ 9m, then B = (d*™)3( is not a cube. If £ = 4 + 9m, then
B = (d*™*1)3 . d¢ which is a cube if and only if d = ¢2 (recall that d is positive and cube-free). If
¢ =17+ 9m, then 8 = (d*™*2)3 . d%¢ which is a cube if and only if d = .

Finally, suppose we are in the case where pg, /(Galy) is an index 3 subgroup of Cs(¢). There are
4 index 3 subgroups of Cs(¢). Two of the groups consist of the matrices A := (8 2) for which a is a
cube (or b is a cube); these groups cannot equal pg, ¢(Galy) since it would correspond to the case
where e; = 0 or ea = 0 (and hence e; # e3). Another index 3 subgroup of Cs(¢) is the subgroup of
matrices whose determinant is a cube; this is impossible since det(pg, ¢(Galy)) = F,*. Therefore,
the only possibility for the image of pg, ¢ is the group of A with a/b a cube. O

We now complete the proof of the proposition for the curve E;/Q. From Lemmas 7.7, 7.9 and
7.10, we deduce that pg,(Galg) has index 1 or 3 in N(¢), with index 3 occurring if and only if one
of the following hold:

e (=2 (mod9) and d = ¢,
e /=5 (mod 9) and d = /2,
e /=4 (mod 9) and d = 2,
e (=7 (mod9) and d = /.

Set M := pg, ¢(Galy); we may assume that it is the index 3 subgroup of C(¢) from Lemma 7.9 or
7.10. The group M is normal in N(¢). We have [N (¢) : M] = 6 and det(M) = F, so N(¢)/M is
non-abelian by Lemma 7.4(i). So N(¢)/M is isomorphic to &3 and hence, up to conjugation, N (¢)
has a unique index 3 subgroup G’ satisfying G’ C M. Therefore, G’ is conjugate in GLa(Fy) to
both pg, ((Galg) and the group G from part (iii) or (iv) of Lemma 1.16. This finishes the proof of
Proposition 1.16 for the curve E;/Q and ¢ > 3.

Finally suppose that F/Q is any elliptic curve with j-invariant 0; it is defined by a Weierstrass
equation y?> = x3 + dm? for some integer m # 0 and cube-free integer d. It suffices to show
that pp(Galg) is conjugate to pg,(Galg) in GL2(Fy). The curves E and E; are quadratic
twists, so £pp¢(Galg) is conjugate to £pg, ¢(Galg). The general case of Proposition 1.16 is thus
a consequence of the following lemma.

Lemma 7.11. There are no proper subgroups +pg, ¢(Galg) has no proper subgroups H such that
+H = ipEd’g(GalQ).

Proof. If £pg, ¢(Galg) is conjugate to N (), then the lemma follows immediately from Lemma 7.4(ii).
From the case of Proposition 1.16 we have already proved (i.e., for the curve E4 and prime ¢ > 3), we
need only show that the group G from parts (iii) and (iv) of Lemma 1.16 have no proper subgroups
H satisfying £ H = G. Equivalently, we need to show that —I is a commutator of such a subgroup
G. With G as in Lemma 1.16(iii), this follows from (93) (5 %) (98)7" (4 _01)71 = (3" %). So
we may take G as in Lemma 1.16(iv).

Fix any B € G — C(¢). As noted in the proof of Lemma 7.4, the map ¢: C(¢) — C({),
A+ BABA™! is a homomorphism whose image is cyclic of order £ + 1. Therefore, (G N C(¥)) is
the cyclic subgroup of C'(¢) of order (¢ + 1)/3. In particular, ¢(G N C(¥)) contains —I which is the
unique element of order 2 in C(¢). Therefore, —I is a commutator of G. O
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7.

y? 3 + d. The division polynomial of E/Q at 3 is 3z(x® + 4d). The points of order 3 in
E(Q) are thus (0,4v/d) and (—+v/4dw®, £/=3v/d) with e € {0,1,2}. The points P; = (0,+/d) and
(—+v/4d,/=3V/d) form a basis of E[3]. With respect to this basis, we have

PE3 = (df)l J;) )
with characters ¢1,12: Galg — F3. The quadratic character ¢; describes the Galois action

on P; and it thus corresponds to the extension Q(\/&) of Q. The quadratic character ¥y =
detoppz: Galg — F3 corresponds to the extension Q(¢3) = Q(v/—3) of Q. Therefore,

@

4.1. ¢ = 3 case. We now consider the prime ¢ = 3 with £/Q defined by the elliptic curve
=z
P =

{1} xF5 if d is a square,
(1 x 92)(Galg) = S F3 x {1} if —3d is a square,
F3 xF;  otherwise.

