CLASSIFICATION OF MODULAR CURVES WITH LOW GONALITY
DAVID ZYWINA

ABSTRACT. A congruence subgroup I' of SLy(Z) acts on the complex upper half-plane via linear
fractional transformations and the quotient gives rise to a Riemann surface. After adding cusps,
we obtain a smooth compact Riemann surface which corresponds to a smooth projective curve Xr
defined over C. We give a complete classification of the congruence subgroups I' for which X
has gonality 1, 2 or 3. We also give a complete classification of the congruence subgroups I" for
which the curve X is bielliptic. The key ingredients are explicit gonality bounds and algorithms
for computing models of modular curves over number fields.

1. INTRODUCTION

Let C be an algebraic curve defined over a field k. Assume that C is nice, ie, it is smooth,
projective and geometrically integral. The gonality of C, which we denote by gon(C), is the
minimal degree of a nonconstant morphism C — IF’}Q. The geometric gonality of C is the gonality
of the base extension Cj, of C to L, where L is any algebraically closed field containing k. We say
that C is bielliptic it has a degree 2 morphism to an elliptic curve. We say that C is geometrically
bielliptic if Cy, is bielliptic, where L is any algebraically closed field containing k. An elliptic curve
has gonality 2 and hence a bielliptic curve has gonality at most 4.

1.1. Modular curves over C. The group SLy(Z) acts by linear fractional transformations on the
complex upper half-plane ¥ and the extended upper half-plane H* = FLUQ U {oo .

Let " be a congruence subgroup of SLy(Z). The quotient XL := C\H* is a smooth compact
Riemann surface (away from the cusps and elliptic points use the analytic structure coming from
HC and extend to the full quotient). We define the modular curve Xt to be the nice curve over C
with the same function field as 9. In particular, we can identify 9r with Xr(C) endowed with
the analytic topology. The curve Xt does not change if we replace I' by +1I', so we will often
focus on the case where I' contains —1I.

Our main result gives a complete classification of the congruence subgroups for which the
curve Xr has gonality at most 3 and for which the curve Xr is bielliptic.

Theorem 1.1.

(i) There are exactly 132, 524 and 489 congruence subgroups I' C SLy(Z) with —I1 € T', up
to conjugacy in SLo(Z), for which Xr has gonality equal to 1, 2 and 3, respectively.

(ii) There are exactly 1090 congruence subgroups I' C SLy(Z) with —I € ', up to conjugacy
in SLy(Z), for which Xr is bielliptic.

The actual congruences subgroups in the classification of Theorem 1.1 can be found in the
repository [Zyw25]. The count of congruence subgroups in our classification broken up in terms
of the genus of Xr can be found in Table 1.1 (we exclude the gonality 1 case since Xr has gonality
1 if and only if it has genus 0).

To prove Theorem 1.1 we make use of a gonality bound of Zograf that reduce the theorem
to a finite, yet still very large, number of congruence subgroups. Using another gonality bound
originating from the work of Ogg along with other constraints, like the Castelnuovo-Severi
inequality, we are able to further reduce the number of congruence subgroups that need to be
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genus H 0 1 2 3 4 5 6 7 8 9 10 11 12 13 > 14
gonality 2 || 0O 187 177 99 12 34 2 6 1 3 0 3 0 O 0
gonality 3|0 0 0 18 249 1 24 5 16 0 8 0 1 O 0
bielliptic | 0 187 132 267 173 179 21 79 5 23 18 4 0 2 0
TABLE 1. Number of congruence subgroups I' C SLy(Z) containing —I of a given

genus, up to conjugacy in SLo(Z), for which Xr has gonality 2, gonality 3 or is
bielliptic.

dealt with. The congruences subgroups for which the corresponding modular curve has genus
at most 24 has been computed by Cummins and Pauli and we will make use of this classification.
For many congruence subgroups I', we will need to compute an explicit model of Xt and
directly check if it has low gonality or directly check if it is bielliptic. Since we have to perform
exact computations, it will be preferable to compute a model over a number field instead of C.

1.2. Modular curves over number fields. Fix a positive integer N and fix the N-th root of unity
Cy = eN ¢ C. There is a group isomorphism (Z/NZ)* = Gal(Q(¢y)/Q), d — o4, where
oq(CN) = C%. For concreteness, we will let Q be the algebraic closure of Q in C.

Take any subgroup G of GLy(Z/NZ) containing —I. Define the number field Kg := Q(¢y)!C),
i.e, the subfield of Q(¢y) fixed by og for all d € det(G). In particular, Kg = Q if and only if

det(G) = (Z/NZ)*. Associated to the group G is a modular curve Xg; it is a nice curve defined
over Kg, cf. §3.4. When base extended from Kg to C, we will have an isomorphism
(XG)(C = —XFG

of curves over C, where I' is the congruence subgroup of SLy(Z) consisting of those matrices
whose image modulo N lies in G. The geometric gonality of X thus agrees with the gonality of
Xr,. Also the curve X¢ is geometrically bielliptic if and only if Xr is bielliptic.

Thus the classification of Theorem 1.1 describes when X has geometric gonality 1, 2 or 3
and describes when X is geometrically bielliptic. The following is an immediate application of
our classification to quadratic points of a modular curve Xg of sufficiently large genus.

Theorem 1.2. Let G be any subgroup of GLo(Z/NZ) containing —I for which the genus of Xg
is at least 12 and not 13. Then the set

{P € Xg(Q) : [Ka(P): Kg] < 2}
is finite.

Proof. Let g be the genus of Xg; equivalently, the genus of Xr,. Suppose that there are infinitely
many P € Xs(Q) for which [Kg(P): Kg] < 2. Then [HS91, Corollary 3] implies that Xr, = (Xg)c
is hyperelliptic or bielliptic. Using the genera of the congruences subgroup in Table 1.1, we
deduce that g < 13 and g # 12. The theorem follows since this contradicts the assumption on

dg. O

When det(G) = (Z/NZ)* and hence Kg = Q, we described how to compute an explicit model
for Xg in [Zyw22a]; this was used to make Serre’s open image theorem effective for non-CM
elliptic curves over Q. We will extend the construction to general G. Code for computing models
of X can be found in [Zyw25]; this Magma code is also being used in the LMFDB database of
modular curves [LMFDB]. Note that we are viewing Xg as a geometrically irreducible curve over
K¢ (some might instead consider a modular curve corresponding to G to be defined over Q and
not necessarily geometrically irreducible).
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Let g be the genus of X and assume that g > 2. For our application to Theorem 1.1, we will
need to compute the image C of the canonical map

¢: Xg — PY_.
We will use that the curve X has geometric gonality 2 if and only if C has genus 0. If X does
not have geometric gonality 2, we will show that X5 has geometric gonality 3 if and only if C is
not cut out by homogeneous polynomials of degree 2 and C is not geometrically isomorphic to

a smooth plane quintic. When X does not have geometric gonality 2 and g > 4, we will also
give a geometric condition on C that checks whether X is geometrically bielliptic.

1.3. Some earlier results. There has been much earlier work on classifying modular curves
with small gonality with most attention being on the modular curves Xo(N) and X4(N) which are
defined over Q.

Remark 1.3. Theorem 1.1 focuses on geometric gonality and being geometrically bielliptic; we
now observe that for genus large enough, this agrees for Xy(N) and X;(N) with the analogous
notion over Q. Let X be one of the curves Xy(N) or X4(N) for some positive integer N. The key
observation is that the curve X is defined over Q and has a rational point at one of the cusps.
Using this, we find that if X has genus at least 2, then X has gonality 2 if and only if it has
geometric gonality 2, cf. [RX18, Theorems 1 and 2]. If X has genus at least 5, then X has gonality
3 if and only if it has geometric gonality 3, cf. [RX18, Theorems 1 and 2]. If X has genus at least
0, then one can show that X is bielliptic if and only if it is geometrically bielliptic, cf. Lemma 2.7.

Here is a partial list of prior results.

e Ogg [Ogg74] classified the curves Xo(N) that are hyperelliptic. The curve Xo(N) is hyper-
elliptic and has genus at least 2 for exactly 19 different N.
e Ishii and Momose [IM91] classified the hyperelliptic modular curves arising from a con-
gruence subgroup I'1(N) C I' C I'g(N) though also see [JKO7].
e Hasegawa and Shimura [HS99] classified the curves Xo(N) which have gonality 3. Jeon
and Kim [JKO7] show that there are no congruence subgroups I'1(N) C I" C I'¢(N) for
which Xr has genus at least 5 and gonality 3.
e Bars classified the curves Xy(N) that are bielliptic [Bar99] (Harris and Silverman [HS91]
had left a finite number of N to consider). The curve Xy(N) is bielliptic and has genus at
least 2 for exactly 41 different N.
e Jeon and Kim [JKO04] classified the curves X (N) which are bielliptic.
e Jeon, Kim and Schweizer [JKS20] classified the bielliptic modular curves arising from a
congruence subgroup I'1(N) C " C I'o(N).
From our explicit classification in Theorem 1.1 and Remark 1.3, we can immediately recover
all the above results excluding the small genus cases where the equivalences in Remark 1.3 fail.
Outside the scope of our theorem, Najman and Orli¢ [NO24] have classified the modular curves
Xo(N) that have gonality 4, 5 and 6.

1.4. Overview. In §2, we give some basic background on the geometry of curves. We recall
some results on gonality in §2.1. We review the canonical map in §2.2 which will be important
for our methods of computing low gonalities. We give basic properties of bielliptic curves in
§2.3. Proposition 2.6 shows that for a canonical curve the bielliptic morphisms have a geometric
description. Proposition 2.8 implies that if a nice curve of genus at least 2 is geometrically
bielliptic, then its reduction is geometrically bielliptic at all good primes; this gives a useful way
to show that a curve is not geometrically bielliptic by consider its reductions.

Consider a subgroup G C GLy(Z/NZ) containing —I. In §3, we define our modular curve Xg
over the number field Kg := Q(CN)det(G). For each integer k > O, we define a finite dimensional
Kg-vector space My g that consists of certain modular forms of weight k. We define our curve
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Xg to be ProjRg, where Rg is the graded Kg-algebra ®p>oMp,g. We shall describe how to
explicitly compute a basis for M}y ¢ by using Eisenstein series of weight 1. Finding bases for
some spaces My, ¢ allow us to compute explicit models of Xg. When X has genus at least 2, the
space of cusp forms Sy ¢ in My ¢ will let us compute the image of the canonical map of Xg.

More background on modular curves is given in §4 where we discuss the moduli approach.
In particular, this will extend X to a smooth proper curve over Ok, [1/N].

In §5, we give explicit gonality bounds for the curves Xr. Consider a congruence subgroup
I’ of SLy(Z) that contains —I. Theorem 5.1 shows that the gonality of Xr is strictly larger than
%[SLQ (Z) : T']. In particular, if we only consider I' for which Xr has a fixed gonality, then the
index [SLy(Z) : I'] is bounded and hence there are only finitely many such I". We also give an
improved gonality bound when I' has level at most 226 since we can make use of known cases
of Selberg’s eigenvalue conjecture. We also give another explicit gonality bounds using ideas of
Ogg and Poonen.

In §6, we explain how one can computationally check if a modular curve X is geometrically
bielliptic or not.

The main part of our classification is outlined in §7 where we prove the classification of
Theorem 1.1 and Table 1.1 when restricted to congruence subgroups of genus at most 24. This
constraint on the genus arises since we are using the classification of Cummins and Pauli of all
congruence subgroups of genus at most 24. Finally in §8 we complete the proof of Theorem 1.1
by showing that there are no congruence subgroups I' of genus at least 25 for which Xr has
gonality at most 3 or Xr is bielliptic.

1.5. Notation. For a number field K, let Ox be its ring of integers. For a nonzero prime ideal p
of Ok, let Fy be the residue field Og/p. Let K, be the p-adic completion of K and let O, be its
valuation ring. For an R-scheme X and a (commutative) R-algebra R’, we denote X x spec r Spec R’
by Xpr or X xp R’.

1.6. Acknowledgements. Our algorithms are implemented in Magma [BCP97]; the code can be
found in the public repository [Zyw25].

2. BACKGROUND ON CURVES

In this section, we collect background information on gonality and bielliptic curves.

Let C be a nice curve of genus g defined over a perfect field k. Fix an algebraic closure k
of k. We say that C is hyperelliptic if there is a nonconstant morphism C — }P’}Q of degree 2. We
say that C is geometrically hyperelliptic if Cj is hyperelliptic. We say that C is trigonal if there is a
nonconstant morphism C — IP)}Q of degree 3.

2.1. Gonality. Recall that the gonality of C, which we denote by gon(C), is the minimal degree
of a nonconstant morphism C — }P’}e. The geometric gonality of C is the gonality of Cz. The curve
C has gonality 1 if and only if C is isomorphic to IP)}Q. Therefore, C has geometric gonality 1 if
and only if g = 0. When g > 1, C is hyperelliptic if and only if it has gonality 2.

We now recall various properties of gonality.

Proposition 2.1.

(i) If L is a field extension of k, then gon(Cy,) < gon(C).

(ii) If k is algebraically closed and L is a field extension of k, then gon(Cy) = gon(C).
(iii) If k is algebraically closed, then gon(C) < |4£3].
2

(iv) If C — C' is a nonconstant morphism of curves over k, then gon(C’) < gon(C).

Proof. See [Poo07, Appendix A]. O
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From Proposition 2.1(iii), C has geometric gonality 2 whenever the genus g is 1 or 2.

The following theorem will be useful for ruling out various kinds of maps. For example when
g > 2, it implies that there is at most one morphism C — IP’}Q of degree 2 (up to composition with
an automorphism of P}).

