
CLASSIFICATION OF MODULAR CURVES WITH LOW GONALITY

DAVID ZYWINA
ABSTRACT. A congruence subgroup Γ of SL2(Z) acts on the complex upper half-plane via linearfractional transformations and the quotient gives rise to a Riemann surface. After adding cusps,we obtain a smooth compact Riemann surface which corresponds to a smooth projective curve XΓdefined over C. We give a complete classification of the congruence subgroups Γ for which XΓhas gonality 1, 2 or 3. We also give a complete classification of the congruence subgroups Γ forwhich the curve XΓ is bielliptic. The key ingredients are explicit gonality bounds and algorithmsfor computing models of modular curves over number fields.

1. INTRODUCTIONLet C be an algebraic curve defined over a field k. Assume that C is nice, i.e., it is smooth,projective and geometrically integral. The gonality of C , which we denote by gon(C), is theminimal degree of a nonconstant morphism C → P1
k . The geometric gonality of C is the gonalityof the base extension CL of C to L, where L is any algebraically closed field containing k. We saythat C is bielliptic it has a degree 2 morphism to an elliptic curve. We say that C is geometrically

bielliptic if CL is bielliptic, where L is any algebraically closed field containing k. An elliptic curvehas gonality 2 and hence a bielliptic curve has gonality at most 4.1.1. Modular curves over C. The group SL2(Z) acts by linear fractional transformations on thecomplex upper half-plane H and the extended upper half-plane H∗ = H ∪ Q ∪ {∞}.Let Γ be a congruence subgroup of SL2(Z). The quotient XΓ := Γ\H∗ is a smooth compactRiemann surface (away from the cusps and elliptic points use the analytic structure coming from
H and extend to the full quotient). We define the modular curve XΓ to be the nice curve over Cwith the same function field as XΓ. In particular, we can identify XΓ with XΓ(C) endowed withthe analytic topology. The curve XΓ does not change if we replace Γ by ±Γ, so we will oftenfocus on the case where Γ contains −I .Our main result gives a complete classification of the congruence subgroups for which thecurve XΓ has gonality at most 3 and for which the curve XΓ is bielliptic.
Theorem 1.1.(i) There are exactly 132, 524 and 489 congruence subgroups Γ ⊆ SL2(Z) with −I ∈ Γ, up

to conjugacy in SL2(Z), for which XΓ has gonality equal to 1, 2 and 3, respectively.(ii) There are exactly 1090 congruence subgroups Γ ⊆ SL2(Z) with −I ∈ Γ, up to conjugacy
in SL2(Z), for which XΓ is bielliptic.The actual congruences subgroups in the classification of Theorem 1.1 can be found in therepository [Zyw25]. The count of congruence subgroups in our classification broken up in termsof the genus of XΓ can be found in Table 1.1 (we exclude the gonality 1 case since XΓ has gonality1 if and only if it has genus 0).To prove Theorem 1.1 we make use of a gonality bound of Zograf that reduce the theoremto a finite, yet still very large, number of congruence subgroups. Using another gonality boundoriginating from the work of Ogg along with other constraints, like the Castelnuovo-Severiinequality, we are able to further reduce the number of congruence subgroups that need to be
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2 DAVID ZYWINA
genus 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ≥ 14gonality 2 0 187 177 99 12 34 2 6 1 3 0 3 0 0 0gonality 3 0 0 0 185 249 1 24 5 16 0 8 0 1 0 0bielliptic 0 187 132 267 173 179 21 79 5 23 18 4 0 2 0TABLE 1. Number of congruence subgroups Γ ⊆ SL2(Z) containing −I of a givengenus, up to conjugacy in SL2(Z), for which XΓ has gonality 2, gonality 3 or isbielliptic.

dealt with. The congruences subgroups for which the corresponding modular curve has genusat most 24 has been computed by Cummins and Pauli and we will make use of this classification.For many congruence subgroups Γ, we will need to compute an explicit model of XΓ anddirectly check if it has low gonality or directly check if it is bielliptic. Since we have to performexact computations, it will be preferable to compute a model over a number field instead of C.
1.2. Modular curves over number fields. Fix a positive integer N and fix the N-th root of unity
ζN := e2πi/N ∈ C. There is a group isomorphism (Z/NZ)× ∼−Ï Gal(Q(ζN )/Q), d 7Ï σd , where
σd(ζN ) = ζd

N . For concreteness, we will let Q be the algebraic closure of Q in C.Take any subgroup G of GL2(Z/NZ) containing −I . Define the number field KG := Q(ζN )det(G),i.e., the subfield of Q(ζN ) fixed by σd for all d ∈ det(G). In particular, KG = Q if and only ifdet(G) = (Z/NZ)×. Associated to the group G is a modular curve XG ; it is a nice curve definedover KG , cf. §3.4. When base extended from KG to C, we will have an isomorphism(XG)C ∼= XΓGof curves over C, where ΓG is the congruence subgroup of SL2(Z) consisting of those matriceswhose image modulo N lies in G . The geometric gonality of XG thus agrees with the gonality of
XΓG . Also the curve XG is geometrically bielliptic if and only if XΓG is bielliptic.Thus the classification of Theorem 1.1 describes when XG has geometric gonality 1, 2 or 3and describes when XG is geometrically bielliptic. The following is an immediate application ofour classification to quadratic points of a modular curve XG of sufficiently large genus.
Theorem 1.2. Let G be any subgroup of GL2(Z/NZ) containing −I for which the genus of XG
is at least 12 and not 13. Then the set

{P ∈ XG(Q) : [KG(P) : KG ] ≤ 2}

is finite.

Proof. Let g be the genus of XG ; equivalently, the genus of XΓG . Suppose that there are infinitelymany P ∈ XG(Q) for which [KG(P) : KG ] ≤ 2. Then [HS91, Corollary 3] implies that XΓG
∼= (XG)Cis hyperelliptic or bielliptic. Using the genera of the congruences subgroup in Table 1.1, wededuce that g ≤ 13 and g ̸= 12. The theorem follows since this contradicts the assumption on

g . □

When det(G) = (Z/NZ)× and hence KG = Q, we described how to compute an explicit modelfor XG in [Zyw22a]; this was used to make Serre’s open image theorem effective for non-CMelliptic curves over Q. We will extend the construction to general G . Code for computing modelsof XG can be found in [Zyw25]; this Magma code is also being used in the LMFDB database ofmodular curves [LMFDB]. Note that we are viewing XG as a geometrically irreducible curve over
KG (some might instead consider a modular curve corresponding to G to be defined over Q andnot necessarily geometrically irreducible).
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Let g be the genus of XG and assume that g ≥ 2. For our application to Theorem 1.1, we willneed to compute the image C of the canonical map

φ : XG → Pg−1
KG

.We will use that the curve XG has geometric gonality 2 if and only if C has genus 0. If XG doesnot have geometric gonality 2, we will show that XG has geometric gonality 3 if and only if C isnot cut out by homogeneous polynomials of degree 2 and C is not geometrically isomorphic toa smooth plane quintic. When XG does not have geometric gonality 2 and g ≥ 4, we will alsogive a geometric condition on C that checks whether XG is geometrically bielliptic.1.3. Some earlier results. There has been much earlier work on classifying modular curveswith small gonality with most attention being on the modular curves X0(N) and X1(N) which aredefined over Q.
Remark 1.3. Theorem 1.1 focuses on geometric gonality and being geometrically bielliptic; wenow observe that for genus large enough, this agrees for X0(N) and X1(N) with the analogousnotion over Q. Let X be one of the curves X0(N) or X1(N) for some positive integer N . The keyobservation is that the curve X is defined over Q and has a rational point at one of the cusps.Using this, we find that if X has genus at least 2, then X has gonality 2 if and only if it hasgeometric gonality 2, cf. [RX18, Theorems 1 and 2]. If X has genus at least 5, then X has gonality3 if and only if it has geometric gonality 3, cf. [RX18, Theorems 1 and 2]. If X has genus at least6, then one can show that X is bielliptic if and only if it is geometrically bielliptic, cf. Lemma 2.7.Here is a partial list of prior results.