To compute the image of pg 3(Galg) it remains to determine when its cardinality is divisible by 3
or not. From Py and P, it is clear that pg 3(Galg) is divisible by 3 if and only if 4d is not a cube.

8. PROOF OF PROPOSITION 1.13

By Theorem 1.11, we may assume that pg ¢(Galg) is a subgroup of Nys(¢). Let I, be an inertia
subgroup of Galg for the prime £. We will show that pg ¢ has large image by showing that the group
pee(le) is large. The cardinality of pg ¢(l) is not divisible by ¢ since it is a subgroup of Ny (¢).
The group pg ¢(Iy) is thus cyclic since the tame inertia group at ¢ is pro-cyclic, cf. [Ser72, §1.3].

Let vy be the f-adic valuation on Q; normalized so that v,(f) = 1. Let Q; be the maximal
unramified extension of Q in a fixed algebraic closed field Q,. An embedding Q — Q, allows us
to identify I, with the subgroup Gal(Q,/Qy™) of Galg, := Gal(Q,/Q). Let Ag be the minimal
discriminant of E/Q.

e First suppose that v¢(jg) > 0 and that v/(Ag) is not congruent to 2 and 10 modulo 12.

Let L be the smallest extension of Q)" for which E base extended to L has good reduction.
Define e = [L : Q}"]. There is thus a finite extension K/Qy such that E base extended to K has
good reduction and that vy(K*) = e~'Z, where vy is the valuation on K that extends vy. From
[Ser72, §5.6], we find that e € {1,2,3,4}; this uses our assumption on vy(Ag).

Let T be the inertia subgroup of Galx := Gal(Q,/K); it is a subgroup of I;. The action of Z
on E[f] is semi-simple since the cardinality of pg¢(Z) is relatively prime to ¢ (the group Ny.(¢)
has this property). Let 61: Z — F; and 6y: T — IF'ZQ be fundamental characters of level 1 and 2,
respectively, cf. [Ser72, §1.7].

Lemma 8.1. The representation pg¢|z: T — GLa(FFy) is irreducible.

Proof. Suppose that pg ¢|z is reducible. The representation pg |z is given by a pair of characters
67" and 67> with 0 < e; < ez < ¢ — 1. From Proposition 11 of [Ser72], we can take e; = 0 and
ez = e. The image of pg ¢(Z) in PGLy(F,) is thus isomorphic to §{(Z) and hence is cyclic of order
(0—1)/ged(l —1,¢).

The matrix A? is scalar for all A € Nps(¢) — Cys(€). Therefore, the order of every element
in the image of Nps(¢) — PGLa(F,) divides ¢ + 1. Since ged(¢ + 1,/ — 1) = 2, we deduce that
(0 —1)/ged(f —1,e) equals 1 or 2. This is a contradiction since ¢ > 17. O

Scalar multiplication and a choice of Fy-basis for F2 allows us to identify IFEXQ with a subgroup of

Autp, (Fp2) = GLg(F,). Since pp |z is irreducible by Lemma 8.1, it is isomorphic to 5 T¢: T —
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Fj, < GLa(IF;) for some 0 < ey, ez < £ —1. As an Fy[Z]-module, E[{] is isomorphic to the dual of
the étale cohomology group Hj (Ez, Fy). By Théoreme 1.2 of [Car08], we may take 0 < eq,e3 < e
(when E has good reduction at ¢, and hence e = 1, this follows from [Ser72, Prop. 12]). We have
e1 # ey since otherwise 6572 = (g5+1)1 is not irreducible.

Let g be the greatest common divisor of e; 4+ eaf and ¢ + 1. We have (e; + e2f) —e2({ + 1) =
e1 —ey € {£1,£2,£3,+4} since 0 < e < 4, so g € {1,2,3,4}. Therefore, pg¢(Z) contains a cyclic
group of order (£ +1)/g.

Lemma 8.2. The group pg(1;) is a subgroup of Cys(f) with index 1 or 3.

Proof. Set H := pgy(Iy); it is cyclic. We claim that H is a subgroup of C,,(¢). Suppose not,
then the order of H divides 2(¢ — 1) since A? is a scalar matrix for any A € Nps(¢) — Cps(f).
Therefore, ({4 1)/g divides 2(¢ — 1) since pg¢(Z) C H contains an element of order (/41)/g. Since
ged(f+1,¢0—1) = 2, we deduce that (¢ +1)/g divides 4. This is impossible since £ > 17 and g < 4.