Theorem 2.2 (Castelnuovo-Severi inequality). Let 11: C — Cy and my: C — Cy be nonconstant
morphisms, respectively, where Cy and Cy are nice curves over k. Assume there is no morphism
7: C — C’ of degree > 1 through which both 71y and 7y factor. Then

g <digr + doge + (d1 —1)(dg — 1),
where g; is the genus of C; and d; is the degree of ;.
Proof. See [Sti09, Theorem 3.11.3]. O

Proposition 2.3. Let K be a nonarchimedean local field of characteristic O with local ring R
and residue field F. Suppose that C is a nice curve of genus g > 2 defined over K that has
good reduction, i.e, there is a smooth proper model G over Spec R with Gk = C. Then

gon(Bp) < gon(C).

Proof. See [Der12, Theorem 2.5]. Such a result is also asserted by Frey in the proof of [Fre94,
Proposition 3] and is attributed to Deuring [Deu4?2)]. O

2.2. Canonical map. We now suppose that g > 2. The k-vector space V := H(C,Qc/) has
dimension g and gives rise to a morphism
¢: C — P(V)

called the canonical map. The morphism ¢ has degree 2 when C is geometrically hyperelliptic
and is an embedding otherwise. The canonical ring of C is the graded k-algebra

R(C):= (P HYC, Q¢%).
d=0

Define the symmetric algebra Sym(V) := @5, Sym?(V) and let ¢: Sym(V) — R(C) be the
homomorphism of graded k-algebras for which Sym'(V) = V — V = R(C); is the identity map.
Let I(C) C Sym(V) be the kernel of ¢. We have I(C) = B3, I(C)q and I(C)y = 0.

When we choose a basis of V, we can identify P(V) with Pi 71, Sym(V) with k[xy, ..., Xg], and
I(C) with the homogeneous ideal in k[xq, ..., x4] corresponding to the curve ¢(C) C P -

Proposition 2.4.
(i) If C is not geometrically hyperelliptic, then

dimp I(C)n = ("*97") = (2n — 1)(g - 1)

for all n > 2.
(ii) We have

(9,1)  if C is geometrically hyperelliptic

dimy, I(C)g = {(922) otherwise.

(iii) Suppose C is not geometrically hyperelliptic. If g > 3, then the ideal I(C) is generated
by I(C)y and I(C)s. If g = 3, then I(C) is generated by I(C), and dimy I(C); = 1.
(iv) Suppose that C is not geometrically hyperelliptic and g > 3. Let W C I(C)3 be the image
of V@ I(C)y in I(C)s. Then the following are equivalent:
e Cj is trigonal or isomorphic to a smooth plane quintic,
e W £ I(C)3
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e dimy I(C)3/W =g — 3.

Proof. Set R = R(C) and I = I(C), and let Ry be the irrelevant ideal of R. The Poincaré
polynomial of I is P(I; t) = Y97, dimp(I/R>11)q - t¢. An explicit description of P(I; t) can be found
in [VZB22, Table (Ia)] and is broken up into several cases. The proposition can be easily read off
this table. g

2.3. Bielliptic curves. We say that C is bielliptic if there is a degree 2 morphism C — E, where
E is an elliptic curve over k. We say that C is geometrically bielliptic if C; is bielliptic.

Lemma 2.5. Suppose that C is geometrically bielliptic.
(i) If g > 4, then C is not geometrically hyperelliptic.
(ii) If g > 5, then Cj is not trigonal.
(iii) If C — C’ is a nonconstant morphism of nice curves, then C' has geometric gonality at
most 2 or is geometrically bielliptic.
(iv) If k has characteristic 0, then C; is not isomorphic to a smooth plane quintic.

Proof. Parts (i) and (ii) are immediate consequences of Theorem 2.2. Part (iii) follows from
[HS91, Proposition 1]. Part (iv) follows from [HKOOS, Theorem 2.1]; we have the characteristic 0
assumption since [HKOOS8] works implicitly over the complex numbers. O

The following is presumably well-known but lacking a reference we give a proof.

Proposition 2.6. Suppose that C is not geometrically hyperelliptic. We may assume C C Pz -1
via the canonical map.
(i) Suppose that g > 4 and that there is a morphism w: C — C’ of degree 2, where C’ is
a nice curve of genus 1 over k. Then there is a unique point a € P9~*(k) not in C such
that the projection of IP’Z ! from the point a defines a morphism C — Pg 2 that agrees
with st composed with an embedding C" — IP’Z_Q.
(ii) Suppose that g > 5, k has characteristic 0, and that there is a point a € P9~'(k) not in
C such that a projection ¢: C — Pg -2 from the point a defines a degree 2 morphism of
C. Then ¢(C) is a curve of genus 1 and hence C is geometrically bielliptic.

Proof. We first assume we are in the setting of (i) with k algebraically closed. For each point
p € C'(k), let [, be the line in qu passing through the two points of the divisor st*(p) where we
take [, to be a tangent line of C if the support of 7*(p) consists only of one point.

We claim that there is a unique point a € P9-'(k) that is the intersection of [, and [; for all
distinct p,q € C’(k). Take any distinct p,q € C’(k) and define D := 7*(p + q); it is an effective
divisor of degree 4 on C. Applying the Riemann-Roch theorem to the divisor p + g of the genus
1 curve C’, we have dim|p + q| = 1 and hence dim|D| > 1. Let i: C — Pi—l be the inclusion
obtained by identifying C with the image of its canonical map. Let D be the intersection of all
hyperplanes H C Pgﬁi such that (*(H) > D. By the geometric interpretation of the Riemann—-Roch
theorem, cf. [AGI, Chapter 2 §3.2], we have

dimD =degD —dim|D| -1 <4 —-1-1=2,
Since dim D < 2 and g > 4, D is a proper subvariety of ]P’Ig ~! and hence D is special. By Clifford’s

theorem [AGI, Chapter 2 §3.2], we have dim |D| < % deg D = 2. Therefore, dim |D| = 1 and hence

dim D = 2. We have shown that the two lines I, and [, span the plane D and hence they must
intersect at a point. Since [, and [, intersect at a point for all distinct p,q € C’(k), we find that
all the lines [, intersect at a single point or all the lines [, lie in a common plane. The canonical

curve C does not lie a plane in IP% ! since g > 4. Therefore, there is a unique point a € P9-1(k)
such that [, and [, intersect at exactly a for all distinct p,q € C'(k).
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We claim that a ¢ C(k). Assume to the contrary that a € C(k). Fix a point p € C'(k) so
that the divisor D' := 7*(p) + a of C consists of three distinct points. We have D’ = [, and
hence dim |D'| = 1 by the geometric interpretation of the Riemann—Roch theorem. So there is
a nonconstant rational f on C with div(f) + D’ > 0; it has degree 3 since C is not hyperelliptic.
Let o be the involution of C corresponding to st and let n be the number of points of C fixed
by 0. We have f o 0 = #f since o is an involution, the support of D is stable under o, and
dim |D’| = 1. Since f has degree 3 and hence does not factor through s, we have f o0 = —f.
Therefore, all the points of C fixed by o are zeros of f or the pole a, and hence n < 4. However,
the Riemann-Hurwitz formula applied to st and using g > 4 shows that n > 4. This contradiction
proves the claim.

From the construction of a, it has the properties in (i). This completes the proof of (i) in the
case where k is algebraically closed. The general case of (i) follows easily; we obtain a unique
point a € P9~1(k) not in C that is fixed by Gal(k/k) and hence is defined over k.

Suppose we are in the setting of (ii). Define the curve C’ := ¢(C). Since ¢ has degree 2, there
is a corresponding involution o of C; for any point p in C, the line through p and a intersects C
at the two points p and o(p) counted with multiplicity. We can view C’ as the quotient of C by o.
Since C is a canonical curve, it has degree 2g — 2. Since ¢ has degree 2, we deduce that C’ has
degree g — 1 in ]P’g -2, By Castelnuovo’s bound [ACGHS5, I1I §2], and using that g > 5 and k has
characteristic 0, we find that C’ can have genus at most 1. The curve C’ has genus 1 since C is
not geometrically hyperelliptic. O

Lemma 2.7. Assume that g > 6 and that C is geometrically bielliptic. Then there exists a
morphism st: C — C’ of degree 2 with C' a nice curve over k of genus 1. Moreover, 7t is unique
up to composition with an automorphism of C’. If C has a k-point, then C is bielliptic.

Proof. By Lemma 2.5(i), we may assume C C IP’g ! after replacing the curve with its image under

the canonical map. Let A be the set of a € P9~!(k) so that the projection of Pgﬁi from a defines
a morphism of degree 2 from Cj to a genus 1 curve. The set A is nonempty by Proposition 2.6
and our assumption that C is geometrically bielliptic. The set A is finite since each element gives
rise to a distinct bielliptic involution of C; and the set of automorphisms of Cj is finite since
g > 2. Theorem 2.2 and our assumption g > 6 implies that A has cardinality 1.

Since C is defined over k, the absolute Galois group Gal, acts on A and hence A consists of
a unique point a € P91(k). The existence of the morphism st of C is obtained by using the
projecting from the point a. The uniqueness of s, up to composition with an automorphism of
C’, follows from Theorem 2.2 and g > 6.

Finally if C has a k-point, then so does C’ by using 7t and hence C’ can be made into an elliptic
curve. This proves the last statement of the lemma. g

Proposition 2.8. Let K be a nonarchimedean local field of characteristic O with valuation ring
R and residue field F. Let C be a nice curve of genus g > 2 defined over K and suppose there
is a smooth proper model G over Spec R that extends C.

(i) If C is bielliptic, then G is bielliptic.
(ii) If C is geometrically bielliptic, then G is geometrically bielliptic.

Proof. Assume that C is bielliptic. There is a morphism f: C — E of degree 2, where E is an
elliptic curve over K. Associated to f is a nontrivial involution oy of C. The involution oy extends
uniquely to an involution o of the R-scheme G by [Liu02, §10.3 Corollary 3.37]. Let G be the
subgroup of Aut(C) generated by 0. By [Liu02, Proposition 3.38 and its proof], the involution o
acts nontrivially on Gy and the quotient p: @ — G/G =: & exists. Observe that L = E. Since G
has order 2 and only fixes a finite number of points in each fiber of G over R, we find that there
is an open subscheme U C <C that excludes a finite number of points in each fiber of 9C such
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that p~(U) L, U is ¢tale with Galois group G. We find that G — YLp is a morphism of degree
2 and Ly has genus 1. So there is a nice curve Y over F of genus 1 and a morphism Gp — Y
of degree 2. By the Weil bounds and F being finite, we find that ¥ has an F-point and hence
we can view it as elliptic curve over F. Therefore, Gp is bielliptic. This completes the proof of
(i). Part (ii) follows directly from (i) by replacing K by a finite extension for which the curve is
bielliptic. O

3. MODULAR CURVES AND FORMS

In this section, we give background on modular forms and modular curves. In particular, for
a subgroup G of GLy(Z/NZ) we will define a modular curve Xg. Our approach is motivated
by the need to compute explicit models of Xz. Much of this material follows the exposition of
[Zyw22a, §4] except we allow modular curves defined over number fields besides Q.

3.1. Modular curves and forms over C. For the basics on modular forms and curves see see
[Shi94]. The group SLy(Z) acts by linear fractional transformations on the complex upper half-
plane 9C and the extended upper half-plane ¥(* = FCU QU {oo}.

Let I' be a congruence subgroup of SLy(Z). The quotient Lr = [N\FH* is a smooth compact
Riemann surface (away from the cusps and elliptic points use the analytic structure coming from
H and extend to the full quotient). Let Xt be the nice curve over C corresponding to Xr. The
genus of Xr is

(3.1) g =1+ £[SLo(Z): T — g — Log — Lo,

where 1., is the number of cusps of XL, and vy and vz are the number of elliptic points of Lr
of order 2 and 3, respectively, cf. [Shi94, Proposition 1.40].

Consider an integer k > 0. The group SLy(R) acts on the complex upper half-plane via linear
fractional transformations. For a meromorphic function f on % and a matrix y = (g 3 ) € SLy(R),
define the meromorphic function f|,y on 9C by

(Fle7)(1) := (et + &) *fly);

we call this the slash operator of weight k. Recall that a modular form of weight k on I' is a
holomorphic function f on ¥ such that the following hold:

o forany y e I, flpy = f,
e for any y € SLo(Z), (f|ry)(T) is bounded as Im(t) — +o0.

A cusp form of weight k on I' is a modular form f of weight k on I' such that (f|ry)(1) — 0 as
Im(t) — +oo for all v € SLy(Z). We denote by M(I') the set of modular forms of weight k on
I'; it is a finite dimensional complex vector space. We denote by Si(I") C M(I") the subspace of
cusp forms.

Fix a positive integer N that is divisible by the level of I". For each modular form f € My(T’),
we have a Fourier expansion

flr) = Zan(f) CIII\lf
n=0

with unique a,(f) € C, where qy := e?™™/N_ We call this power series the g-expansion of f (at the
cusp oo). For a subring R of C, we denote by M(I', R) the R-submodule of M(I") consisting of
modular forms whose g-expansion has coefficients in R.

The ring

Rr := (P Mi(I)

k>0
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is a finitely generated C-algebra. Each M(I") can be identified with the global sections of a line
bundle on Xr which is very ample for all sufficiently large even k. Using this, we obtain an
isomorphism
Xr = ProjRr
This description of Xr gives a concrete approach to constructing a model of Xt over a number
field K C C, i.e, use Proj R, where R is a graded K-algebra for which we have an isomorphism
R ®k C = Rr of graded C-algebras.

3.2. Modular forms of level N. Fix a positive integer N. Since I'(N) is normal in SLy(Z), the
slash operator of a fixed weight k > 0 gives a right action of SLy(Z) on My(I'(N)). This produces
a right action of SLy(Z/NZ) on My(I'(N)) since I'(N) acts trivially.

Take any modular form f = Y ;an(f)qf in Mp(I'(N)). For a field automorphism o of C and a
modular form f € M(I'(N)), there is a unique modular form o(f) € M(I'(N)) whose g-expansion
is Y7y olan(f)) qf. This defines an action of Aut(C) on My(I'(N)).