• Ogg [Ogg74] classified the curves X0(N) that are hyperelliptic. The curve X0(N) is hyper-elliptic and has genus at least 2 for exactly 19 different N .
• Ishii and Momose [IM91] classified the hyperelliptic modular curves arising from a con-gruence subgroup Γ1(N) ⊆ Γ ⊆ Γ0(N) though also see [JK07].
• Hasegawa and Shimura [HS99] classified the curves X0(N) which have gonality 3. Jeonand Kim [JK07] show that there are no congruence subgroups Γ1(N) ⊆ Γ ⊆ Γ0(N) forwhich XΓ has genus at least 5 and gonality 3.
• Bars classified the curves X0(N) that are bielliptic [Bar99] (Harris and Silverman [HS91]had left a finite number of N to consider). The curve X0(N) is bielliptic and has genus atleast 2 for exactly 41 different N .
• Jeon and Kim [JK04] classified the curves X1(N) which are bielliptic.
• Jeon, Kim and Schweizer [JKS20] classified the bielliptic modular curves arising from acongruence subgroup Γ1(N) ⊆ Γ ⊆ Γ0(N).From our explicit classification in Theorem 1.1 and Remark 1.3, we can immediately recoverall the above results excluding the small genus cases where the equivalences in Remark 1.3 fail.Outside the scope of our theorem, Najman and Orlić [NO24] have classified the modular curves

X0(N) that have gonality 4, 5 and 6.1.4. Overview. In §2, we give some basic background on the geometry of curves. We recallsome results on gonality in §2.1. We review the canonical map in §2.2 which will be importantfor our methods of computing low gonalities. We give basic properties of bielliptic curves in§2.3. Proposition 2.6 shows that for a canonical curve the bielliptic morphisms have a geometricdescription. Proposition 2.8 implies that if a nice curve of genus at least 2 is geometricallybielliptic, then its reduction is geometrically bielliptic at all good primes; this gives a useful wayto show that a curve is not geometrically bielliptic by consider its reductions.Consider a subgroup G ⊆ GL2(Z/NZ) containing −I . In §3, we define our modular curve XGover the number field KG := Q(ζN )det(G). For each integer k ≥ 0, we define a finite dimensional
KG-vector space Mk,G that consists of certain modular forms of weight k. We define our curve
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XG to be Proj RG , where RG is the graded KG-algebra ⊕k≥0Mk,G . We shall describe how toexplicitly compute a basis for Mk,G by using Eisenstein series of weight 1. Finding bases forsome spaces Mk,G allow us to compute explicit models of XG . When XG has genus at least 2, thespace of cusp forms S2,G in M2,G will let us compute the image of the canonical map of XG .More background on modular curves is given in §4 where we discuss the moduli approach.In particular, this will extend XG to a smooth proper curve over OKG [1/N].In §5, we give explicit gonality bounds for the curves XΓ. Consider a congruence subgroupΓ of SL2(Z) that contains −I . Theorem 5.1 shows that the gonality of XΓ is strictly larger than32532768 [SL2(Z) : Γ]. In particular, if we only consider Γ for which XΓ has a fixed gonality, then theindex [SL2(Z) : Γ] is bounded and hence there are only finitely many such Γ. We also give animproved gonality bound when Γ has level at most 226 since we can make use of known casesof Selberg’s eigenvalue conjecture. We also give another explicit gonality bounds using ideas ofOgg and Poonen.In §6, we explain how one can computationally check if a modular curve XG is geometricallybielliptic or not.The main part of our classification is outlined in §7 where we prove the classification ofTheorem 1.1 and Table 1.1 when restricted to congruence subgroups of genus at most 24. Thisconstraint on the genus arises since we are using the classification of Cummins and Pauli of allcongruence subgroups of genus at most 24. Finally in §8 we complete the proof of Theorem 1.1by showing that there are no congruence subgroups Γ of genus at least 25 for which XΓ hasgonality at most 3 or XΓ is bielliptic.
1.5. Notation. For a number field K, let OK be its ring of integers. For a nonzero prime ideal pof OK , let Fp be the residue field OK/p. Let Kp be the p-adic completion of K and let Op be itsvaluation ring. For an R-scheme X and a (commutative) R-algebra R′, we denote X ×Spec R Spec R′by XR′ or X ×R R′.
1.6. Acknowledgements. Our algorithms are implemented in Magma [BCP97]; the code can befound in the public repository [Zyw25].

2. BACKGROUND ON CURVESIn this section, we collect background information on gonality and bielliptic curves.Let C be a nice curve of genus g defined over a perfect field k. Fix an algebraic closure kof k. We say that C is hyperelliptic if there is a nonconstant morphism C → P1
k of degree 2. Wesay that C is geometrically hyperelliptic if Ck is hyperelliptic. We say that C is trigonal if there is anonconstant morphism C → P1

k of degree 3.
2.1. Gonality. Recall that the gonality of C, which we denote by gon(C), is the minimal degreeof a nonconstant morphism C → P1

k . The geometric gonality of C is the gonality of Ck . The curve
C has gonality 1 if and only if C is isomorphic to P1

k . Therefore, C has geometric gonality 1 ifand only if g = 0. When g ≥ 1, C is hyperelliptic if and only if it has gonality 2.We now recall various properties of gonality.
Proposition 2.1.(i) If L is a field extension of k, then gon(CL) ≤ gon(C).(ii) If k is algebraically closed and L is a field extension of k, then gon(CL) = gon(C).(iii) If k is algebraically closed, then gon(C) ≤ ⌊g+32 ⌋.(iv) If C → C′ is a nonconstant morphism of curves over k, then gon(C′) ≤ gon(C).
Proof. See [Poo07, Appendix A]. □
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From Proposition 2.1(iii), C has geometric gonality 2 whenever the genus g is 1 or 2.The following theorem will be useful for ruling out various kinds of maps. For example when

g ≥ 2, it implies that there is at most one morphism C → P1
k of degree 2 (up to composition withan automorphism of P1

k).
Theorem 2.2 (Castelnuovo–Severi inequality). Let π1 : C → C1 and π2 : C → C2 be nonconstant
morphisms, respectively, where C1 and C2 are nice curves over k. Assume there is no morphism
π : C → C′ of degree > 1 through which both π1 and π2 factor. Then

g ≤ d1g1 + d2g2 + (d1 − 1)(d2 − 1),
where gi is the genus of Ci and di is the degree of πi .

Proof. See [Sti09, Theorem 3.11.3]. □

Proposition 2.3. Let K be a nonarchimedean local field of characteristic 0 with local ring R
and residue field F. Suppose that C is a nice curve of genus g ≥ 2 defined over K that has
good reduction, i.e., there is a smooth proper model C over Spec R with CK = C. Thengon(CF) ≤ gon(C).
Proof. See [Der12, Theorem 2.5]. Such a result is also asserted by Frey in the proof of [Fre94,Proposition 3] and is attributed to Deuring [Deu42]. □2.2. Canonical map. We now suppose that g ≥ 2. The k-vector space V := H0(C, ΩC/k) hasdimension g and gives rise to a morphism

φ : C → P(V )called the canonical map. The morphism φ has degree 2 when C is geometrically hyperellipticand is an embedding otherwise. The canonical ring of C is the graded k-algebra
R(C) := ∞⊕

d=0 H0(C, Ω⊗d
C/k).

Define the symmetric algebra Sym(V ) := ⊕∞
d=0 Symd(V ) and let φ : Sym(V ) → R(C) be thehomomorphism of graded k-algebras for which Sym1(V ) = V → V = R(C)1 is the identity map.Let I(C) ⊆ Sym(V ) be the kernel of φ. We have I(C) = ⊕∞

d=0 I(C)d and I(C)1 = 0.When we choose a basis of V , we can identify P(V ) with Pg−1
k , Sym(V ) with k[x1, . . . , xg ], and

I(C) with the homogeneous ideal in k[x1, . . . , xg ] corresponding to the curve φ(C) ⊆ Pg−1
k .