It remains to bound the index of H in Cy5(£). We have det(H) = F since det opg ¢ describes the
Galois action on the ¢-th roots of unity. Therefore, the group H is cyclic and its order is divisible
by ¢ —1 and (¢ +1)/g. Since ged(¢ + 1,£ — 1) = 2, we deduce that the order of H is divisible by
(¢ —=1)(£+1)/(2g). Therefore, the index b := [Cps(¢) : H] divides 2g.

Suppose b is even. Since Cys(¢) is cyclic, the group H must be contained in {4 € Cp,(¢) :
det(A) € (F,)?}; this is the unique index 2 subgroup of Cp,(f). However, this is impossible since
det(H) =F,. So bis odd and divides 2g € {2,4,6,8}. Therefore, b is 1 or 3. O

Now define H := pg¢(Galg) N Cps(¢). We have pg(Galg) € Cps(¥) since Cps(¥) is not appli-
cable; it does not contain an element with trace 0 and determinant —1. So if H = Cys(¢), then
pE(Galg) = Nps(£).

We are thus left to consider the case where H is the (unique) index 3 subgroup of Cys(¢). The
group H is a normal subgroup of N,;(¥) of index 6.

Lemma 8.3. We have £ =2 (mod 3) and the quotient group Ny,s(€)/H is isomorphic to &3.

Proof. If ¢ =1 (mod 3), then det(H) = (F,)* C F/. This is impossible since det(pg ¢(Galg)) = F)
and [pg¢(Galg) : H] = 2. Therefore, £ = 2 (mod 3). One can now verify that N,(¢) quotiented
out by the scalar matrices is isomorphic to a dihedral group. It is then easy to check that N,s(¢)/H
is the dihedral group of order 2 - 3; it is thus isomorphic to &s5. ]

The index 3 subgroups of &3 are all conjugate so, up to conjugacy, G' (as in the statement of
Proposition 1.13) is the unique index 3 subgroup of N,,(¢) that contains H. Therefore, pg ((Galg)
and GG are conjugate subgroups.

e Suppose that vy(jg) > 0.

By twisting E/Q by 1 or ¢, we obtain an elliptic curve E'/Q with vy(Ag) not congruent to 2
and 10 modulo 12. The group +pg ¢(Galg) is conjugate to +ppr ¢(Galg). The previous case applies
and shows that £pg ¢(Galg) is conjugate to £G = G or £N,5({) = Nys(¢) in GLo(Fy).

It remains to show that +pg ((Galg) = pg¢(Galg); if not then there is an index 2 subgroup H
of G or Nyps(¢) such that —I ¢ H. The group H NCyps(¢) is then an index 2 or 6 subgroup of Cy,5(¢)
that does not contain —I. However, the cardinality of H NC)5(¢) is even, so it contains an element
of order 2 which most be —1I.

e Finally suppose that v,(jg) < 0.
There exists an element ¢ € Q, with v/(q) = —v(jg) > 0 such that

je=(1+240) n*q"/(1—q")/(a]] . (-
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Let £/Qy be the Tate curve associated to g, cf. [Sil94, V§3]; it is an elliptic curve with j-invariant
je and the group &£(Q,) is isomorphic to Q, /{(g) as a Galg,-module. In particular, the /-torsion
subgroup £[(] is isomorphic as an [Fy[Galg,|-module to the subgroup of @Z /{q) generated by an
(-th root of unity ¢ and a chosen /-th root ¢!/ of q. Let a: Galg, — F; and #: Galg, — Fy be the
maps defined so that o(¢) = ¢ and o(q'/*) = ¢#(@)¢'/t. So with respect to the basis {¢, ¢/}

for £[¢], we have pg (o) = (O‘(OU) 5(1U)> for o € Galg,. The curves F¥ and £ are quadratic twists of

each other over Q@ (the curve E is non-CM since its j-invariant is not an integer). So there is a
character x: Galg, — {£1} such that, after an appropriate choice of basis for E[¢], we have

pia(7) = x(o) () 7))

for all o € Galg,. Since « is surjective, we find that the image of pg ¢(Galg) in PGLy(F,) contains
a cyclic group of order ¢ — 1. However, the image of N,,5(¢) in PGLy(F;) has order 2(¢ + 1). Since
pe(Galg) € Nps(£), we find that £ —1 divides 2(¢£+ 1); this is impossible since ged(¢ —1,¢+1) = 2
and ¢ > 17.
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