The next lemma shows that these actions induce a right action * of GLy(Z/NZ) on the Q-vector
space My(I'(N), Q((w)), where ¢y = e?™/N_ Recall that there is a group isomorphism

(ZINZ)* — Gal(Q(¢N)/Q), dw oy,
where 04(Cy) = ¢4
Proposition 3.1. There is a unique right action * of GLo(Z/NZ) on Mp(I'(N), Q(¢n)) such that
the following hold for all modular forms f € Mp(I'(N), Q(Cn)):
o fxA = flpy for A € SLo(Z/NZ) and y € SLo(Z) congruent to A modulo N,
o fxA=o0q4lf) for A=(}0).
Proof. See [BN19, §3]. O

3.3. The spaces M}, . Fix a positive integer N and let G be a subgroup of GLy(Z/NZ). For each
integer k > 0, we define
M6 == Mp(T(N), Q(¢w))°,

where we are considering the subgroup fixed by G under action * from Proposition 3.1. Observe
that My G is a vector space over Kg, where K¢ = Q(CN)de‘(G) is the subfield of Q(¢y) fixed by o4
for all d € det(G).

Let ' be the congruence subgroup of SLy(Z) consisting of those matrices that are congruent
modulo N to an element of G. We have an inclusion My g C Mp(I'G, Q(CN))-

Lemma 3.2. The natural homomorphisms

Mg, ©r; QCn) —» Me(U'g, Q(Cy))  and Mg ®ks C — Me(l'g)
are isomorphisms for all integers k > 0 with k # 1.

Proof. Since k # 1, the natural map M(I'(N), Q(¢N)) @q(ey) C — Me(I'(N)) is an isomorphism of

complex vector spaces, cf. [Kat73, §1.7]. Taking ['g-invariants shows that the natural map

(3.2) Mg(T', Q(¢n)) @qiey) € — Me(lg)

is an isomorphism. In particular, M, (I"g, Q(Cy)) is a finite dimensional vector space over Q(Cy).
Define H := G N SLy(Z/NZ). Since H is normal in G, we have a right action of G/H on

Mp(T(N), Qen) = Mp(Tg, Q(tN)). Let ¢: G/H — Gal(Q(¢y)/Kg) be the isomorphism ¢(A) =

OgetA. Since G/H is abelian, the isomorphism ¢ induces a (left) action e of Gal(Q(¢y)/Kg) on

Mp(T'G, Q(Cy)). We have o e (cf) = olc)(o e f) for all ¢ € Q(Cy), f € Me(l'g,Q(Cy)) and o €

Gal(Q(¢y)/Kg). By Galois descent for finite dimensional vector spaces (see the corollary to

Proposition 6 in Chapter V §10 of [Bou03]), the natural homomorphism

Me,c ©g Q(En) = Me(T'g, Q&) SN QUNKe) g0 Qen) — Mp(T6, Qén)
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is an isomorphism of Q(Cy)-vector spaces. By tensoring to C and using the isomorphism (3.2),
we obtain the other isomorphism of the lemma. O

3.4. The modular curve Xs. Fix a positive integer N and let G be a subgroup of GLy(Z/NZ).
We further assume that —I € G. Define

Rg = @ Mg,G;

k>0
it is a graded Kg-algebra. We define the Kg-scheme
Xg = ProjRg.

Our assumption —I € G implies that Mp(I'g) = 0, and hence M, = O, for all odd k. By
Lemma 3.2, we obtain a natural isomorphism Rg @, C = Rr, of graded C-algebras and hence
have an isomorphism

(XG)(C = XFG
of schemes over C which we will use an identification. In particular, X is a nice curve over Kg
that has the same genus as Xr;.

Consider an open subgroup & of GLQ@) that contains —I. Fix a positive integer N that is
divisible by the level of G and let G C GLy(Z/NZ) be the reduction of G modulo N. The field
Kg := Kg and the ring R := Rz do not depend on the choice of N, so we can define the modular
curve Xg := ProjRg = X&.

Now consider any two open subgroups G and G’ of GLg (2) that contains —I and satisfy G C G’
and det(G) = det(G’). Then the inclusion of rings Rz € Rg induces a morphism Xg — Xg of
curves over Kg = K¢'. Base changing to C, this corresponds to the natural morphism Xr; — Xr,
of degree [I'g : '] = [G": G].

Remark 3.3. In [Zyw22a], we gave an alternate definition of Xg in terms of its function field
which we now briefly explain. Let Fy be the field of meromorphic functions on %Lry) whose
g-expansion at oo is of the form ) _, an(f)qf, where the a,(f) lie in Q(Cy); we have an(f) = 0
for all but finitely many n < 0. There is an right action * of GLy(Z/NZ) on Fy defined the same
way as in Proposition 3.1. Let Qzﬁ be the subfield of Fy fixed by the action of G.

The function field L of X is the field of modular functions consisting of quotients f/f" with
f.f € Mg, where k > 0 is even and f' + 0. We have L C Qiﬁ One can prove that L = Scﬁ by
showing that both are extensions of K(j) of degree |G/{+I}|, where j is modular j-invariant. So
an alternate definition of X is the nice curve over Kg with function field Sﬂﬁ

3.5. Computing a basis of M}, . Fix a positive integer N. Our approach to computing modular
forms is using Eisenstein series of weight 1. Take any (a, b) € Z? and let a € (Z/NZ)? be its image
modulo N. There is a modular form E, in M(I'(N), Q(¢y)) with g-expansion

cot+ Y. At - ) G

m,n>1 m,n>1
m=a mod N m=-a mod N

where
ifa=b=0 (modN),

0
co = % 1+C§ ifa=0 (mod N)and b #0 (mod N),
1

[

7CN
57— ifas0 (modN)

and 0 < ag < N is the integer congruent to a modulo N. For details on the Eisenstein series E,
see §2 of [BN19] (where it is denoted Eg)).

Lemma 3.4. Fix an integer k > 1 and pairs ay, ..., ap € (ZINZ)*. Then the modular form
f = Eq4 - Eq, lies in Mp(I'(N), Q(¢N)) and satisfies f «* A = Eq,a - - Eq,a for all A € GLo(Z/NZ).
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Proof. The lemma follows directly from the k = 1 case, so we may assume that k = 1 and we
fix a pair a € (Z/NZ)?. The modular form E, has weight 1 and its g-expansion has coefficients
in Q(Cy). As noted in [BN19, §3], we have E, * A = Eqa for all A € GLo(Z/NZ). O

Proposition 3.5. Suppose that N > 3. Take any subgroup G of GLy(Z/NZ) and integer k > 2.
Then the Kg-vector space My g is spanned by the modular forms

(3.3) =3 8, o B
geG

with pairs a4, ..., ar € (Z/NZ)? and integers 0 < j < |det(G)|. With f € Mg € Mp(T'(N), Q(¢y))
as above, we have
fxA= Z d\?et(g) det(A)Em gA - Eaga
geG
for A € GLo(Z/NZ).

Proof. Let Sy be the set of modular forms Eq, - - - Eg, with ay, ..., ap € (ZINZ)?. Let Sy be the set
of modular forms ¢} f with f € Sy and 0 < j < |det(G)|. Since N > 3, the set Sy spans M(I'(N))
as vector space over C by a theorem of Khuri-Makdisi [KM12]; Theorem 3.1 of [BN19] gives a
reformulation of this result similar to ours. Since Sy € M(I'(N), Q(¢y)), Lemma 3.2 with trivial
group implies that Sy spans My(I'(N), Q(¢y)) over Q(Cy). Therefore, Sy spans Mp(I'(N), Q(¢w))
over Kg; note that the ¢, with 0 < j < |det(G)| = [Q(ty) : Kgl, is a basis of Q(Cy) over
Kg. Therefore, M is spanned as a vector space over Kg by the deef/ x g with f € 5.

With " = C{\,J’SO(1 -+ Eq,, dee f’" % g agrees with (3.3) by Lemma 3.4. The last statement of the
proposition now follows from Lemma 3.4. O

Fix a subgroup G of GLy(Z/NZ) that contains —I and fix an even integer k > 2. We now explain
how to find an explicit basis of the Kg-vector space My . When N < 3, we have My g = My g,
where G’ is the subgroup of GLy(Z/4Z) consisting of matrices whose image modulo N lies in G.
So we may assume that N > 3.

The dimension d := M(I'g) is straightforward to compute, cf. [Shi9%, §2.6], and is equal to
the dimension of Mg over Kg by Lemma 3.2. By varying over the finite number of pairs

a, ..., ap € (ZINZ)? and integers 0 < j < det(G), we construct modular forms of the form
(3.3) that span M} g. By computing enough terms of the g-expansions, we will eventually find d
modular forms fq, ..., fq whose g-expansions are linearly independent over K. This will be the

desired basis of M} g. This has been fully implemented in Magma in [Zyw25].

3.6. The canonical map and low gonality. Fix a subgroup G of GLy(Z/NZ) that contains —I.
Denote the genus of X by g and assume that g > 2.

We will want to understand the image of the canonical map of Xg. As a starting point, recall
that the complex vector space of holomorphic differential forms on Lr, = ['c\FC* arises from
the forms f(z)dz on HC with f € So(I"), cf. [Shi94, Corollary 2.17].

We define Sog to be the Kg-subspace consisting of those modular forms in My g whose g-
expansion at each cusp has 0 constant term. Using that the subscheme of cusps of X is defined
over Kg, we find that the isomorphism from Lemma 3.2 gives rise to an isomorphism

S0.6 Wk C = So(Cg).

As explained in §3.5, one can find an explicit basis of My g over Kg. Recall that each element
of this basis can be expressed in terms of Eisenstein series of weight 1 and we can thus compute
arbitrarily many terms of its g-expansion at each cusp of Xg. We can then find an explicit basis
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of So g over Kg. Moreover, we can compute arbitrarily many terms of the g-expansion of each
fi at each cusp of Xs. With respect to the basis fy, ..., fg, we have the canonical map

¢: Xg — PY .

Let C be the curve ¢(Xg); it is unique up to composition with an automorphism of IP’?{:. Let I(C)
be the homogeneous ideal in Kg[xy, ..., xg) corresponding to C. For each integer n > 0, I(C),
is the Kg-vector space consisting of homogeneous polynomials F € Kg[xy, ..., xg] of degree d
such that F(fy,..., fq) = 0.

For a fixed n > 0, we now explain how to compute a basis of I(C), over Kg. Let my, ..., my
be the monomials in Kg[xy, ..., x4] of total degree n; they are are basis of Kg[x1,..., Xgln. After
expanding out the expression

by using all the computed terms of the g-expansions of the f;, the coefficients of this g-expansion
gives a set & of degree 1 homogeneous polynomials in Kglcy, ..., cr]. Let V be the Kg-vector
space consisting of the solutions in K to all the linear polynomials & (note that the polynomials
in & will have coefficients in Q(¢y)). We then have I(C), C I/, where

r
Iz/l = {Ziziaimi ac V}
Unfortunately, I(C), and I, need not agree if we do not use enough terms of the g-expansions

of the f;. Using the Sturm bound from [Zyw22a, Lemma 4.1], we can compute sufficiently many
terms of the g-expansions of the f; so that we are guaranteed to have I(C), = I;.

Remark 3.6. There are many cases where we can determine dimg, I(C), ahead of time and
hence do not need to use the Sturm bound. Note that I(C), = I} if and only if dimg, I(C), =
dimg, I;. For example if n = 2 and dimg, I} < (951>, then we have dimg, I(C)y = (952) by
Proposition 2.4(ii). If X is known to not be geometrically hyperelliptic, then dimg, I(C), is
given for n > 2 by Proposition 2.4(i).

We shall now explain how to computationally determine if Xg has geometric gonality 2 or 3.

3.6.1. Checking for geometric gonality 2. We may assume that g > 3 since otherwise Xg is
hyperelliptic. By Proposition 2.4(ii), the integer d = dimg I(C)g is (¢ 51) if X is geometrically
hyperelliptic and (952) otherwise. We have (952) < (g 51> since g > 3. Therefore, Xg has
geometric gonality 2 if and only if d = (g 9 1). Thus our computation of a Kg-basis of I(C)y will
determine if X has geometric gonality 2.

Remark 3.7. Instead of solving for a basis of I(C)y, we can sometimes just set up the linear
equations (using modular forms of a fixed precision) to find an upper bound on d. If we find
that d < (g 51) then X is not geometrically hyperelliptic. Taking our linear equations to have
coefficients in Ox then reducing them modulo maximal ideals, we can sometimes deduce that
d < (g 9 1) ; this is preferable since linear algebra is significantly faster over finite fields.

3.6.2. Checking for geometric gonality 3. By applying the method from §3.6.1, we may assume
that X is known to have geometric gonality at least 3. We may also assume that we have
computed a basis Fy, ..., Fq of I(C)s over Kg. We may further assume that g > 5 since Propo-
sition 2.1(iii) implies that X has geometric gonality 3 when g is 3 or 4.

Let W be the Kg-subspace of Kg[xy,..., xg]3 spanned by x;Fj(xy, ..., xg) with 1 <i < g and
1 <j < d. One can compute the dimension of W. By Proposition 2.4(i) and (iv), we have

dimg, W < (93%) —5(g —1)
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with a strict inequality holding if and only if (Xg) K. is trigonal or isomorphic to a smooth plane
quintic.

We can now assume that dimg, W < (¢ ;2) —5(g —1) since otherwise X has geometric gonality
at least 4. A smooth plane quintic has genus 6 so we may assume that g = 6 since otherwise Xg
will have geometric gonality 3. By Proposition 2.4(iv), the quotient Is/W has dimension g —3 = 3
over K.

By computing a basis for I(C)3 over K, we can then find Hy, Hy, H3 € I(C)3 that form a basis of
I(C)3/W over Kg. By Proposition 2.4(iii), the polynomials Fy, ..., F,, Hy, Ho, Hs define the curve
C in ]P’% which is isomorphic to Xg. The geometric gonality of the genus 6 curve C = X can
be computed using the algorithms of [Har13]; this has been implemented in the Magma function
Genus6GonalMap.