Proposition 2.4.(i) If C is not geometrically hyperelliptic, thendimk I(C)n = (n+g−1
n

)
− (2n − 1)(g − 1)

for all n ≥ 2.(ii) We have

dimk I(C)2 = {(g−12 )
if C is geometrically hyperelliptic(g−22 )
otherwise.(iii) Suppose C is not geometrically hyperelliptic. If g > 3, then the ideal I(C) is generated

by I(C)2 and I(C)3. If g = 3, then I(C) is generated by I(C)4 and dimk I(C)4 = 1.(iv) Suppose that C is not geometrically hyperelliptic and g > 3. Let W ⊆ I(C)3 be the image
of V ⊗k I(C)2 in I(C)3. Then the following are equivalent:

• Ck is trigonal or isomorphic to a smooth plane quintic,
• W ̸= I(C)3,
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• dimk I(C)3/W = g − 3.

Proof. Set R = R(C) and I = I(C), and let R≥1 be the irrelevant ideal of R. The Poincaré
polynomial of I is P(I ; t) = ∑∞

d=1 dimk(I/R≥1I)d · td . An explicit description of P(I ; t) can be foundin [VZB22, Table (Ia)] and is broken up into several cases. The proposition can be easily read offthis table. □2.3. Bielliptic curves. We say that C is bielliptic if there is a degree 2 morphism C → E , where
E is an elliptic curve over k. We say that C is geometrically bielliptic if Ck is bielliptic.
Lemma 2.5. Suppose that C is geometrically bielliptic.(i) If g ≥ 4, then C is not geometrically hyperelliptic.(ii) If g ≥ 5, then Ck is not trigonal.(iii) If C → C′ is a nonconstant morphism of nice curves, then C′ has geometric gonality at

most 2 or is geometrically bielliptic.(iv) If k has characteristic 0, then Ck is not isomorphic to a smooth plane quintic.

Proof. Parts (i) and (ii) are immediate consequences of Theorem 2.2. Part (iii) follows from[HS91, Proposition 1]. Part (iv) follows from [HKO08, Theorem 2.1]; we have the characteristic 0assumption since [HKO08] works implicitly over the complex numbers. □The following is presumably well-known but lacking a reference we give a proof.
Proposition 2.6. Suppose that C is not geometrically hyperelliptic. We may assume C ⊆ Pg−1

k
via the canonical map.(i) Suppose that g ≥ 4 and that there is a morphism π : C → C′ of degree 2, where C′ is

a nice curve of genus 1 over k. Then there is a unique point a ∈ Pg−1(k) not in C such
that the projection of Pg−1

k from the point a defines a morphism C → Pg−2
k that agrees

with π composed with an embedding C′ ↪Ï Pg−2
k .(ii) Suppose that g ≥ 5, k has characteristic 0, and that there is a point a ∈ Pg−1(k) not in

C such that a projection φ : C → Pg−2
k from the point a defines a degree 2 morphism of

C. Then φ(C) is a curve of genus 1 and hence C is geometrically bielliptic.

Proof. We first assume we are in the setting of (i) with k algebraically closed. For each point
p ∈ C′(k), let lp be the line in Pg−1

k passing through the two points of the divisor π∗(p) where wetake lp to be a tangent line of C if the support of π∗(p) consists only of one point.We claim that there is a unique point a ∈ Pg−1(k) that is the intersection of lp and lq for alldistinct p, q ∈ C′(k). Take any distinct p, q ∈ C′(k) and define D := π∗(p + q); it is an effectivedivisor of degree 4 on C. Applying the Riemann–Roch theorem to the divisor p +q of the genus1 curve C′, we have dim |p + q| = 1 and hence dim |D| ≥ 1. Let ι : C ↪Ï Pg−1
k be the inclusionobtained by identifying C with the image of its canonical map. Let D be the intersection of allhyperplanes H ⊆ Pg−1

k such that ι∗(H) ≥ D. By the geometric interpretation of the Riemann–Rochtheorem, cf. [AGI, Chapter 2 §3.2], we havedim D = deg D − dim |D| − 1 ≤ 4 − 1 − 1 = 2.Since dim D ≤ 2 and g ≥ 4, D is a proper subvariety of Pg−1
k and hence D is special. By Clifford’stheorem [AGI, Chapter 2 §3.2], we have dim |D| < 12 deg D = 2. Therefore, dim |D| = 1 and hencedim D = 2. We have shown that the two lines lp and lq span the plane D and hence they mustintersect at a point. Since lp and lq intersect at a point for all distinct p, q ∈ C′(k), we find thatall the lines lp intersect at a single point or all the lines lp lie in a common plane. The canonicalcurve C does not lie a plane in Pg−1

k since g ≥ 4. Therefore, there is a unique point a ∈ Pg−1(k)such that lp and lq intersect at exactly a for all distinct p, q ∈ C′(k).



CLASSIFICATION OF MODULAR CURVES WITH LOW GONALITY 7
We claim that a /∈ C(k). Assume to the contrary that a ∈ C(k). Fix a point p ∈ C′(k) sothat the divisor D′ := π∗(p) + a of C consists of three distinct points. We have D′ = lp andhence dim |D′| = 1 by the geometric interpretation of the Riemann–Roch theorem. So there isa nonconstant rational f on C with div(f ) + D′ ≥ 0; it has degree 3 since C is not hyperelliptic.Let σ be the involution of C corresponding to π and let n be the number of points of C fixedby σ . We have f ◦ σ = ±f since σ is an involution, the support of D is stable under σ , anddim |D′| = 1. Since f has degree 3 and hence does not factor through π , we have f ◦ σ = −f .Therefore, all the points of C fixed by σ are zeros of f or the pole a, and hence n ≤ 4. However,the Riemann–Hurwitz formula applied to π and using g ≥ 4 shows that n > 4. This contradictionproves the claim.From the construction of a, it has the properties in (i). This completes the proof of (i) in thecase where k is algebraically closed. The general case of (i) follows easily; we obtain a uniquepoint a ∈ Pg−1(k) not in C that is fixed by Gal(k/k) and hence is defined over k.Suppose we are in the setting of (ii). Define the curve C′ := φ(C). Since φ has degree 2, thereis a corresponding involution σ of C; for any point p in C, the line through p and a intersects Cat the two points p and σ (p) counted with multiplicity. We can view C′ as the quotient of C by σ .Since C is a canonical curve, it has degree 2g − 2. Since φ has degree 2, we deduce that C′ hasdegree g − 1 in Pg−2

k . By Castelnuovo’s bound [ACGH85, III §2], and using that g ≥ 5 and k hascharacteristic 0, we find that C′ can have genus at most 1. The curve C′ has genus 1 since C isnot geometrically hyperelliptic. □

Lemma 2.7. Assume that g ≥ 6 and that C is geometrically bielliptic. Then there exists a
morphism π : C → C′ of degree 2 with C′ a nice curve over k of genus 1. Moreover, π is unique
up to composition with an automorphism of C′. If C has a k-point, then C is bielliptic.

Proof. By Lemma 2.5(i), we may assume C ⊆ Pg−1
k after replacing the curve with its image underthe canonical map. Let A be the set of a ∈ Pg−1(k) so that the projection of Pg−1

k from a definesa morphism of degree 2 from Ck to a genus 1 curve. The set A is nonempty by Proposition 2.6and our assumption that C is geometrically bielliptic. The set A is finite since each element givesrise to a distinct bielliptic involution of Ck and the set of automorphisms of Ck is finite since
g ≥ 2. Theorem 2.2 and our assumption g ≥ 6 implies that A has cardinality 1.Since C is defined over k, the absolute Galois group Galk acts on A and hence A consists ofa unique point a ∈ Pg−1(k). The existence of the morphism π of C is obtained by using theprojecting from the point a. The uniqueness of π , up to composition with an automorphism of
C′, follows from Theorem 2.2 and g ≥ 6.Finally if C has a k-point, then so does C′ by using π and hence C′ can be made into an ellipticcurve. This proves the last statement of the lemma. □

Proposition 2.8. Let K be a nonarchimedean local field of characteristic 0 with valuation ring
R and residue field F. Let C be a nice curve of genus g ≥ 2 defined over K and suppose there
is a smooth proper model C over Spec R that extends C.(i) If C is bielliptic, then CF is bielliptic.(ii) If C is geometrically bielliptic, then CF is geometrically bielliptic.