4. MODULAR CURVES REVISITED

We will need more information about modular curves than what is given in §3. In particular,
there are a few place where we need an integral model so that we can talk about reduction
modulo a prime ideal in a careful manner. Throughout we fix an integer N > 3.

Our main reference is the book of Deligne and Rapoport [DR73]; in particular, the introduction
gives a readable overview of the relevant moduli problems. Note that we will consider schemes
over Z[1/N] and Z[€y, 1/N] which will simplify some of the material in [DR73] which often works
over Z and Z[(y] instead.

4.1. The modular curve My.

41.1. Over Z[1/N]. For a fixed Z[1/N]-scheme S, we consider pairs (E, a), where E is an elliptic
curve over S and a: (Z/NZ)> = E[N] is an isomorphism of group schemes. Two such pairs
(E,a) and (E’, ') are isomorphic if there is an isomorphism f: E — E’ of elliptic curves over S
such that f o a: (Z/NZ)*> — E[N] — E'[N] agrees with o'

Let MR/(S) be the set of isomorphism classes of such pairs (E,a). This gives a functor My,
from the category of Z[1/N]-schemes to the category of sets where the functoriality comes from
base change. Since N > 3, this functor is representable by a Z[1/N]-scheme that we also denote
by My;. The scheme My, is a smooth curve over Z[1/N].

There is an a left action of GLy(Z/NZ) on My, given by A - (E, a) = (E, B), where B(v) = a(vA)
for v € (ZINZ)?.

Remark 4.1. In [DR73], they instead consider « as an isomorphism E[N] = (Z/NZ)?. This does
not affect the definition of My, but does lead to a different convention concerning the GLy(Z/NZ)-
action; our choice is made so that the action better agrees with the classical setting of §3.

41.2. Over Z[Cy,1/N]. For a pair (E, a) defined over S, the Weil pairing of a((1,0)) and «((0, 1))
gives a primitive N-th root of unity £(a) over S. Since My, is representable, there is a universal
pair (E’, ') over My, with which the Weil pairings allow us to identify any ¢(«) with a particular
primitive N-th root of unity €y (over My;). The map (E, a) — ¢&la) = Cy gives rise to a morphism
of schemes

Mgy, — SpecZ[Cn, 1/N].

Using this morphism, we shall view My as a scheme over Z[Cy, 1/N]. As a Z[Cy, 1/N]-scheme, My,
classifies the isomorphism classes of (E, a)/S, with S a Z[¢y,1/N]-scheme, such that £(a) = Cy.
The left action of SLy(Z/NZ) on My, as a scheme over Z[1/N] is also an action as a scheme over
Z[CNn, 1/N].
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41.3. Analytic setting. We now consider the analytic story. We view C as a Z[¢y, 1/N]-algebra,
by identifying ¢y with e*™/N_ For each T in the upper half-plane 9C, let E, be the elliptic curve
over C arising from the quotient C/A,, where A, := Z + Zt. Let ay: (Z/nZ)*> = E.[N] be the
group isomorphism for which a.((1,0)) = T/N + A, and a,((0,1)) = 1/N + A,. The Weil pairing of
a((1,0)) and a,((0, 1)) is &n. Therefore, the pair (E;, a;) gives a complex point on M, x 7y 1/8 C.
Moreover, the map 1+ (E;, a;) induces an isomorphism

(4.1) T(NNIC = (MY xzjey.1/m C)*"

of complex analytic spaces. One can check that the actions of SLy(Z/NZ) on both sides of (4.1)
agree.

Remark 4.2. Note that (M, xz1/n) C)™" is isomorphic to ¢(N) copies of I'(N)\¥C.

Fix T € 90 and define q := e*" and q'/N := "7 For later comparison with the Tate
curve, note that applying the function e?# gives an isomorphism between (E;, a;) and the pair
(C*/q%, a') where a’((1,0)) and a’((0,1)) are represented by q'/N and ¢y, respectively.

4.2. The modular curve My. Deligne and Rapoport compactify My, by giving a moduli inter-
pretation of the cusps in terms of generalized elliptic curves. For the definition of generalized
elliptic curves see [DR73, I Definition 1.12].

There is a functor My from the category of Z[1/N]-schemes to the category of sets defined
so that My(S) corresponds to pairs (E, a), where E is a generalized elliptic curve over S and
a: (ZINZ)?> = E[N] is an isomorphism of group schemes; see [DR73, IV §2] for the construction
(they define an algebraic stack and then show it is a scheme My assuming N > 3). The scheme
My over Z[1/N] is smooth and projective. We can naturally identify My, with an open subscheme
of My. The complement of My, in My is a finite étale scheme My’ over Z[1/N]. The action of
GLo(Z/NZ) on My, extends to My by using the same definition.

Arguing as in §4.1.2, we can give My the structure of a Z[(y, 1/N]-scheme. Using our GLy(Z/NZ)-
action, we find that SLy(Z/NZ) acts on My when viewed as a Z[¢y, 1/N]-scheme. The isomorphism
(4.1) extends to an isomorphism

Lryy — (My xzen1/m CF

of smooth compact Riemman surfaces, where Xr ) was defined in §3.1. In particular, we have
an isomorphism between Xr(y) and My xz¢y,1/8) C.

4.3. Modular forms of level N. There is a universal generalized elliptic curve & — My and we
let w be the invertible sheaf on My that is the pushforward of the relative dualizing sheaf. We
have a natural isomorphism

(4.2) Qb (MFY) = w2,

cf. [DR73, VI 45.2].

Fix an integer k > 2. Following the definition [DR73, VII 3.6], we say that a modular form of
level N and weight k over Z[¢y,1/N] an element of H)(My, w®¥). We can view H(My, w®*) as a
Z[Cn,1/N]-module by using that My is a Z[Cy,1/N]-scheme. Our action of GLyo(Z/N7Z) on My
gives a right action on H%(My, w®¥) as a Z[1/N]-module (and a right action of SLy(Z/NZ) as a
Z[¢N, 1/N]-module).

Fix a modular form f € HO(My, w®*). To better explain the connection with the classical
definition of modular forms in §3, we will now describe the g-expansion of f algebraically; for
details see [DR73, Chapter VII]. The Tate curve gives an elliptic curve E, defined over the Laurent
series ring Z(q) which can be expressed as G,,/q%. The curve comes with a canonical invariant
differential dx/x, where x is a parameter of G,,. After base extending E; to Z[Cy, 1 IN1(q"™),
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where g'VN is a fixed N-th root of g, we obtain an isomorphism a: (Z/NZ)?> = E4[N] of group
schemes, where a((1,0)) and a((0, 1)) are represented by q'/N and ¢y, respectively. The pair (Eq, a)
gives a Z[twn, 1/N](q"'N)-point on My which is a morphism h: SpecZ[¢y, 1/N](q'N) — My of
Z|€n,1/N]-schemes. We have

h*(f) = Fy - ()7

for a unique Fy € Z[¢y, 1/N](q"N). Moreover, we have Fy € Z[¢y,1/N][q"/N]; this is shown in
[DR73, VII §3] by instead starting with the Tate curve as a generalized elliptic curve over Z[q].
We call Fy the g-expansion of f.

From [DR73, VII Construction 4.6], and the remarks following it, we find that there is an
isomorphism

(4.3) B: HY(My, w™*) @710y 18] C = Mp(T'(N)

that preserves g-expansions. When k is even, the isomorphism (4.2) also lets us view (4.3) as the
usual isomorphism between M (I'(N)) and certain differential k/2-forms on Xr(y). The actions
of SLy(Z/NZ) are compatible with 8 (the construction in [DR73] makes use of the isomorphism
(4.1) and we have chosen actions so that they do agree).

Proposition 4.3.
(i) The Z|Cy,1/N]-submodule Mp(I'(N),Z[¢N,1/N]) of Mp(I'(N), Q(¢y)) is stable under the

right GLo(Z/NZ)-action from §3.2.
(ii) There are unique isomorphisms

H(My, w™®) = Mp(T(N), Z[¢n, 1/N])  and  H((My)g, w™*) = Me(T(N), Q(¢x))

of modules over Z[Cy,1/N] and Q(¢y), respectively, that preserves q-expansions. The
actions of GLy(Z/NZ) are compatible with these isomorphisms.

Proof. The isomorphism S restricts to an injective homomorphism
(4.4) H°(My, w**) < Mg(T'(N), Z[¢y, 1/N]).

Let F € Z[¢n,1/N][gn] be the g-expansion of any modular form in M(I'(N), Z[¢y, 1/N]). Since B
is an isomorphism, there is a unique f € HO(M w®*) ®@zjen1/N] Q(EN) such that f has g-expansion
F. By [DR73, VII Théoréme 3.10(i) and Corollaire 3.13], the g-expansion of f at each cusp has
coefficients in Z[¢y, 1/N] and hence f € H(My, w®*) by [DR73, VII Théoréme 3.9]. This proves
that (4.4) is surjective and hence is an isomorphism of Z[¢y, 1/N]-modules. Since H°(My, w®¥)
is stable under its SLy(Z/NZ)-action and B is an isomorphism that respects the SLy(Z/NZ)-action,
we deduce that SLy(Z/NZ) acts on Mp(I'(N), Z[¢n, 1/N]) and the isomorphism (4.4) respects the
SLo(Z/NZ)-action. Part (i) now follows since Z[(y, 1/N] is stable under the action of Gal(Q(Cx)/Q).

Take any d € (Z/NZ)*. We claim that the action of the matrix A := (}9) is compatible
with the isomorphism (4.4). We have (E;, @) = A - (Eq, a), where a': (Z/NZ)? = E4[N] is the
isomorphism of group schemes for which a/((1,0)) and a’(0,1)) are represented by g'/N and
Cﬁ,, respectively. Take any f € H°(My,w®®) and define ' := f - A. We have h*(f') = h’*(f),
where h’: SpecZ[twn, 1/N](q''N) — My is the morphism of Z[¢y,1/N]-schemes given by the
point (E,, ). Using that E, is defined over Z(q'/N), we find that h"*(f) = oq(Fy)- (i—x)@e and hence
0a(Ff) = Fp. We have now proved the part of (ii) concerning the isomorphism (4.4). Part (ii)
follows by base changing to Q(¢y); note that we a natural isomorphism H°(My, w®¥) ®7[¢nA/N]
Qlty) = HO((My)g, w™¥) by [DR73, VII Théoréme 3.10(i)]. O

The following will be useful for proving the integrality of the coefficients of a g-expansion at
a prime ideal p given only finitely many coefficients.
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Proposition 4.4. Take any subgroup G of GLy(Z/NZ). Define H := G N SLo(Z/NZ) and let R
be a set of representatives of the cosets H\ SLo(Z/N7Z). Take any nonzero prime ideal p 1 N of
Z[¢y] and consider a modular form f € My = Mp(I'(N), Q(¢N))C. For each A € R, let mp > 1
be an integer for which a,(f xA) is integral at p for all n < my, where fxA =Y  an(f * A)qg.
If Y acpma > k/12, then a,(f = A) is integral at p for all n > 0 and all A € SLy(Z/NZ).

Proof. Take any nonzero f € Mi(I'(N), Q(¢y)) . We define v,(f) := min{vy(a,) : n > 0}, where
Y pan(f)qy is the g-expansion of f and v, is the p-adic valuation of K. By [DR73, VII Corollaire
312]) and p 1 N, we have v,(f) = v,(f * A) for all A € SLy(Z/NZ).

Suppose that f is a counterexample to the proposition. By multiplying f by an appropriate
element of Q((y)*, we obtain a nonzero modular form f* € Mg(T'(N), Z[¢n])H for which v,(f') = 0
and ap(f'* A) = 0 (mod p) for all A € R and n < my. For any A € R and any B in the coset
H - A € H\SLy(Z/NZ), define mp := ma; we have a,(f' *« B) = 0 (mod p) for all n < mpg since f’
is fixed by H. We have

1 1
R > ma= [SLo(ZINZ)| >, mp<k/2
AcR BeSL,(ZINZ)

where the inequality follows from [DR73, VII Corollaire 3.14] and our assumption p t N. There-
fore, no counterexamples will occur if ﬁ Y acpma > k/12. O

4.4. The modular curve X revisited. Fix a subgroup G C GLy(Z/NZ) containing —I. Let Mg be
the Z[1/N]-scheme that is the quotient of My by the action of G. By [DR73, IV Proposition 3.10],
Mg is proper and flat over Z[1/N] and agrees with the coarse moduli space of generalized
elliptic curves with G-level structure. The scheme Mg is also smooth over Z[1/N], cf. [DR73, VI
Proposition 6.7].

With notation as in §4.1.2, for a pair (E, ) and a matrix A € GLy(Z/NZ), we have (A - (E, a)) =
C(E, a)¥?) We obtain a morphism

Mg — Spec(Z[¢y, 1/N]46),

where Z[¢y, 1/N]%C is the subring of Z[¢y, 1/N] fixed by oy for all d € det(G). In particular, Mg
can be viewed as a scheme over Og,[1/N] = Z[¢y, 1/N]%'C. Moreover, Mg is a smooth proper
curve over Ok,[1/N].

Define the graded Kg-module

Rz= P H(My)g w™)°.

k>0 even

The isomorphisms from Proposition 4.3(ii) induce an isomorphism R; — Rg of graded Kg-
modules, where Rg is defined in §3.4. From §3.4, we find that tensoring up to C gives an
isomorphism Rj; @k, C — Rr, of graded C-algebras. One can show that Mg X O [1/N] C = Xrg-
Since Xr, = ProjRr,, we find that the curve Mg X O [1/N] K¢ is isomorphic to ProjR;. Since
R/G = Rg, we deduce that Mg X O [1/N] K is isomorphic to Proj Rg = Xg.

In summary, Mg is a smooth proper curve over Ok,[1/N] whose generic fiber is a nice curve
over Kg isomorphic to Xg.