Proof. Assume that C is bielliptic. There is a morphism f : C → E of degree 2, where E is anelliptic curve over K. Associated to f is a nontrivial involution σ0 of C. The involution σ0 extendsuniquely to an involution σ of the R-scheme C by [Liu02, §10.3 Corollary 3.37]. Let G be thesubgroup of Aut(C) generated by σ . By [Liu02, Proposition 3.38 and its proof], the involution σacts nontrivially on CF and the quotient p : C → C/G =: X exists. Observe that XK
∼= E . Since Ghas order 2 and only fixes a finite number of points in each fiber of C over R, we find that thereis an open subscheme U ⊆ X that excludes a finite number of points in each fiber of X such
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that p−1(U) p−Ï U is étale with Galois group G . We find that CF → XF is a morphism of degree2 and XF has genus 1. So there is a nice curve Y over F of genus 1 and a morphism CF → Yof degree 2. By the Weil bounds and F being finite, we find that Y has an F-point and hencewe can view it as elliptic curve over F. Therefore, CF is bielliptic. This completes the proof of(i). Part (ii) follows directly from (i) by replacing K by a finite extension for which the curve isbielliptic. □

3. MODULAR CURVES AND FORMSIn this section, we give background on modular forms and modular curves. In particular, fora subgroup G of GL2(Z/NZ) we will define a modular curve XG . Our approach is motivatedby the need to compute explicit models of XG . Much of this material follows the exposition of[Zyw22a, §4] except we allow modular curves defined over number fields besides Q.
3.1. Modular curves and forms over C. For the basics on modular forms and curves see see[Shi94]. The group SL2(Z) acts by linear fractional transformations on the complex upper half-plane H and the extended upper half-plane H∗ = H ∪ Q ∪ {∞}.Let Γ be a congruence subgroup of SL2(Z). The quotient XΓ := Γ\H∗ is a smooth compactRiemann surface (away from the cusps and elliptic points use the analytic structure coming from
H and extend to the full quotient). Let XΓ be the nice curve over C corresponding to XΓ. Thegenus of XΓ is

g = 1 + 112 [SL2(Z) : ±Γ] − 14ν2 − 13ν3 − 12ν∞,(3.1)where ν∞ is the number of cusps of XΓ, and ν2 and ν3 are the number of elliptic points of XΓof order 2 and 3, respectively, cf. [Shi94, Proposition 1.40].Consider an integer k ≥ 0. The group SL2(R) acts on the complex upper half-plane via linearfractional transformations. For a meromorphic function f on H and a matrix γ = ( a b
c d

)
∈ SL2(R),define the meromorphic function f |kγ on H by(f |kγ)(τ) := (cτ + d)−kf (γτ);we call this the slash operator of weight k. Recall that a modular form of weight k on Γ is aholomorphic function f on H such that the following hold:

• for any γ ∈ Γ, f |kγ = f ,
• for any γ ∈ SL2(Z), (f |kγ)(τ) is bounded as Im(τ) → +∞.A cusp form of weight k on Γ is a modular form f of weight k on Γ such that (f |kγ)(τ) → 0 asIm(τ) → +∞ for all γ ∈ SL2(Z). We denote by Mk(Γ) the set of modular forms of weight k onΓ; it is a finite dimensional complex vector space. We denote by Sk(Γ) ⊆ Mk(Γ) the subspace ofcusp forms.Fix a positive integer N that is divisible by the level of Γ. For each modular form f ∈ Mk(Γ),we have a Fourier expansion

f (τ) = ∞∑
n=0 an(f ) qn

N

with unique an(f ) ∈ C, where qN := e2πiτ/N . We call this power series the q-expansion of f (at thecusp ∞). For a subring R of C, we denote by Mk(Γ, R) the R-submodule of Mk(Γ) consisting ofmodular forms whose q-expansion has coefficients in R.The ring
RΓ := ⊕

k≥0 Mk(Γ)
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is a finitely generated C-algebra. Each Mk(Γ) can be identified with the global sections of a linebundle on XΓ which is very ample for all sufficiently large even k. Using this, we obtain anisomorphism

XΓ = Proj RΓThis description of XΓ gives a concrete approach to constructing a model of XΓ over a numberfield K ⊆ C, i.e., use Proj R, where R is a graded K-algebra for which we have an isomorphism
R ⊗K C ∼= RΓ of graded C-algebras.3.2. Modular forms of level N . Fix a positive integer N . Since Γ(N) is normal in SL2(Z), theslash operator of a fixed weight k ≥ 0 gives a right action of SL2(Z) on Mk(Γ(N)). This producesa right action of SL2(Z/NZ) on Mk(Γ(N)) since Γ(N) acts trivially.Take any modular form f = ∑∞

n=0 an(f )qn
N in Mk(Γ(N)). For a field automorphism σ of C and amodular form f ∈ Mk(Γ(N)), there is a unique modular form σ (f ) ∈ Mk(Γ(N)) whose q-expansionis ∑∞

n=0 σ (an(f )) qn
N . This defines an action of Aut(C) on Mk(Γ(N)).The next lemma shows that these actions induce a right action ∗ of GL2(Z/NZ) on the Q-vectorspace Mk(Γ(N),Q(ζN )), where ζN := e2πi/N . Recall that there is a group isomorphism(Z/NZ)× ∼−Ï Gal(Q(ζN )/Q), d 7Ï σd,where σd(ζN ) = ζd
N .

Proposition 3.1. There is a unique right action ∗ of GL2(Z/NZ) on Mk(Γ(N),Q(ζN )) such that
the following hold for all modular forms f ∈ Mk(Γ(N),Q(ζN )):

• f ∗ A = f |kγ for A ∈ SL2(Z/NZ) and γ ∈ SL2(Z) congruent to A modulo N ,
• f ∗ A = σd(f ) for A = ( 1 00 d

)
.

Proof. See [BN19, §3]. □3.3. The spaces Mk,G . Fix a positive integer N and let G be a subgroup of GL2(Z/NZ). For eachinteger k ≥ 0, we define
Mk,G := Mk(Γ(N),Q(ζN ))G ,where we are considering the subgroup fixed by G under action ∗ from Proposition 3.1. Observethat Mk,G is a vector space over KG , where KG := Q(ζN )det(G) is the subfield of Q(ζN ) fixed by σdfor all d ∈ det(G).Let ΓG be the congruence subgroup of SL2(Z) consisting of those matrices that are congruentmodulo N to an element of G . We have an inclusion Mk,G ⊆ Mk(ΓG ,Q(ζN )).

Lemma 3.2. The natural homomorphisms
Mk,G ⊗KG Q(ζN ) → Mk(ΓG ,Q(ζN )) and Mk,G ⊗KG C → Mk(ΓG)

are isomorphisms for all integers k ≥ 0 with k ̸= 1.
Proof. Since k ̸= 1, the natural map Mk(Γ(N),Q(ζN )) ⊗Q(ζN ) C → Mk(Γ(N)) is an isomorphism ofcomplex vector spaces, cf. [Kat73, §1.7]. Taking ΓG-invariants shows that the natural map

Mk(ΓG ,Q(ζN )) ⊗Q(ζN ) C → Mk(ΓG)(3.2)is an isomorphism. In particular, Mk(ΓG ,Q(ζN )) is a finite dimensional vector space over Q(ζN ).Define H := G ∩ SL2(Z/NZ). Since H is normal in G , we have a right action of G/H on
Mk(Γ(N),Q(ζN ))H = Mk(ΓG ,Q(ζN )). Let φ : G/H → Gal(Q(ζN )/KG) be the isomorphism φ(A) =
σdet A. Since G/H is abelian, the isomorphism φ induces a (left) action • of Gal(Q(ζN )/KG) on
Mk(ΓG ,Q(ζN )). We have σ • (cf ) = σ (c)(σ • f ) for all c ∈ Q(ζN ), f ∈ Mk(ΓG ,Q(ζN )) and σ ∈Gal(Q(ζN )/KG). By Galois descent for finite dimensional vector spaces (see the corollary toProposition 6 in Chapter V §10 of [Bou03]), the natural homomorphism

Mk,G ⊗Q Q(ζN ) = Mk(ΓG ,Q(ζN ))Gal(Q(ζN )/KG ) ⊗Q Q(ζN ) → Mk(ΓG ,Q(ζN ))
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is an isomorphism of Q(ζN )-vector spaces. By tensoring to C and using the isomorphism (3.2),we obtain the other isomorphism of the lemma. □3.4. The modular curve XG . Fix a positive integer N and let G be a subgroup of GL2(Z/NZ).We further assume that −I ∈ G . Define

RG := ⊕
k≥0 Mk,G ;

it is a graded KG-algebra. We define the KG-scheme
XG := Proj RG .Our assumption −I ∈ G implies that Mk(ΓG) = 0, and hence Mk,G = 0, for all odd k. ByLemma 3.2, we obtain a natural isomorphism RG ⊗KG C ∼−Ï RΓG of graded C-algebras and hencehave an isomorphism (XG)C = XΓGof schemes over C which we will use an identification. In particular, XG is a nice curve over KGthat has the same genus as XΓG .Consider an open subgroup G of GL2(Ẑ) that contains −I . Fix a positive integer N that isdivisible by the level of G and let G ⊆ GL2(Z/NZ) be the reduction of G modulo N . The field

KG := KG and the ring RG := RG do not depend on the choice of N , so we can define the modularcurve XG := Proj RG = XG .Now consider any two open subgroups G and G′ of GL2(Ẑ) that contains −I and satisfy G ⊆ G′and det(G) = det(G′). Then the inclusion of rings RG′ ⊆ RG induces a morphism XG → XG′ ofcurves over KG = KG′ . Base changing to C, this corresponds to the natural morphism XΓG → XΓG′of degree [ΓG′ : ΓG ] = [G′ : G].
Remark 3.3. In [Zyw22a], we gave an alternate definition of XG in terms of its function fieldwhich we now briefly explain. Let FN be the field of meromorphic functions on XΓ(N) whose
q-expansion at ∞ is of the form ∑

n∈Z an(f )qn
N , where the an(f ) lie in Q(ζN ); we have an(f ) = 0for all but finitely many n < 0. There is an right action ∗ of GL2(Z/NZ) on FN defined the sameway as in Proposition 3.1. Let FG

N be the subfield of FN fixed by the action of G .The function field L of XG is the field of modular functions consisting of quotients f/f ′ with
f , f ∈ Mk,G , where k ≥ 0 is even and f ′ ̸= 0. We have L ⊆ FG

N . One can prove that L = FG
N byshowing that both are extensions of KG(j) of degree |G/{±I}|, where j is modular j-invariant. Soan alternate definition of XG is the nice curve over KG with function field FG

N .3.5. Computing a basis of Mk,G . Fix a positive integer N . Our approach to computing modularforms is using Eisenstein series of weight 1. Take any (a, b) ∈ Z2 and let α ∈ (Z/NZ)2 be its imagemodulo N . There is a modular form Eα in M1(Γ(N),Q(ζN )) with q-expansion
c0 + ∑

m,n≥1
m≡a mod N

ζbn
N qmn

N −
∑

m,n≥1
m≡−a mod N

ζ−bn
N qmn

N ,

where
c0 =


0 if a ≡ b ≡ 0 (mod N),12 1+ζb

N1−ζb
N

if a ≡ 0 (mod N) and b ̸≡ 0 (mod N),12 − a0
N if a ̸≡ 0 (mod N)and 0 ≤ a0 < N is the integer congruent to a modulo N . For details on the Eisenstein series Eαsee §2 of [BN19] (where it is denoted E(1)

α ).
Lemma 3.4. Fix an integer k ≥ 1 and pairs α1, . . . , αk ∈ (Z/NZ)2. Then the modular form
f := Eα1 · · · Eαk lies in Mk(Γ(N),Q(ζN )) and satisfies f ∗ A = Eα1A · · · EαkA for all A ∈ GL2(Z/NZ).
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Proof. The lemma follows directly from the k = 1 case, so we may assume that k = 1 and wefix a pair α ∈ (Z/NZ)2. The modular form Eα has weight 1 and its q-expansion has coefficientsin Q(ζN ). As noted in [BN19, §3], we have Eα ∗ A = EαA for all A ∈ GL2(Z/NZ). □

Proposition 3.5. Suppose that N ≥ 3. Take any subgroup G of GL2(Z/NZ) and integer k ≥ 2.
Then the KG-vector space Mk,G is spanned by the modular forms

f = ∑
g∈G

ζj det(g)
N Eα1g · · · Eαkg(3.3)

with pairs α1, . . . , αk ∈ (Z/NZ)2 and integers 0 ≤ j < | det(G)|. With f ∈ Mk,G ⊆ Mk(Γ(N),Q(ζN ))
as above, we have

f ∗ A = ∑
g∈G

ζj det(g) det(A)
N Eα1gA · · · EαkgA

for A ∈ GL2(Z/NZ).
Proof. Let S0 be the set of modular forms Eα1 · · · Eαk with α1, . . . , αk ∈ (Z/NZ)2. Let S1 be the setof modular forms ζj

Nf with f ∈ S0 and 0 ≤ j < | det(G)|. Since N ≥ 3, the set S0 spans Mk(Γ(N))as vector space over C by a theorem of Khuri-Makdisi [KM12]; Theorem 3.1 of [BN19] gives areformulation of this result similar to ours. Since S0 ⊆ Mk(Γ(N),Q(ζN )), Lemma 3.2 with trivialgroup implies that S0 spans Mk(Γ(N),Q(ζN )) over Q(ζN ). Therefore, S1 spans Mk(Γ(N),Q(ζN ))over KG ; note that the ζj
N , with 0 ≤ j < | det(G)| = [Q(ζN ) : KG ], is a basis of Q(ζN ) over

KG . Therefore, Mk,G is spanned as a vector space over KG by the ∑
g∈G f ′ ∗ g with f ′ ∈ S1.With f ′ = ζj

NEα1 · · · Eαk , ∑
g∈G f ′ ∗ g agrees with (3.3) by Lemma 3.4. The last statement of theproposition now follows from Lemma 3.4. □Fix a subgroup G of GL2(Z/NZ) that contains −I and fix an even integer k ≥ 2. We now explainhow to find an explicit basis of the KG-vector space Mk,G . When N < 3, we have Mk,G = Mk,G′ ,where G′ is the subgroup of GL2(Z/4Z) consisting of matrices whose image modulo N lies in G .So we may assume that N ≥ 3.The dimension d := Mk(ΓG) is straightforward to compute, cf. [Shi94, §2.6], and is equal tothe dimension of Mk,G over KG by Lemma 3.2. By varying over the finite number of pairs

α1, . . . , αk ∈ (Z/NZ)2 and integers 0 ≤ j < det(G), we construct modular forms of the form(3.3) that span Mk,G . By computing enough terms of the q-expansions, we will eventually find dmodular forms f1, . . . , fd whose q-expansions are linearly independent over KG . This will be thedesired basis of Mk,G . This has been fully implemented in Magma in [Zyw25].
3.6. The canonical map and low gonality. Fix a subgroup G of GL2(Z/NZ) that contains −I .Denote the genus of XG by g and assume that g ≥ 2.We will want to understand the image of the canonical map of XG . As a starting point, recallthat the complex vector space of holomorphic differential forms on XΓG = ΓG\H∗ arises fromthe forms f (z) dz on H with f ∈ S2(ΓG), cf. [Shi94, Corollary 2.17].We define S2,G to be the KG-subspace consisting of those modular forms in M2,G whose q-expansion at each cusp has 0 constant term. Using that the subscheme of cusps of XG is definedover KG , we find that the isomorphism from Lemma 3.2 gives rise to an isomorphism

S2,G ⊗KG C ∼−Ï S2(ΓG).As explained in §3.5, one can find an explicit basis of M2,G over KG . Recall that each elementof this basis can be expressed in terms of Eisenstein series of weight 1 and we can thus computearbitrarily many terms of its q-expansion at each cusp of XG . We can then find an explicit basis
f1, . . . , fg
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of S2,G over KG . Moreover, we can compute arbitrarily many terms of the q-expansion of each
fi at each cusp of XG . With respect to the basis f1, . . . , fg , we have the canonical map

φ : XG → Pg−1
KG

.Let C be the curve φ(XG); it is unique up to composition with an automorphism of Pg−1
KG