5. EXPLICIT GONALITY BOUNDS

Throughout this section we fix a congruence subgroup I' of SLy(Z) containing —I. Let g be
the genus of Xr, let N be the level of I" and let D be the index [SLy(Z) : I'].

The natural morphism Xr — Xg1,z) = ]P’}C has degree D since —I € I' and hence gon(Xr) < D.
The following shows that gon(Xr) can also be uniformly bounded below by D times a positive
constant.
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Theorem 5.1. We have gon(Xr) > 22 D. If N < 226, then gon(Xr) > &D.

Proof. The theorem will follow from inequalities of Zograf in [Zog87]. Set v := gon(Xr). In
[Zog8T7], our Riemann surface Xr is denoted I'\¥( and the quantity p(I"\¥C) that arises there is
equal to Dst/3 (this uses the footnote on [Zog87, p.109] and (3.1)).

We may assume that 7 < D/96 since otherwise the theorem holds immediately. The hypothesis
of [Zog87, Theorem 3] holds since v < D/96 and we obtain an inequality

M < 3 = 24y/D,

where Ay := A((I") is the minimal nonzero eigenvalue of the automorphic Laplacian operator on

L*(I'\9() induced from the Laplace operator A = —y?( 65;22 + ) Equivalently, we have the bound

A
(5.1) v > 5D.

In [Sel65], Selberg conjectured that Ay > 1/4 and proved the inequality Ay > 1/4 — (1/4)> = 3/16.
Using (5.1) with Ay > 3/16 gives v > D/128 which is precisely [Zog87, Theorem 5]. The inequality
M > 114 — (7/64)% = 975/4096 was proved by Kim and Sarnak in [Kim03, Appendix 2]. Using
(5.1) with the bound of Kim and Sarnak gives y > %D which proves the first inequality of the
theorem.

We may now assume that N < 226. Since N is the level of I, we have I' O I'(N) and hence A4 :=
M (L) > M(IC(N)). Booker, Lee and Strombergsson [BLS20] have shown that Selberg’s conjecture
holds for all congruence subgroups I'(N) with N < 226. Therefore, we have Ay > A (I'(N)) > 1/4.
Using the bound (5.1), we deduce that y > 1/4D = D/96. O

Corollary 5.2.

(i) Suppose that gon(Xr) = 2. Then D < 201. If N < 226, then D < 191.
(ii) Suppose that gon(Xr) = 3. Then D < 302. If N < 226, then D < 287.
(iii) Suppose that gon(Xr) = 4. Then D < 403. If N < 226, then D < 383.

Proof. This follows directly from Theorem 5.1, which gives upper bounds on D in terms of
gon(Xr), and using that D is an integer. O

Remark 5.3. There are similar bounds of Abramovich which are perhaps better known than
Zagorof’s. Using the bounds of [Abr96], we obtain y > %D instead of (5.1) in the proof of
Theorem 5.1; Zagorof obtains a strict inequality by considering the cusps. When gon(Xr) = 2,
this weaker bound would give Corollary 5.2(i) except we would only have D < 192 when N < 226.
This slight difference is relevant since there are 470 congruence subgroups I' of SLy(Z), up to
conjugacy in GLy(Z), that contain —I and satisfy [SLo(Z) : '] = 192.

When the level N of I is not divisible by a small prime, we can sometimes improve on these
bounds for D.

Theorem 5.4. Let p be a prime not dividing N.
(i) If gon(Xr) = 2 and g > 2, then D < 24(p* +1)/(p —1).
(ii) If gon(Xr) = 3 and g > 5, then D < 36(p? + 1)/(p — 1).
(iii) If Xr is bielliptic and g > 6, then D < 24(p® + 2p + 1)/(p — 1).
Proof. We may assume that g > 2. We have N > 3 since otherwise Xr would have genus 0.
Since p { N, we can choose a prime ideal p of Z[Cy, 1/N] containing p. Let F2 be the subfield of
F, of cardinality p?.
Let G C SLo(Z/NZ) be the image of T' modulo N. Define the field Kg := Q(¢y)%C) = Q(&y).

In §4.4, we defined a smooth proper curve Mg over Ok,[1/N] = Z[Cn,1/N] whose generic fiber
is isomorphic to Xz. We have isomorphisms

(Mg)c = (Xg)c = Xr.
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Note that (Mg)]yp is a nice curve of genus g since p 1 N. Below we will make use of the schemes
My, and My from §4 and they will be viewed as schemes over Z[Cy, 1/N].
We claim that there is a curve C over Fy such that (Mg)s, = Cy, and

(5.2) |C(Fy)| > (p — 1)DH2.

We define C following the construction of Poonen in §3 of [Poo07] which builds off of the ideas
of Ogg [Ogg74]. Define L := (Z/NZ)* which we turn into a Gal(F,/F,:)-module by letting the
p?-th power Frobenius automorphism act as multiplication by —p. We fix a group isomorphism
1 AL — py, with uy C Fp the group of N-th roots of unity, so that the Gal(Fp/]Fpg)—actions
are compatible. Let ¥ be the smooth affine curve over . that parametrizes pairs (E, a) where
a: L — E[N] is an isomorphism under which the Weil pairing corresponds to 1. Observe that
we have a canonical isomorphism YEJ = (Mﬁ,)Fp since they describe the same moduli space. We
can extend ¥ to a smooth projective curve X defined over Fj» and we have Xz = (My)g . The
action of SLy(Z/NZ) on L gives rise to an action on ¥V and X that respects the isomorphism
Xg, = (My)g,. Therefore, (Mglg, = G\(Mn)g, is isomorphic to Cy , where C is the nice curve
over [, that is the quotient of X by G. In §3 of [Poo07], it is observed that

(5.3) IC(Fye)| > (p —1)[SLo(ZINZ) : G112 = (p — 1)D/12

by considering supersingular elliptic curves defined over F,.. This completes the proof of the
claim.

We now prove (i) and (ii), so assume that 7 := gon(Xr) is 2 or 3 with g > 5 if v = 3. The
geometric gonality of (Mg)k, is 7 since (Mg)c is isomorphic to Xr. Define d := gOH((MG)Fp>.
We have d < vy by applying Proposition 2.3. We have 2 < d < ¥ since (MG)FP has genus g > 2.
The curve C has geometric gonality d since it is isomorphic over Fp to (MG)ﬁp. By Theorems 1
and 2 of [RX18], which uses that g > 2 when d = 2 and g > 5 when d = 3, there is a morphism
7: C — Z of degree d, where Z is a nice curve over Fp» of genus 0. We have Z = IP’I%, , since we

p

are working over a finite field. Using that ;1 has degree d, we obtain the easy upper bound
|C(Fp)| < d|Z(Fpe)| = d(p” + 1) < 7(p” +1).

Combining with (5.3) gives D < 12y(p? + 1)/(p — 1) which completes the proof of (i) and (ii).

We now prove (iii), so assume Xr is bielliptic and g > 6. Therefore, (Mg)k, is geometrically
bielliptic since it is isomorphic over C to Xr. Proposition 2.8 implies that (MG>F,, is geometrically
bielliptic. By the claim, C is also geometrically bielliptic. Since C has genus g > 6, Lemma 2.7
implies that there is a degree 2 morphism C — Z, where Z is a nice curve of genus 1 defined
over [F». Using the Weil bounds, we have

|C(Fy2)| < 2|Z(F0)| < 2(p* +2p +1).
Combining with (5.3) gives D < 24(p? + 2p + 1)/(p — 1) which completes the proof of (iii). O

6. CHECKING IF A MODULAR CURVE IS GEOMETRICALLY BIELLIPTIC

Fix a positive integer N and subgroup G of GLy(Z/NZ) that contains —I. In this section, we
explain how to computationally verify if the modular curve X is geometrically bielliptic. Let g
be the genus of X5. We may assume that g > 2 since Xg is not geometrically bielliptic when
g = 0 and is geometrically bielliptic when g = 1. We have N > 3 since g > 2. To ease notation,
we set K := K for the rest of the section.

As outlined in §3.6, one can compute a basis fy, ..., fq of the K-vector space Sy . Moreover
for each f;, we can compute arbitrary many terms of its g-expansion at each cusp. With respect
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to the basis f4, ..., fg, we have the canonical map

¢: Xg — PL!
Let C be the image of ¢ and let I(C) be the corresponding homogeneous ideal of K[xy, ..., Xg].
As described in §3.6, we can compute a basis Fjy, ..., Fgq of the K-vector space I(C)s. As noted in

§3.6.1, the integer d allows us to determine whether or not Xs is geometrically hyperelliptic.

6.1. Geometrically hyperelliptic case. Suppose that X is geometrically hyperelliptic. If Xg is
also geometrically bielliptic, then g < 3 by Theorem 2.2. So we may assume that g = 2 or g = 3.

We have a basis f4, ..., fg of So,c over K. Using this, we can construct a basis wy, ..., wg of
So.c @k Q(CN) C So(T'g) over Q(Cy) so that the order of vanishing of w; at the cusp at infinity is
strictly increasing as a function of i. As usual we have q = e*™'. The function field of (XG)aley) is
generated by x := wy_1/wy and y := dx/(wydq), and there is a unique polynomial h(x) € Q(¢n)[x]
of degree at most 2g + 2 such that y* = h(x), see Lemma 25 of [BGJGP05] and the computations
that follow the lemma. By using enough terms of the g-expansions of our modular forms, we
can set up linear equations and solve for the coefficients of h. By changing variables, we will
obtain a model

y* = hix)

of (XG)g(ey) Where h(x) is separable of degree 2g + 2 with coefficients in Z[¢y]. Let R be the ring
of S-integers in Z[(y], where S consists of the nonzero prime ideals p that divide the leading
coefficients of h or divide 2disc(h). Let 9C be the smooth projective curve over Spec R defined
by the affine equation y* = h(x).

Define H(x, z) := z*9*2h(x/z) € Z[¢y][x, z); it is a homogeneous polynomial of degree 2g + 2.
Let & be the closed reduced subscheme of Afg such that for any algebraically closed field k that
is an R-algebra and any point (a,b,c,d) € k% (a,b,c,d) lies in Z(k) if and only if A := (20)
satisfies A = I, tr(A) = 0 and H(ax + b,cx +d) = h(x).

Lemma 6.1. Let k be an algebraically closed field that is an R-algebra. Then X, is bielliptic if
and only if Z(k) + 0.

Proof. First suppose there is a point (a,b,c,d) € Z(k) and define A := (2¢5). We have (cx +
d)?9+2p(92£8) — h(x). From this and a fixed € € {+1}, we obtain an automorphism o(x,y) =

cx+d
(‘Cl;jr’s ﬁ) of Ap. Using A%> = I, we find that 0 = 1. The matrix A is nonscalar since
tr(A) = 0 and k does not have characteristic 2, and hence o is not the identity map or the

hyperelliptic involution. Also by choosing an appropriate € € {£1], we may assume that &, has
a point fixed by 0. Consider the degree 2 morphism 7: L}, — Ap/(0) =: C'. The curve C’ has
genus g’ > 0 since o is not the hyperelliptic involution (which is unique by Theorem 2.2). We
have 0 < g’ < g. We cannot have (g,g’) = (3,2) since otherwise the Riemann-Hurwitz formula
implies that st is unramified and hence o has no fixed points. Since g € {2,3}, we deduce that
g’ =1 and hence X}, is bielliptic.

Now suppose that &y, is bielliptic and let o be a bielliptic involution. By [BGJGP05, Proposition
6.11], there is a matrix A = (25) € GLy(K) satisfying A? = I and a number € € {+1} such
that o(x,y) = ((ax + b)/lcx + d),ey/lcx + d)?*'). Note that the section containing [BGJGPOS5,
Proposition 6.11] has a characteristic O assumption but the proof of this proposition works fine
in odd characteristic. Since o is an automorphism of Xy, we have (cx+d)**?h((ax +b)/(cx+d)) =
y? = h(x) for points (x,y) € A (k) not at infinity and hence we have an equality H(ax +b,cx +d) =
h(x) of polynomials. To complete the proof of the lemma, we need to show that tr(A) = 0. Suppose
to the contrary that tr(A) + 0. Since A% = I, tr(A) + 0 and the characteristic of k is not 2, we
have A = +I. However, A = ] implies that o is the identity or hyperelliptic automorphism of
9, which is a contradiction. Therefore, tr(A) = 0. O
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We now explain how to check if X is geometrically bielliptic. Consider any nonzero prime
ideal p ¢ S of Ok; we use the same notation to denote the prime ideal pR of R. We then check
if the subvariety EZ?FP of Afgp is empty or not.

Suppose that Zp, is empty. Since ,‘Z?(EJ) = (), Lemma 6.1 implies that L, is not geometrically
bielliptic. Since & is a smooth projective curve over R, Proposition 2.8(ii) implies that Lge,) =
(XG)gley) is not geometrically bielliptic. In particular, X is not geometrically bielliptic.

Now suppose that Zp, is nonempty. Then there is a point Z € Z(F) for some finite extension F
of F,. We can then try to use Hensel's lemma to lift Z to a point z € Z(L) for some local field L
containing Q(¢y). If such a lift exists, then Xy, = (Xg)1, is geometrically bielliptic by Lemma 6.1;
in particular, Xg is geometrically bielliptic.

By looking at sufficiently many nonzero prime ideals p ¢ S of Ok, the above arguments will
eventually determine whether or not X is geometrically bielliptic (taking S large enough, we
get a smooth scheme Z over R and Hensel's lemma will always apply to give lifts).

6.2. Genus 3 case. Assume that g = 3. We may assume that X is not geometrically hyperelliptic
since we have already dealt with this case.

By Proposition 2.4(iii), the curve C is defined by a homogenous polynomial F(xy,x,x3) €
Klx1,x9,x3] of degree 4 that is unique up to a nonzero scalar. In this case we are going to
directly check if Cz has a bielliptic involution.

Lemma 6.2. The curve C is geometrically bielliptic if and only if there is a matrix A € M3(K)
satisfying A% = I, tr(A) = —1 and F(xAl) = F(x).

Proof. First suppose that Cz has a bielliptic involution 0. The involution ¢ induces an auto-
morphism A of the K-vector space HO(CK, Qc /) that satisfies A? = I. Moreover, A has a 1-
dimensional +1-eigenspace and a 2-dimensional —1-eigenspace since C/(o0) has genus 1. Thus
A? = ] and tr(A) = —1. Since C C ]P’% is the canonical embedding, we can make a choice of

isomorphism H%(Cz, Qeir) = K’ so that A can be identified with a matrix in M3(K) that induces
an action on the curve Cr. We thus have F(xA') = cF(x) for some nonzero ¢ € K since I(Cg)4

is spanned by F. We have ¢ = +1 since A?> = I. If ¢ = —1 and vA! = —v with v ¢ K3, then
F(v) = F(-v) = F(vA!) = —1 - F(v) and hence F(v) = 0. So if ¢ = —1, then Cg contains a
genus 0 curve by considering the —1-eigenspace of A. Since C has genus 3, we conclude that
F(xAl) = F(x).

Now suppose that there is a matrix A € M3(K) satisfying A% = I, tr(A) = —1 and F(xAf) = F(x).
The matrix A defines an automorphism o of Cy since it is invertible and satisfies F (xA!) = F(x).
We have 02 = 1 since A? = I. Since C C IP’QK is the canonical embedding, o acts on the K-vector
space H'(Cg, Qc %) and with an appropriate choice of basis it will act as cA for some nonzero
¢ € K. The matrix A is not scalar by the A2 = [ and tr(A) = —1 conditions, so ¢ induces a
nonscalar automorphism of H(Cg, 2,z) and hence o # 1.

We have a degree 2 morphism ¢: Cz — Cg/(0) =: C". Since C has genus 3 and is not
geometrically hyperelliptic, C’ has genus 1 or 2. Suppose that C’ has genus 2. From the Riemann-—
Hurwitz formula, ¢ is a covering, i.e., there is no ramification. By [Acc94, Lemma 5.10] this implies
that Cg; is geometrically hyperelliptic (the first step of the proof is to use ¢ to lift the hyperelliptic
involution of C’ to a new involution of Cf). Since C is not geometrically hyperelliptic, we deduce
that C’ has genus 1 and hence C is geometrically bielliptic. O

We can identify a matrix in M»(K) with a K-point of A?(. Let Z be the subvariety of A%{ whose
K-points correspond to matrices in Ms(K) that satisfy A% = I, tr(A) = —1 and F(xAl) = F(x).

By Lemma 6.2, Xg = C is geometrically bielliptic if and only if Z is nonempty. Checking that
Z is nonempty or not is something that is straightforward to check (at least in this case, directly
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checking for bielliptic involutions becomes infeasible for higher genus). Also Z is finite (one can
check that every K-point of Z corresponds to a different bielliptic involution of Cg).

6.3. Aside: smooth models. Assume that g > 4 and that X is not geometrically hyperelliptic;
this holds in the cases that remain.

We have d = (g 9 2) by Proposition 2.4(ii). Let W be the K-subspace of K|[xq,..., Xg]3 spanned
by x;Fj(xy, ..., xg) with 1 <i < gand1 <j < d By computing a basis for I(C)s over K as
in §3.6, we can find polynomials Hjy, ..., H, € K[xy,..., xg4]3 that give rise to a basis of I(C)s/W.
By Proposition 2.4(iv), we have r = 0 or r = g — 3. By Proposition 2.4(iii), the ideal I(C) of
Klxy,..., x4] is generated by the polynomials:

By scaling the F; and H; appropriately, we may assume that these polynomials all have coefficients
in (9K

We define G to be the closed subscheme of P%;l defined by the polynomials Fy, .. ., Fq,Hy, ..., H,.
We have Gx = C which is isomorphic to Xg since X is not geometrically hyperelliptic. For all
but finitely many prime ideals p of Ok, GOp will be a smooth proper curve over Op,. Whether this
holds for a particular prime ideal p can be checked using the Jacobian criterion for smoothness;
unfortunately this turns out to be much too slow for our application (which involves canonical
models of relatively large genus and hence many equations). The goal of this section is to explain
an alternate way to show that 8@p is a smooth curve over O.

Lemma 6.3. Let p 1 N be a nonzero prime ideal of Ox and let B be a nonzero prime ideal
of ZICN] = Ogey) that divides p. Assume that for each 1 < i < g, all the coefficients of

the q-expansion of f; are integral at 3 and let f; € Fylqn] be the power series obtained by

reducing the coefficients of the q-expansion modulo ‘B. For a polynomial F € Okl[x1, ..., xg), let
F e Fyplxy, ..., X4] be the polynomial obtained by reducing the coefficients modulo 3.
Assume that the following hold:
(@) fy,..., f, are linearly independent over Fyp,
(b) Fq,..., Fq is a basis for the Fy-vector space consisting of homogeneous polynomials

F € Fylxy, ..., x4] of degree 2 for which F(fy,..., fq) = 0.
(c) the Fyp-subspace W of Fylxy, ..., x4] spanned by x;Fj(xy, ..., xg), with 1 <i < g and
1 <j <d, has dimension dimg W.

(d) Hy,..., H, are linearly independent over Fys and W N (FgHy + - - + FgH,) = 0.
Then 6(9p is a smooth curve over Oy.

Proof. We claim that Gp,, C IP’%; is the image of the canonical map of some nice curve over Fy
of genus g that is not geometrically hyperelliptic. To prove the claim we may base extend so
that we are in the case where G C Sly(Z/NZ) and hence K = Q(¢y) and p = ‘.

After scaling the f; by suitable elements of Ox — p, we may assume without loss of generality
that that the g-expansion of each f; has coefficients in Z[¢y]. By Lemma 4.3(ii) we can view each
fi as an element of H(My, w®?) that is stable under the G-action. By using the isomorphism of
Lemma 4.3(ii), we can view each f; as an element of H(My, w*2) @z¢y 1/n Fyp = HO((MN)[F(B,w@Q)
that is stable under the G-action, where (MN)M = My xziey1/8) Fp. Since f; € So ¢ and My’
is étale, using (4.2) we can view f; as an element of HO(MN,Q}V[N) and f; as an element of

HO((MN)M, Q(iMN)%)' We have a natural homomorphism

(0¢]

d @d
@H%MNrQ]@\Q/IN) - @HO((MN)M'Q?VIN)%)
d=0 d=0
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of graded Z[(y, 1/NJ-algebras. Let I be the ideal of Fyplxy,..., xgj generated by homogeneous

polynomials F for which F(f,, ..., f4) = 0. We have have Fy, ..., Fgel,and Hy, ..., H, ¢ I.
From §4.4, we have a smooth proper curve Mg = G\My over Ox[1/N] with (Mg)g % Xg. Since

each f; is an element of H O((MN)M, Q(lMN)]F ) stable under the G-action, we can view fy, ..., fg as
2! N ¢
elements of HO((MG)M, Q(lMG)%)' Therefore, fy,..., fq is a basis of HO((M(;)M, Q(iMC;)%) over [y

since they are linearly independent by assumption (a) and since X, and hence also (Mg)r,,, has
genus g. Let C’ be the image of the canonical map

$: (Mo)ry, — P

arising from the basis fy,..., fq. The ideal I(C') C Fgplxy, ..., x4] corresponding to C" C P%;i

equals I. By assumption (b), Fy,..., Fq is a basis of I(C')y over Fy. Since d = (7,%), Proposi-
tion 2.4(ii) implies that (Mg)[pqB is not geometrically hyperelliptic and is thus isomorphic to C’. By
assumption (c), dimpy W = dimg W. We have dimg I(C)3 = dimp,, I (C")3 by Proposition 2.4(i).
Therefore, dimp,, I(C')s/W = dimg I(C)s/W = r. Thus by assumption (d) and g > 4, I(C')3/W
has basis Hy, ..., H,. By Proposition 2.4(iii), the ideal I(C’) is generated by the polynomials
Fi,..., Fq, Hy,..., H,. This proves that Gg,, = C" and the claim follows; B, is the image of the
canonical map for the nice curve (Mg)[g‘m of genus g.

We now prove the lemma. The Op-scheme Gy, C ]P%p_1 is projective and its generic fiber

Ck, = Gk, C IP’%;i is a nice curve of genus g over K, since Cx = Xg is not geometrically
hyperelliptic. From Proposition 2.4(i), one can show that the Hilbert polynomial of Gy, C ]P’%;l is

(29 —2)x —g+1. From the claim and Proposition 2.4(i), G, C P%;i is a nice curve over I, of genus
g whose Hilbert polynomial is (2g —2)x —g +1; this can be proved by base changing to Fy first. The
scheme Gy, is flat over O, by using that the Hilbert polynomials of the fibers agree [GW23, 23.155].
Therefore, Go, is smooth over O, since the fibers are nice curves [GW23, Corollary 1857]. We
conclude that 8(<)p is a smooth proper curve over O. O

To apply Lemma 6.3, we will use Proposition 4.4 to ensure that the coefficients of the g-
expansions of each f; is integral at a prime ideal B + N of Z[¢y]. The conditions in Lemma 6.3
are straightforward to check assuming enough terms of the g-expansions have been computed.
Note that Lemma 6.3 will apply to all but finitely many prime ideals p { N of Ok.

0.4. Genus at least 5 case. Assume that g > 5. We may assume that X is not geometrically
hyperelliptic since we have already dealt with this case.

Suppose that the ideal I(C) is not generated by I(C)y; whether this holds can be checked by
§3.6.2 and Proposition 2.4. By Proposition 2.4, (Xg)z is trigonal or is isomorphic to a smooth
plane quintic. Therefore, X is not geometrically bielliptic by Lemma 2.5.

So we may now assume that I(C) is generated by I(C)y. We already have a basis Fy, ..., Fq
of I(C)y over K. By scaling the F;, we may further assume that each F; is an element of
(9;{[1?1 ..... Ig}.

We define G to be the closed subscheme of IP’%;1 defined by the polynomials Fi, ..., Fq. We
have G = C which is isomorphic to Xg since X is not geometrically hyperelliptic. For each
1 <i < d, define the polynomial

DBi(xy, ..., Xg, ¥, yg)i=Filet +y1, ..., xg +¥g) — Filx1, ..., xg) — Filyr, ..., Yg)
in Oglxy, ..., Xg, Y1, Ygq]. Since F; is homogeneous of degree 2, we find that the polynomial
Dbi(xy, ..., Xg, Y1, Yg) is homogeneous of degree 2 in all the variables and also homogeneous

of degree 1 in just the variables (xy, ..., xg) (or (y1,..., Yg))-
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when viewed as polynomials over xi,..., xXg as we vary over all 1 < i < j < d; note that
the polynomials in Okly1,..., yg) obtained are all homogeneous. We may view G and Z as

-1
subschemes of the same IP’(%K .

Lemma 6.4.
(i) There is a bijection between the bielliptic involutions of G and the set Z(K) — G(K). In
particular, the curve Gk is geometrically bielliptic if and only if Z(K) —G(K) is nonempty.
(ii) Let p be a nonzero prime ideal of Ok for which G, is a smooth proper curve over Oy.
If Z(F,) — G(Fy) is empty, then Gk is not geometrically bielliptic.

Proof. First consider any bielliptic involution o of Gz. By Proposition 2.6(i), there is a unique
a € P9-1(K) — B(K) such that the projection

m Py s P
centered at a defines a degree 2 morphism from Gz to a genus 1 curve that agrees with the

quotient map G — Gr/(0) composed with an embedding. Take any b € G(K) except for the
finite number of points for which the line ¢, between a and b is tangent to G (equivalently, the

points where the degree 2 morphism is ramified). We choose lifts of a and b to K7 - {0} which
we also denote by a and b, respectively. The line ¢, intersects Gz at exactly two distinct points,
so there is a unique t € K — {0} for which we have F(ta + b) = 0 for all 1 < i < d. We have

0= Fi(ta + b) = Pl-(ta,b) + Fl(ta) + Fl<b) = tPi(a, b) + fQFi<Cl) +0

and hence tF;(a) + P;(b,a) = 0. Since t is nonzero, we have

64) Fila)Py(b,a) - Fila)P(b,a) = 0

forall 1 <i < j <d and all but finitely many b € G(K). Therefore,

(6.2) Fi(a)Pj(x,a) — Fjla)Pi(x,a)

is a polynomial in K[xq,..., x4] that lies in I(C); @k K. Since I(C); = 0, the coefficients of (6.2)

are all 0. This proves that a lies in Z(K) and we already have a ¢ G(K).

We have just described an injective map f from the set of bielliptic involutions of Gz to the
set Z(K) — B(K). Now take any a € Z(K) — G(K). Since a ¢ G(K), there is a 1 < j < d such that
Fjla) £ 0. Take any b € B(K). We choose lifts of a and b to K? - {0} which we also denote by
a and b, respectively. By excluding finitely many b, we shall further assume that P;(b,a) + 0.
Define t = —Pj(b,a)/Fjla) € K — {0}. The equation (6.1) holds for all 1 < i < d since a lies in
Z(K). Therefore, t is the unique value for which tFj(a) + P;(b,a) = 0 holds for all i. Like above,
we have Fj(ta + b) = tP;(a, b) + t?Fi(a) and hence F;(ta + b) = 0 for all i. We deduce that the line

O in P%"i through a and b intersects G at precisely two points. So projection from a defines
a morphism Gz — IP’%_2 which gives a degree 2 morphism m: Gz — C’ for a curve C’ over K.
By Proposition 2.6(ii), C’ has genus 1. We have f(0) = a, where o is the involution of G arising

from sr. This proves that f is a bijection which proves (i).
We will now prove (ii). Assume that Gg, is a smooth proper curve over O,. The curve G, C

P%p_i is smooth, has genus g and degree 2g —2, and is hence a canonical curve. Suppose that Gk is
geometrically bielliptic. Using Proposition 2.8, one can show that G, is geometrically bielliptic.