. Let I(C)be the homogeneous ideal in KG [x1, . . . , xg ] corresponding to C. For each integer n ≥ 0, I(C)nis the KG-vector space consisting of homogeneous polynomials F ∈ KG [x1, . . . , xg ] of degree dsuch that F (f1, . . . , fg ) = 0.For a fixed n ≥ 0, we now explain how to compute a basis of I(C)n over KG . Let m1, . . . , mrbe the monomials in KG [x1, . . . , xg ] of total degree n; they are are basis of KG [x1, . . . , xg ]n . Afterexpanding out the expression
r∑

j=1 cj · mj (f1, . . . , fg )
by using all the computed terms of the q-expansions of the fi , the coefficients of this q-expansiongives a set P of degree 1 homogeneous polynomials in KG [c1, . . . , cr ]. Let V be the KG-vectorspace consisting of the solutions in Kr

G to all the linear polynomials P (note that the polynomialsin P will have coefficients in Q(ζN )). We then have I(C)n ⊆ I ′
n , where

I ′
n := {∑r

i=1aimi : a ∈ V
}

.Unfortunately, I(C)n and I ′
n need not agree if we do not use enough terms of the q-expansionsof the fi . Using the Sturm bound from [Zyw22a, Lemma 4.1], we can compute sufficiently manyterms of the q-expansions of the fi so that we are guaranteed to have I(C)n = I ′

n .
Remark 3.6. There are many cases where we can determine dimKG I(C)n ahead of time andhence do not need to use the Sturm bound. Note that I(C)n = I ′

n if and only if dimKG I(C)n =dimKG I ′
n . For example if n = 2 and dimKG I ′2 <

(g−12 ), then we have dimKG I(C)2 = (g−22 ) byProposition 2.4(ii). If XG is known to not be geometrically hyperelliptic, then dimKG I(C)n isgiven for n ≥ 2 by Proposition 2.4(i).We shall now explain how to computationally determine if XG has geometric gonality 2 or 3.3.6.1. Checking for geometric gonality 2. We may assume that g ≥ 3 since otherwise XG ishyperelliptic. By Proposition 2.4(ii), the integer d = dimK I(C)2 is (g−12 ) if XG is geometricallyhyperelliptic and (g−22 ) otherwise. We have (g−22 )
<

(g−12 ) since g ≥ 3. Therefore, XG hasgeometric gonality 2 if and only if d = (g−12 ). Thus our computation of a KG-basis of I(C)2 willdetermine if XG has geometric gonality 2.
Remark 3.7. Instead of solving for a basis of I(C)2, we can sometimes just set up the linearequations (using modular forms of a fixed precision) to find an upper bound on d. If we findthat d <

(g−12 ), then XG is not geometrically hyperelliptic. Taking our linear equations to havecoefficients in OK then reducing them modulo maximal ideals, we can sometimes deduce that
d <

(g−12 ); this is preferable since linear algebra is significantly faster over finite fields.3.6.2. Checking for geometric gonality 3. By applying the method from §3.6.1, we may assumethat XG is known to have geometric gonality at least 3. We may also assume that we havecomputed a basis F1, . . . , Fd of I(C)2 over KG . We may further assume that g ≥ 5 since Propo-sition 2.1(iii) implies that XG has geometric gonality 3 when g is 3 or 4.Let W be the KG-subspace of KG [x1, . . . , xg ]3 spanned by xiFj (x1, . . . , xg ) with 1 ≤ i ≤ g and1 ≤ j ≤ d. One can compute the dimension of W . By Proposition 2.4(i) and (iv), we havedimKG W ≤
(g+23 )

− 5(g − 1)
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with a strict inequality holding if and only if (XG)KG

is trigonal or isomorphic to a smooth planequintic.We can now assume that dimKG W <
(g+23 )

−5(g−1) since otherwise XG has geometric gonalityat least 4. A smooth plane quintic has genus 6 so we may assume that g = 6 since otherwise XGwill have geometric gonality 3. By Proposition 2.4(iv), the quotient I3/W has dimension g −3 = 3over K.By computing a basis for I(C)3 over KG , we can then find H1, H2, H3 ∈ I(C)3 that form a basis of
I(C)3/W over KG . By Proposition 2.4(iii), the polynomials F1, . . . , Fd, H1, H2, H3 define the curve
C in P5

K which is isomorphic to XG . The geometric gonality of the genus 6 curve C ∼= XG canbe computed using the algorithms of [Har13]; this has been implemented in the Magma function
Genus6GonalMap.

4. MODULAR CURVES REVISITEDWe will need more information about modular curves than what is given in §3. In particular,there are a few place where we need an integral model so that we can talk about reductionmodulo a prime ideal in a careful manner. Throughout we fix an integer N ≥ 3.Our main reference is the book of Deligne and Rapoport [DR73]; in particular, the introductiongives a readable overview of the relevant moduli problems. Note that we will consider schemesover Z[1/N] and Z[ζN , 1/N] which will simplify some of the material in [DR73] which often worksover Z and Z[ζN ] instead.
4.1. The modular curve M◦

N .

4.1.1. Over Z[1/N]. For a fixed Z[1/N]-scheme S, we consider pairs (E, α), where E is an ellipticcurve over S and α : (Z/NZ)2 ∼−Ï E[N] is an isomorphism of group schemes. Two such pairs(E, α) and (E ′, α′) are isomorphic if there is an isomorphism f : E → E ′ of elliptic curves over Ssuch that f ◦ α : (Z/NZ)2 → E[N] → E ′[N] agrees with α′.Let M◦
N (S) be the set of isomorphism classes of such pairs (E, α). This gives a functor M◦

Nfrom the category of Z[1/N]-schemes to the category of sets where the functoriality comes frombase change. Since N ≥ 3, this functor is representable by a Z[1/N]-scheme that we also denoteby M◦
N . The scheme M◦

N is a smooth curve over Z[1/N].There is an a left action of GL2(Z/NZ) on M◦
N given by A · (E, α) = (E, β), where β(v) = α(vA)for v ∈ (Z/NZ)2.

Remark 4.1. In [DR73], they instead consider α as an isomorphism E[N] ∼−Ï (Z/NZ)2. This doesnot affect the definition of M◦
N but does lead to a different convention concerning the GL2(Z/NZ)-action; our choice is made so that the action better agrees with the classical setting of §3.4.1.2. Over Z[ζN , 1/N]. For a pair (E, α) defined over S, the Weil pairing of α((1, 0)) and α((0, 1))gives a primitive N-th root of unity ζ(α) over S. Since M◦

N is representable, there is a universalpair (E ′, α′) over M◦
N with which the Weil pairings allow us to identify any ζ(α) with a particularprimitive N-th root of unity ζN (over M◦

N ). The map (E, α) 7Ï ζ(α) = ζN gives rise to a morphismof schemes
M◦

N → SpecZ[ζN , 1/N].Using this morphism, we shall view M◦
N as a scheme over Z[ζN , 1/N]. As a Z[ζN , 1/N]-scheme, M◦

Nclassifies the isomorphism classes of (E, α)/S, with S a Z[ζN , 1/N]-scheme, such that ζ(α) = ζN .The left action of SL2(Z/NZ) on M◦
N as a scheme over Z[1/N] is also an action as a scheme over

Z[ζN , 1/N].
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4.1.3. Analytic setting. We now consider the analytic story. We view C as a Z[ζN , 1/N]-algebra,by identifying ζN with e2πi/N . For each τ in the upper half-plane H, let Eτ be the elliptic curveover C arising from the quotient C/Λτ , where Λτ := Z + Zτ . Let ατ : (Z/nZ)2 ∼−Ï Eτ [N] be thegroup isomorphism for which ατ ((1, 0)) = τ/N +Λτ and ατ ((0, 1)) = 1/N +Λτ . The Weil pairing of
ατ ((1, 0)) and ατ ((0, 1)) is ζN . Therefore, the pair (Eτ , ατ ) gives a complex point on M◦

N ×Z[ζN ,1/N]C.Moreover, the map τ 7Ï (Eτ , ατ ) induces an isomorphismΓ(N)\H ∼−Ï (M◦
N ×Z[ζN ,1/N] C)an(4.1)of complex analytic spaces. One can check that the actions of SL2(Z/NZ) on both sides of (4.1)agree.

Remark 4.2. Note that (M◦
N ×Z[1/N] C)an is isomorphic to φ(N) copies of Γ(N)\H.Fix τ ∈ H and define q := e2πiτ and q1/N := e2πiτ/N . For later comparison with the Tatecurve, note that applying the function e2πiz gives an isomorphism between (Eτ , ατ ) and the pair(C×/qZ, α′) where α′((1, 0)) and α′((0, 1)) are represented by q1/N and ζN , respectively.4.2. The modular curve MN . Deligne and Rapoport compactify M◦

N by giving a moduli inter-pretation of the cusps in terms of generalized elliptic curves. For the definition of generalizedelliptic curves see [DR73, I Definition 1.12].There is a functor MN from the category of Z[1/N]-schemes to the category of sets definedso that MN (S) corresponds to pairs (E, α), where E is a generalized elliptic curve over S and
α : (Z/NZ)2 ∼−Ï E[N] is an isomorphism of group schemes; see [DR73, IV §2] for the construction(they define an algebraic stack and then show it is a scheme MN assuming N ≥ 3). The scheme
MN over Z[1/N] is smooth and projective. We can naturally identify M◦

N with an open subschemeof MN . The complement of M◦
N in MN is a finite étale scheme M∞

N over Z[1/N]. The action ofGL2(Z/NZ) on M◦
N extends to MN by using the same definition.Arguing as in §4.1.2, we can give MN the structure of a Z[ζN , 1/N]-scheme. Using our GL2(Z/NZ)-action, we find that SL2(Z/NZ) acts on MN when viewed as a Z[ζN , 1/N]-scheme. The isomorphism(4.1) extends to an isomorphism

XΓ(N) ∼−Ï (MN ×Z[ζN ,1/N] C)anof smooth compact Riemman surfaces, where XΓ(N) was defined in §3.1. In particular, we havean isomorphism between XΓ(N) and MN ×Z[ζN ,1/N] C.4.3. Modular forms of level N . There is a universal generalized elliptic curve E → MN and welet ω be the invertible sheaf on MN that is the pushforward of the relative dualizing sheaf. Wehave a natural isomorphism Ω1
MN (M∞

N ) ∼= ω⊗2,(4.2)cf. [DR73, VI 4.5.2].Fix an integer k ≥ 2. Following the definition [DR73, VII 3.6], we say that a modular form of
level N and weight k over Z[ζN , 1/N] an element of H0(MN , ω⊗k). We can view H0(MN , ω⊗k) as a
Z[ζN , 1/N]-module by using that MN is a Z[ζN , 1/N]-scheme. Our action of GL2(Z/NZ) on MNgives a right action on H0(MN , ω⊗k) as a Z[1/N]-module (and a right action of SL2(Z/NZ) as a
Z[ζN , 1/N]-module).

Fix a modular form f ∈ H0(MN , ω⊗k). To better explain the connection with the classicaldefinition of modular forms in §3, we will now describe the q-expansion of f algebraically; fordetails see [DR73, Chapter VII]. The Tate curve gives an elliptic curve Eq defined over the Laurentseries ring Z((q)) which can be expressed as Gm/qZ. The curve comes with a canonical invariantdifferential dx/x, where x is a parameter of Gm . After base extending Eq to Z[ζN , 1/N]((q1/N )),
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where q1/N is a fixed N-th root of q , we obtain an isomorphism α : (Z/NZ)2 ∼−Ï Eq [N] of groupschemes, where α((1, 0)) and α((0, 1)) are represented by q1/N and ζN , respectively. The pair (Eq , α)gives a Z[ζN , 1/N]((q1/N ))-point on MN which is a morphism h : SpecZ[ζN , 1/N]((q1/N )) → MN of
Z[ζN , 1/N]-schemes. We have

h∗(f ) = Ff · (dx
x )⊗k

for a unique Ff ∈ Z[ζN , 1/N]((q1/N )). Moreover, we have Ff ∈ Z[ζN , 1/N][[q1/N ]]; this is shown in[DR73, VII §3] by instead starting with the Tate curve as a generalized elliptic curve over Z[[q]].We call Ff the q-expansion of f .From [DR73, VII Construction 4.6], and the remarks following it, we find that there is anisomorphism
β : H0(MN , ω⊗k) ⊗Z[ζN ,1/N] C ∼−Ï Mk(Γ(N))(4.3)that preserves q-expansions. When k is even, the isomorphism (4.2) also lets us view (4.3) as theusual isomorphism between Mk(Γ(N)) and certain differential k/2-forms on XΓ(N). The actionsof SL2(Z/NZ) are compatible with β (the construction in [DR73] makes use of the isomorphism(4.1) and we have chosen actions so that they do agree).

Proposition 4.3.(i) The Z[ζN , 1/N]-submodule Mk(Γ(N),Z[ζN , 1/N]) of Mk(Γ(N),Q(ζN )) is stable under the
right GL2(Z/NZ)-action from §3.2.(ii) There are unique isomorphisms

H0(MN , ω⊗k) ∼−Ï Mk(Γ(N),Z[ζN , 1/N]) and H0((MN )Q, ω⊗k) ∼−Ï Mk(Γ(N),Q(ζN ))
of modules over Z[ζN , 1/N] and Q(ζN ), respectively, that preserves q-expansions. The
actions of GL2(Z/NZ) are compatible with these isomorphisms.

Proof. The isomorphism β restricts to an injective homomorphism
H0(MN , ω⊗k) ↪Ï Mk(Γ(N),Z[ζN , 1/N]).(4.4)Let F ∈ Z[ζN , 1/N][[qN ]] be the q-expansion of any modular form in Mk(Γ(N),Z[ζN , 1/N]). Since βis an isomorphism, there is a unique f ∈ H0(M,ω⊗k) ⊗Z[ζN ,1/N] Q(ζN ) such that f has q-expansion

F . By [DR73, VII Théorème 3.10(i) and Corollaire 3.13], the q-expansion of f at each cusp hascoefficients in Z[ζN , 1/N] and hence f ∈ H0(MN , ω⊗k) by [DR73, VII Théorème 3.9]. This provesthat (4.4) is surjective and hence is an isomorphism of Z[ζN , 1/N]-modules. Since H0(MN , ω⊗k)is stable under its SL2(Z/NZ)-action and β is an isomorphism that respects the SL2(Z/NZ)-action,we deduce that SL2(Z/NZ) acts on Mk(Γ(N),Z[ζN , 1/N]) and the isomorphism (4.4) respects theSL2(Z/NZ)-action. Part (i) now follows since Z[ζN , 1/N] is stable under the action of Gal(Q(ζN )/Q).Take any d ∈ (Z/NZ)×. We claim that the action of the matrix A := ( 1 00 d
) is compatiblewith the isomorphism (4.4). We have (Eq , α′) = A · (Eq , α), where α′ : (Z/NZ)2 ∼−Ï Eq [N] is theisomorphism of group schemes for which α′((1, 0)) and α′(0, 1)) are represented by q1/N and

ζd
N , respectively. Take any f ∈ H0(MN , ω⊗k) and define f ′ := f · A. We have h∗(f ′) = h′∗(f ),where h′ : SpecZ[ζN , 1/N]((q1/N )) → MN is the morphism of Z[ζN , 1/N]-schemes given by thepoint (Eq , α′). Using that Eq is defined over Z((q1/N )), we find that h′∗(f ) = σd(Ff ) · (dx

x )⊗k and hence
σd(Ff ) = Ff ′ . We have now proved the part of (ii) concerning the isomorphism (4.4). Part (ii)follows by base changing to Q(ζN ); note that we a natural isomorphism H0(MN , ω⊗k) ⊗Z[ζN ,1/N]
Q(ζN ) ∼−Ï H0((MN )Q, ω⊗k) by [DR73, VII Théorème 3.10(i)]. □

The following will be useful for proving the integrality of the coefficients of a q-expansion ata prime ideal p given only finitely many coefficients.
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Proposition 4.4. Take any subgroup G of GL2(Z/NZ). Define H := G ∩ SL2(Z/NZ) and let R
be a set of representatives of the cosets H\ SL2(Z/NZ). Take any nonzero prime ideal p ∤ N of
Z[ζN ] and consider a modular form f ∈ Mk,G = Mk(Γ(N),Q(ζN ))G . For each A ∈ R, let mA ≥ 1
be an integer for which an(f ∗ A) is integral at p for all n ≤ mA, where f ∗ A = ∑∞

n=0 an(f ∗ A)qn
N .