By Proposition 2.6(i), there is an a € P9~'(F,) — G(F,) such that the projection P%“i - IP%_Q
P P
centered at a defines a degree 2 morphism from GFP to a genus 1 curve. An identical argument
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as above shows that a lies in Z(F,) — G(F,). So if Z(F,) — G(F,) is empty, then Gk cannot be
geometrically bielliptic. O

The set Z(K) — G(K) is finite by Lemma 6.4(i) since a curve of genus at least 2 has only finitely
many automorphisms. Moreover, Lemma 6.4(i) implies that C = Gk is geometrically bielliptic
if and only if Z(K) — G(K) is nonempty. Since the set Z(K) — B(K) is finite, the quasiprojective
variety W := Zx — Bk is closed and is either empty or has dimension O.

We proceed by considering several nonzero prime ideals p of Ok for which G, is a smooth
proper curve over O,. Such primes can be found by making use of the approach from §6.3.
Define the quasiprojective variety

W := Tr, — G, CPE .

If W, is empty, then Lemma 6.4(ii) implies that C is not geometrically bielliptic.

Suppose that W, is nonempty. Since Z(K) — G(K) is finite, we may assume that W, is a closed
subvariety of dimension 0 by excluding a finite number of p. Consider one of the finitely many
closed points of W,; it gives a point a € W,(F) for some finite extension F of F,. We have
a € Z(F) and a ¢ G(F). There is a finite extension of K, whose ring of integers R has residue
field F; the ring R is Henselian. Using the defining equations for %, we can then check if a lifts
uniquely to a point a’ in Z(R); note that we do not need to compute a’. Now suppose we have
proved the existence of a point a’ € Z(R) as above; we have a’ ¢ G(R) since a ¢ G(F). We thus
have a point a’ in W and hence a’ can be defined over K since W has dimension at most O.
Therefore, Z(K) — G(K) is nonempty and C = Bk is geometrically bielliptic.

By considering more and more nonzero prime ideals p of Ok, this process will eventually
determined if C is geometrically bielliptic or not. We could also try to check if Z(K) — G(K) is
nonempty directly but the computations are significantly faster over finite fields. When g > 6,
Theorem 2.2 implies that C has at most 1 bielliptic involution and hence W is empty or consists
of a single point.

6.5. Genus 4 case. Assume that g = 4. We may assume that X is not geometrically hyperelliptic
since we have already dealt with this case. By Proposition 2.1(iii), we deduce that X has geometric

gonality 3.
We can compute a basis of I(C)y over K which by Proposition 2.4(ii) consists of a single
polynomial F € K|xq,..., X4]o. By Proposition 2.4(iii) and (iv), there is a single polynomial H €

Klxy,..., x4]3 such that the ideal I(C) is generated by F and H. By scaling F and H, we may
assume that they have coefficients in Ox. We define G to be the closed subscheme of IP’%:
defined by the polynomials F and H. We have G = C which is isomorphic to X since X is
not geometrically hyperelliptic.

With x = (xq,..., x;)andy = (yq,..., v.), we have polynomials P, Q, R € Ok[xy, ..., X4 ¥, A
such that

Flx +y) = Flx)+ Plx,y) + Fly) and H(x +y)= H(x)+ Qlx,y) + R(x,y) + H(y),

where Q(x,y) and R(x,y) are homogeneous polynomials of degree 3 that are homogeneous of
degree 2 and 1, respectively, in just the variables xq, ..., x;. The polynomial P(x,y) is homoge-
neous of degree 2 and homogeneous of degree 1 in just the variables x4, ..., Xy

Lemma 6.5. Let L be the field K or a field Fy, where p is a nonzero prime ideal p for which G, is

a smooth proper curve over O,. Take any pointa < PY ~YL) - G(L) and choose a representative
aeL? - {0} Let
-2
¢Z @E — P‘%

be the projection from the point a.
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(i) Suppose that F(a) # 0. Then ¢ has degree 2 if and only if P(x,a) + 0 and
P(x,a)’H(a) — P(x,a)F(a)R(x,a) + Fla)*Qlx,a)

is a scalar multiple of F in L[xy, ..., x;]. If ¢ has degree 2, then ¢ is ramified exactly at
the points in G; for which P(x,a) vanishes.

(ii) Suppose that F(a) = 0, that H(a) + 0 and that Q(x,a) is not a scalar multiple of F in
Llxy,..., x;). Then ¢ has degree 2 if and only if P(x,a) = 0 and

R(x,a)* — 4H(a)Q(x,a)

is a scalar multiple of F.
(iii) Suppose that F(a) = 0, that H(a) + 0 and that Q(x,a) is a scalar multiple of F in
Llxy,..., x;). Then ¢ has degree 2 if and only if P(x,a) = 0 and R(x,a) + 0.

Proof. When L = Fy, G, C P%;i is a nice curve of genus g and degree 2g — 2, and is hence a
canonical curve. Thus for the ideal I of G;, I1 = 0 and Iy is generated by the image of I. Since
Gt is a canonical curve, the morphism ¢ is nonconstant.

Take any b € B(L) except for the finite number of points for which the line ¢; between @ and

b is tangent to b in G;. Choose a lift of b € [ [0} of b. For t € L, we have F(b + ta) =
F(b) +tP(b,a) + t?F(a) = tP(b,a) + t*F(a) and H(b + ta) = H(b)+ tQ(b,a) + t*R(b,a) + t°H(a) =
tQ(b,a) + t?R(b,a) + t3H(a). The line ¢; intersects Gy at a point that is not b if and only if there
ateL - {0}with F(b + ta) = 0 and H(b + ta) = 0; equivalently, we have a t € L — {0} such that

(6.3) tF(a) + P(b,a) =0
and
(6.4) t?H(a) + tR(b,a) + Q(b,a) = 0.

Suppose that F(a) # 0. Then ¢; intersects Gy at a point that is not b if and only if P(b,a) # 0
and P(b,a)?H(a) — F(a)P(b,a)R(b,a) + Fla)*Q(b,a) = 0 (solve for t in (6.3) and then substitute
into (6.4)). In particular, this implies that ¢! (b) has cardinality at most 2 for all but finitely many
b € B(L) and hence has degree at most 2. The morphism ¢ has degree 2 if and only if P(x,a) ¢
and P(x,a)?H(a) — Fla)P(x,a)R(x,a) + F(a)*Qlx,a) € I,. When ¢ has degree 2, from the above
computations we find that the points in Gy for which ¢ is ramified are precisely those for which
the linear equation P(x,a) vanishes.

We shall now assume that F(a) = 0. We must have H(a) + O since a is not in G;. For ¢ to
have degree greater than 1, we need P(x,a) € I; by (6.3). So we may assume that P(x,a) = 0
since I} = 0.

Suppose that Q(x,a) ¢ I,. So for all but finitely many b € G(L), we have Q(b,a) # 0 and
hence t = 0 is not a root of (6.4). Therefore, ¢ is a morphism of degree 2 if and only if
R(x,a)* — H(a)Q(x,a) is in I, (this is needed so that (6.4) has one repeated root as a polynomial
in t).

Suppose that Q(x,a) € I,. Then (6.4) has two roots t = 0 and t = —R(b,a)/H(a). Therefore, ¢
is a morphism of degree 2 if and only if R(x,a) ¢ L.

The lemma is now immediate since I} = 0 and I, is spanned by F. ]

Consider a fixed prime ideal p N of Ok for which Gy, is a smooth proper curve over O,.
Such primes can be found by making use of the approach from §6.3.
With L = F,, we can then determine whether there is an a € Fg — {0} for which projection

by its image a € P9 *1(Fp) defines a degree 2 morphism

- g—2
¢: 8le — PJFP
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and a ¢ S(Fp). Indeed, we need only check the three cases of Lemma 6.5. For the three cases of
Lemma 6.5, the condition for ¢ to have degree 2 is equivalent to a being the Fp—poin’[ of a certain
Ok-scheme 751, T and 753, respectively, that do not depend on p.

First suppose that we find that (Z?i)]pp is empty for all 1 < i < 3. Then there is no projection
from a point a € P9 ‘1@3) — B(F,) that defines a degree 2 morphism of GFp. Since Gﬁp - P%;i is
a canonical curve, Proposition 2.6(i) implies that GR is not bielliptic. So G, is not geometrically
bielliptic and hence C = Gk is not geometrically bielliptic by Proposition 2.8(ii). We deduce that
Xg = C is not geometrically bielliptic.

Suppose that (Z4)r, is nonempty. There is a point @ € Z4 (F) for some finite extension F C F,
of Fy. Choose a lift a € FY ~1 — [0}. There is a finite extension L of K, whose ring of integers
R has residue field F; the ring R is Henselian. Using the defining equations for %51, we can then
check if @ lifts uniquely to a point a’ in Z(R); note that we do not need to compute a’. Now
suppose further that the hyperplane P(x,a) = 0 intersects G, at 6 distinct points (this is the
generic behavior since @p, has degree 2g —2 = 6). Suppose that the Hensel lift a’ exists and that
moreover the 6 points above lift unique to points in G(R) that lie in the hyperplane P(x,a’) = 0.
Using Proposition 6.5(i), we find that the projection ¢: G; — ]P’Q{1 from a’ defines a morphism of
degree 2 for which at least 6 points ramify. Since G; = (Xg); is not hyperelliptic, the Riemann—
Hurwitz formula implies that ¢(3;) has genus 1 and hence G; is bielliptic. Therefore, X is
geometrically bielliptic.

If (Zo)r, or (Zs)r, are nonempty, then there are similar arguments to lift their points and see if
it proves that X is geometrically bielliptic. We do not the give the details since they are similar
and since these cases never arose in our actual computations!

By considering enough primes p 1 N, the above arguments will sufficient to determine whether
X is geometrically bielliptic (this can be deduced from Proposition 2.6(i) and Lemma 6.5).

7. CLASSIFICATION FOR CONGRUENCE SUBGROUPS OF GENUS AT MOST 24

In the section, we proof the classification of Theorem 1.1 when restricted to congruence
subgroups of genus at most 24. In particular, we verify all of Table 1.1 except for the last column.
Magma code for this process can be found in [Zyw25].

Cummins and Pauli [CP0O3] have given a complete classification of all congruence subgroups
I' of SLy(Z) with —I € T', up to conjugacy in GLg(Z), for which Xr has genus at most 24. Note
that the isomorphism class of the curve Xr does not change if we replace I' by a conjugate in
GLo(Z).

There is a slight difference between conjugacy in GLy(Z) and SLy(Z) that needs to be taken into
account for the values in Theorem 1.1 and Table 1.1. Define A = ( ! ¥); it is a representative of
the nonidentity coset GLo(Z)/ SLo(Z). If I and AT'A~! are conjugate in SLy(Z), then the congruence
subgroups conjugate to I in SLy(Z) and GLy(Z) agree. If ' and AT A~! are not conjugate in SLy(Z),
then a congruence subgroup conjugate to I" in GLy(Z) is conjugate to either I or AT A~! in SLy(Z).

We now fix one of the finitely many congruence subgroups I' of SLy(Z) containing —I that
are in the Cummins—Pauli classification. Let 41 be the finite set of congruence subgroups I'’ for
which I C I'" C Sly(Z). Let g be the genus of X, D the index of ' in SLy(Z), and N the level of
r.

We can deal with the congruence subgroups ordered by increasing index in SLo(Z). In partic-
ular, for a group I € ér we will know if the gonality of X is 1, 2, 3 or at least 4; we will also
know whether or not Xr- is bielliptic.

The curve Xr has gonality 1 if and only if g = 0. If g = 0, then Xr is not bielliptic. If g = 1,
then Xr has gonality 2 and it is bielliptic. So we need only consider the cases where g > 2.
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7.1. Choice of models. For some I', we will need to choose a model of Xt defined over a
number field. We can choose a subgroup G C GLy(Z/NZ) with [GLo(Z/NZ) : G] minimal for
which G N SLy(Z/NZ) agrees with I' modulo N. The modular curve X is defined over the
number field Kg = Q(CN)de“G). Recall that (Xg)c and Xr are isomorphic curves over C. The
reason for taking [GLo(Z/NZ) : G] minimal is so that Kg has relative small degree. For the
groups G we will need to consider throughout §7, [Kg : Q] turns out to be a power of 2 that is at
most 16.

7.2. Gonality 2 classification. We now determine whether Xr has gonality 2. The curve Xr has
gonality 2 when g = 2 so we may assume that g > 3. If Xt has gonality 2, then Corollary 5.2(i),
implies that D < 201 and that D < 191 when N < 226.

So we need only consider the cases where D < 201 or D < 191 when N < 226. By Theo-
rem 5.4(i), we may assume further that D < 24(p” +1)/(p —1) for all primes p { N since otherwise
Xr does not have gonality 2. We may assume that X has gonality at most 2 for all I’ € Gr since
otherwise Xr does not have gonality 2 by Proposition 2.1(iv).

If there is a ['" € Gr for which [[": '] = 2 and X has genus 0O, then the morphism Xr — X
implies that X1 has gonality 2; we may thus assume that no such I/ exists. Take any I’ € Gr. If
Xr has gonality 2, then the Castelnuovo-Severi inequality (Theorem 2.2), with the hyperelliptic
map of Xr and the morphism Xr — X, gives

(7.1) g<[I":Tlg"+(I'":T]-1),

where g’ is the genus of Xp. So we may assume that (7.1) holds for all I'" € Gr since otherwise
Xr does not have gonality 2.

Finally if the above methods are inconclusive, we can determine if Xt has gonality 2 by
applying the methods of §3.6.1 to Xg with a group G as in §7.1. In our computation, we needed
to use this direct approach 455 times.

7.3. Gonality 3 classification. We now determine whether Xr has gonality 3. Using §7.2, we may
assume that Xr has gonality at least 3. If X has gonality 3, then Corollary 5.2(ii), implies that
D < 302 and that D < 287 when N < 226.

So we need only consider the case where D < 302 or D < 287 when N < 226. By Theo-
rem 5.4(ii), if g > 5, then we may assume further that D < 36(p® + 1)/(p — 1) for all primes p { N
since otherwise X1 does not have gonality 3. We may assume that X has gonality at most 3 for
all I'" € Gr since otherwise Xr does not have gonality 3 by Proposition 2.1(iv).

If there is a I'" € Gr for which [['": '] = 3 and X has genus 0O, then the morphism Xr — Xy~
implies that Xr has gonality 3; we may thus assume that no such I'” exists. Take any I € Gr. If
Xr has gonality 3, then the Castelnuovo-Severi inequality (Theorem 2.2), with the hyperelliptic
map of Xr and the morphism Xr — X/, gives

(7.2) g <[I:T)g + 2 :T] —1),

where g’ is the genus of Xp. So we may assume that (7.2) holds for all I'” € Gr since otherwise
Xr does not have gonality 3.

Finally if the above methods are inconclusive, we can determine if Xr has gonality 3 by
applying the methods of §3.6.2 to X with a group G as in §7.1. In our computation, we needed
to use this direct approach 988 times.

7.4. Bielliptic classification. We now determine whether Xr is bielliptic.

If Xr is bielliptic, then X has gonality at most 4. By Corollary 5.2 we may assume that D < 403
and that D < 383 when N < 226 since otherwise Xt has gonality at least 5. By Theorem 5.4(iii),
if g > 6, then we may assume further that D < 24(p? + 2p + 1)/(p — 1) for all primes p { N since
otherwise Xr is not bielliptic.
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For any I € 41, we have a morphism Xr — Xp.. So if Xr is bielliptic, then X has gonality at
most 2 or is bielliptic for all IV € €T by Lemma 2.5(iii). We can thus assume that X has gonality
at most 2 or is bielliptic for all I € €t.

If there is a I'" € Gr for which [[": '] = 2 and X has genus 1, then the morphism Xr — Xy~
implies that Xt is bielliptic; we may thus assume that no such I'" exists. Take any [/ € Gr. If
Xr is bielliptic, then the Castelnuovo-Severi inequality (Theorem 2.2), with a bielliptic map of Xr
and the morphism Xr — X, gives

(7.3) g<[I:Tlg +2+(I':T]-1),

where g’ is the genus of Xr.. So we may assume that (7.3) holds for all ' € Gr since otherwise
Xr is not bielliptic.

Finally if the above methods are inconclusive, we can determine if Xt is bielliptic by applying
the methods of §6 to X with a group G as in §7.1. In our computation, we needed to use this
direct approach 1324 times.

8. PROOF OF THEOREM 1.1

In §7, we proved the part of the classification in Theorem 1.1 that concerns congruences
subgroups ' for which Xt has genus at most 24. This constraint on the genus arises from our
use of the classification of low genus congruence subgroups due to Cummins and Pauli [CP03].

Suppose that there is a congruence subgroup I' of SLy(Z) containing —I for which Xr has
genus g > 25 and X1 has gonality at most 3 or is bielliptic. To complete the classification, we
need to obtain a contradiction. We may assume that our I" was chosen with [SLy(Z) : I'] minimal.
Let N be the level of I" and let D be the index of I" in SLy(Z).

Let Ny be the largest power of 2 that divides N and define Ny := N/Nj. For each i € {1,2], let
H; C SLy(Z/N;Z) be the image of I" modulo N;. Let I'; be the congruence subgroup consisting
of matrices in SLy(Z) whose image modulo N; lies in H;. Let M; be the level of I';; it divides Nj.

Lemma 8.1. Assume that N is even.
(i) We have D = m[SLy(Z) : T'g] for some integer m of the form 2° or 2°3 with e > 0.
(ii) Every prime p > 3 that divides N also divides Mo.
(iii) Suppose 3t My. The integer D is divisible by 6 - [SLo(Z) : I's]. The index of the image of
I modulo 6 in SLy(Z/67Z) is divisible by 6 and the image of I" modulo 2 is not SLy(Z/27Z.).
(iv) If D = 3[SLy(Z) : I's), then I'y has level 2 and [SLo(Z) : T'4] = 3.

Proof. Let H C SLo(Z/NZ) be the image of I' modulo N. We have a natural injective homomor-
phism H < Hy x Hy, that we can view as an inclusion, such that the projection maps p;: H — H;
are surjective. Let By and By be the normal subgroups of Hy and Hy, respectively, for which
ker(po) = By x {1} and ker(py) = {1} x By. In particular, we may view By x By as a subgroup of H.
By Goursat’s lemma [Rib76, Lemma 5.2.1], the image of H in (Hy x Hy)/(By x By) = Hy/B1 x Hy/By
is the graph of an isomorphism H;/By — Hy/By. We can view H/(By x Bp) as an index |Hy/B;|
subgroup of (Hy x Hy)/(By x Bg) and hence |H| = |Hy||Hg|/|H1/Byi| = |Bi||Hz|. Therefore,
D = [SLo(Z/NZ) : H] = [SLo(Z/N1Z) : B1][SLo(Z/NoZ) : Ho] and hence
(81) D = [SLo(Z/N1Z) : By] - [SLo(Z) : T's).
This proves (i) since |SLo(Z/N1Z)] = 2°3 for some e > 1. The group Hj is solvable since
SLo(Z/2™7) is solvable for all m > 1. Therefore, Hy/By = Hy/By is solvable.

Consider any odd prime p that divides N but does not My. Let p® > 1 the largest power of
p that divides Ny and define N := Na/p®. Since p t My, we have Hy = Hj x SLo(Z/p°®Z) with
a subgroup H, C SLo(Z/N,Z). From our description of H from Goursat’s lemma and from I'
having level N, we obtain a nontrivial homomorphism

@: SLy(Z/p°Z) = {1} x SLo(Z/p°Z) C Hy — Hy/By => Hy/By.
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Suppose that p > 3 and hence the group SLo(Z/p°Z) is equal to its own commutator subgroup,
cf. [Zyw10, Lemma A.1]. So ¢(SLy(Z/p®Z)) is a nontrivial subgroup of Hy/B;y that is equal to
its own commutator subgroup which contradicts that Hy/B; is solvable. This proves (ii). We
now have p = 3 and 3 1 Mz. The maximal abelian quotient of SLy(Z/3°Z) is cyclic of order 3,
cf. [Zyw10, Lemma A.1]. Since ¢ is nontrivial and Hy/B; is solvable, we deduce that H;/B; has a
normal subgroup of index 3. Let W; be the image of Hy modulo 2. The kernel of the reduction
modulo 2 homomorphism Hy — W is a 2-group and hence W; contains a normal subgroup of
index 3. Since SLy(Z/27) = Ss, this implies that W is the unique subgroup of SLy(Z/27Z) of order
3. Since Hy/Bj has order divisible by 3, this implies that By has trivial image modulo 2. We thus
have a surjective homomorphism

@: SLo(Z/3°7) % Hy /By — Wy

obtained by composing ¢ with reduction modulo 2. The maximal abelian quotient of SLo(Z/3°Z)
is cyclic of order 3 and factors through SLy(Z/37Z), cf. [Zyw10, Lemma A.1], and hence ¢ factors
through a surjective homomorphism @: SLo(Z/3Z) — W;. From our description of H in terms
of Goursat’s lemma, we find that the image of H modulo 6 lies in the group

[(A1, Ag) € SLo(Z/I27Z) x SLo(ZI3Z) : §'(Ag) = Ay},

where we have made an identification SLy(Z/6Z) = SLo(Z/27) x SLo(Z/37Z). This proves that the
image of H modulo 6 lies in an index 6 subgroup of SLy(Z/67Z) and that the image of H modulo
2 is not SLy(Z/2Z). Since By is the trivial group modulo 2, (8.1) implies that | SLo(Z/27Z)|[SLo(Z) :
I'g] = 6[SLy(Z) : I'g] divides D. This completes the proof of (iii).

We will now prove (iv). Suppose that D = 3[SLy(Z) : I's]. By (8.1), we have [SLo(Z/N1Z) : By] = 3.
This implies that the image of By in SLo(Z/27Z) has order 2 and that By contains all A € SLy(Z/N1Z)
with A = I (mod 2). Since By is a normal subgroup of Hj, we find that Hy modulo 2 equals By
modulo 2 (since SLy(Z/N1Z) does not have a normal subgroup of index 3 by [Zyw10, Lemma A.1]).
From these properties, we deduce that I’y has level 2 and that its image modulo 2 has cardinality
2. This proves (iv). O

8.1. Gonality 1 and 2 cases. We know that X does not have gonality 1 since g > 25 > 0.
Suppose that Xr has gonality 2. Corollary 5.2(i) implies that D < 201. Equation (3.1) implies
that g <1+ D/12 <1 + 201/12 < 18. Since g > 25, we deduce that X1 does not have gonality 2.

8.2. Gonality 3 case. Suppose that X has gonality 3.
Lemma 8.2. We have 294 < D <302, N = 0 (mod 30), and g = 25.

Proof. We have D < 302 by Corollary 5.2(ii). Since Xr has a cusp, (3.1) implies that g < 1 +
D12 —1/2 <1+ 302/12 —1/2 < 26. We have g = 25 since g > 25 by assumption. We have
D > 294 since otherwise (3.1) implies that g < 1 + 293/12 — 1/2 < 25. The integer N is divisible
by every prime p < 5 since otherwise D < 36(p® +1)/(p —1) < 294 by Theorem 5.4(ii). Therefore,
N is divisible by 30. O

By Lemma 8.1(ii) and Lemma 8.2, the level My of I'y is an odd integer that is divisible by 5.
We have I" C ', where equality does not hold since the level N of " is even. Since g = 25, the
genus of the modular curve Xr, is at most 24. Proposition 2.1(iv) with the morphism Xr — Xr,
implies that Xr, has gonality at most 3. By Lemmas 8.1(i) and 8.2, we have D = m[SLy(Z) : I'9]
and 294 < D < 302, where m is not divisible by any prime p > 3 and can only be divisible by 3
once. Also when 31 My, the level D will be divisible by 6[SLo(Z) : I'9] by Lemma 8.1(iii).

We now check which groups I's in our explicit classification of all congruence subgroups
containing —I with gonality at most 3 and genus at most 24 have all the above properties. There
turns out to be a unique possibility for I's up to conjugacy in GLy(Z); it has label 25E* in the
classification of Cummins—Pauli. We can characterize I'y, up to conjugacy in GLy(Z), as the
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unique congruence subgroup containing —I with level 25 and index 50 in SLg(Z) such that Xr,
has genus 2.

Let I's be the congruence subgroup of SLy(Z) consisting of matrices whose image modulo 6
lies in the image of I' modulo 6. Since Iy and '3 have relatively prime levels, the intersection
I'o N T'3 is uniquely determined up to conjugacy in GLo(Z), and

[SLo(Z) : To N T's] = [SLa(Z) : T'9][SLa(Z) : I's] = 50[SLg(Z) : T's].

Lemma 8.1(iii) implies that [SLy(Z) : I's N I's] is divisible by 50 - 6 = 300. From the inclusion
I' € 'y N I's, we find that 300 also divides D. We thus have D = 300 since 294 < D < 302 and
this implies that I' = I'o N I'3. The integer N divides 6-25 = 150 since I' = I'o N I'3. Since Xt has
gonality 3 and N < 150, Corollary 5.2(ii) implies that D < 287 which contradicts D = 300.

8.3. Bielliptic case. Finally suppose Xr is bielliptic.
Lemma 8.3. We have 294 < D < 403 and N = 0 (mod 210).

Proof. From the previous cases, we know that Xt has gonality at least 4. Since Xr is bielliptic, it
has gonality at most 4. Thus Xr has gonality 4 and hence D < 403 by Corollary 5.2(iii). We have
D > 294 since otherwise (3.1) implies that g < 1 + 293/12 —1/2 < 25.

The integer N is divisible by every prime p < 7 since otherwise D < 24(p?+2p+1)/(p—1) < 294
by Theorem 5.4(iii). Therefore, N is divisible by 210. O

We have I C I'y, where equality does not hold since the level N of I" is even by Lemma 8.3. By
the minimality of our choice of I' and Lemma 25(iii), Xr, has gonality at most 2 or is bielliptic,
and Xr, has genus at most 24.

By Lemmas 8.1(ii) and 8.3, the level My of I'y is divisible by 35. By Lemmas 8.1(i) and 8.3, we
have D = m[SLy(Z) : '] and 294 < D < 403, where m is not divisible by any prime p > 3 and
can only be divisible by 3 once. Also when 3 { My, the level D will be divisible by 6[SLo(Z) : I's)
by Lemma 8.1(iii).

We now check for all groups I'y as above in our explicit classification of congruence subgroups
containing —I for which Xr has genus at most 24 and Xt has gonality at most 2 or is bielliptic.
There turns out to be a unique possibility for I'y up to conjugacy in GLy(Z); it has label 10540 in
the classification of Cummins—Pauli. We can characterize I'y, up to conjugacy in GLy(Z), as the
unique congruence subgroup containing —I with level 105 and index 120 in SLy(Z) such that Xr,
has genus 10.

Since [SLy(Z) : T'g] = 120 divides D and 294 < D < 403, we have D = 360 = 3[SLy(Z) : T'o].
Lemma 8.1(iv) implies that Iy has level 2 and [SLo(Z) : '] = 3. Since 'y and 'y have relatively
prime levels, I'1 N I'y has level 2-105 = 210 and [SLy(Z) : Ty N T'g] = 3-120 = 360. We have
' = I'y N T’y since we have an inclusion I' C I'y N 'y and both groups have index 360 in SLy(Z).
In particular, N = 210 and D = 360. Since Xr is bielliptic, Theorem 5.4(iii) with p = 11 implies
that D < 346 which contradicts D = 360.
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