If
∑

A∈R mA > k/12, then an(f ∗ A) is integral at p for all n ≥ 0 and all A ∈ SL2(Z/NZ).
Proof. Take any nonzero f ∈ Mk(Γ(N),Q(ζN )) . We define vp(f ) := min{vp(an) : n ≥ 0}, where∑∞

n=0 an(f )qn
N is the q-expansion of f and vp is the p-adic valuation of K. By [DR73, VII Corollaire3.12] and p ∤ N , we have vp(f ) = vp(f ∗ A) for all A ∈ SL2(Z/NZ).Suppose that f is a counterexample to the proposition. By multiplying f by an appropriateelement of Q(ζN )×, we obtain a nonzero modular form f ′ ∈ Mk(Γ(N),Z[ζN ])H for which vp(f ′) = 0and an(f ′ ∗ A) ≡ 0 (mod p) for all A ∈ R and n ≤ mA. For any A ∈ R and any B in the coset

H · A ∈ H\ SL2(Z/NZ), define mB := mA; we have an(f ′ ∗ B) ≡ 0 (mod p) for all n ≤ mB since f ′is fixed by H . We have 1
|R|

∑
A∈R

mA = 1
| SL2(Z/NZ)| ∑

B∈SL2(Z/NZ) mB ≤ k/12,

where the inequality follows from [DR73, VII Corollaire 3.14] and our assumption p ∤ N . There-fore, no counterexamples will occur if 1
|R|

∑
A∈R mA > k/12. □

4.4. The modular curve XG revisited. Fix a subgroup G ⊆ GL2(Z/NZ) containing −I . Let MG bethe Z[1/N]-scheme that is the quotient of MN by the action of G . By [DR73, IV Proposition 3.10],
MG is proper and flat over Z[1/N] and agrees with the coarse moduli space of generalizedelliptic curves with G-level structure. The scheme MG is also smooth over Z[1/N], cf. [DR73, VIProposition 6.7].With notation as in §4.1.2, for a pair (E, α) and a matrix A ∈ GL2(Z/NZ), we have ζ(A · (E, α)) =
ζ(E, α)det(A). We obtain a morphism

MG → Spec(Z[ζN , 1/N]det G),where Z[ζN , 1/N]det G is the subring of Z[ζN , 1/N] fixed by σd for all d ∈ det(G). In particular, MGcan be viewed as a scheme over OKG [1/N] = Z[ζN , 1/N]det G . Moreover, MG is a smooth propercurve over OKG [1/N].Define the graded KG-module
R′

G := ⊕
k≥0 even H0((MN )Q, ω⊗k)G .

The isomorphisms from Proposition 4.3(ii) induce an isomorphism R′
G

∼−Ï RG of graded KG-modules, where RG is defined in §3.4. From §3.4, we find that tensoring up to C gives anisomorphism R′
G ⊗KG C ∼−Ï RΓG of graded C-algebras. One can show that MG ×OKG [1/N] C ∼= XΓG .Since XΓG

∼= Proj RΓG , we find that the curve MG ×OKG [1/N] KG is isomorphic to Proj R′
G . Since

R′
G

∼= RG , we deduce that MG ×OKG [1/N] KG is isomorphic to Proj RG = XG .In summary, MG is a smooth proper curve over OKG [1/N] whose generic fiber is a nice curveover KG isomorphic to XG .
5. EXPLICIT GONALITY BOUNDSThroughout this section we fix a congruence subgroup Γ of SL2(Z) containing −I . Let g bethe genus of XΓ, let N be the level of Γ and let D be the index [SL2(Z) : Γ].The natural morphism XΓ → XSL2(Z) ∼= P1

C has degree D since −I ∈ Γ and hence gon(XΓ) ≤ D.The following shows that gon(XΓ) can also be uniformly bounded below by D times a positiveconstant.
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Theorem 5.1. We have gon(XΓ) > 32532768D. If N ≤ 226, then gon(XΓ) > 196D.
Proof. The theorem will follow from inequalities of Zograf in [Zog87]. Set γ := gon(XΓ). In[Zog87], our Riemann surface XΓ is denoted Γ\H and the quantity µ(Γ\H) that arises there isequal to Dπ/3 (this uses the footnote on [Zog87, p.109] and (3.1)).We may assume that γ ≤ D/96 since otherwise the theorem holds immediately. The hypothesisof [Zog87, Theorem 3] holds since γ ≤ D/96 and we obtain an inequality

λ1 < 8πγ
Dπ/3 = 24γ/D,where λ1 := λ1(Γ) is the minimal nonzero eigenvalue of the automorphic Laplacian operator on

L2(Γ\H) induced from the Laplace operator ∆ = −y2( ∂2
∂x2 + ∂2

∂y2 ). Equivalently, we have the bound
γ > λ124D.(5.1)In [Sel65], Selberg conjectured that λ1 ≥ 1/4 and proved the inequality λ1 ≥ 1/4 − (1/4)2 = 3/16.Using (5.1) with λ1 ≥ 3/16 gives γ > D/128 which is precisely [Zog87, Theorem 5]. The inequality

λ1 ≥ 1/4 − (7/64)2 = 975/4096 was proved by Kim and Sarnak in [Kim03, Appendix 2]. Using(5.1) with the bound of Kim and Sarnak gives γ > 32532768D which proves the first inequality of thetheorem.We may now assume that N ≤ 226. Since N is the level of Γ, we have Γ ⊇ Γ(N) and hence λ1 :=
λ1(Γ) ≥ λ1(Γ(N)). Booker, Lee and Strömbergsson [BLS20] have shown that Selberg’s conjectureholds for all congruence subgroups Γ(N) with N ≤ 226. Therefore, we have λ1 ≥ λ1(Γ(N)) ≥ 1/4.Using the bound (5.1), we deduce that γ > 1/424 D = D/96. □

Corollary 5.2.(i) Suppose that gon(XΓ) = 2. Then D ≤ 201. If N ≤ 226, then D ≤ 191.(ii) Suppose that gon(XΓ) = 3. Then D ≤ 302. If N ≤ 226, then D ≤ 287.(iii) Suppose that gon(XΓ) = 4. Then D ≤ 403. If N ≤ 226, then D ≤ 383.
Proof. This follows directly from Theorem 5.1, which gives upper bounds on D in terms ofgon(XΓ), and using that D is an integer. □

Remark 5.3. There are similar bounds of Abramovich which are perhaps better known thanZagorof’s. Using the bounds of [Abr96], we obtain γ ≥ λ124D instead of (5.1) in the proof ofTheorem 5.1; Zagorof obtains a strict inequality by considering the cusps. When gon(XΓ) = 2,this weaker bound would give Corollary 5.2(i) except we would only have D ≤ 192 when N ≤ 226.This slight difference is relevant since there are 470 congruence subgroups Γ of SL2(Z), up toconjugacy in GL2(Z), that contain −I and satisfy [SL2(Z) : Γ] = 192.When the level N of Γ is not divisible by a small prime, we can sometimes improve on thesebounds for D.
Theorem 5.4. Let p be a prime not dividing N .(i) If gon(XΓ) = 2 and g ≥ 2, then D ≤ 24(p2 + 1)/(p − 1).(ii) If gon(XΓ) = 3 and g ≥ 5, then D ≤ 36(p2 + 1)/(p − 1).(iii) If XΓ is bielliptic and g ≥ 6, then D ≤ 24(p2 + 2p + 1)/(p − 1).
Proof. We may assume that g ≥ 2. We have N ≥ 3 since otherwise XΓ would have genus 0.Since p ∤ N , we can choose a prime ideal p of Z[ζN , 1/N] containing p. Let Fp2 be the subfield of
Fp of cardinality p2.Let G ⊆ SL2(Z/NZ) be the image of Γ modulo N . Define the field KG := Q(ζN )det(G) = Q(ζN ).In §4.4, we defined a smooth proper curve MG over OKG [1/N] = Z[ζN , 1/N] whose generic fiberis isomorphic to XG . We have isomorphisms(MG)C ∼= (XG)C ∼= XΓ.
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Note that (MG)Fp is a nice curve of genus g since p ∤ N . Below we will make use of the schemes
M◦

N and MN from §4 and they will be viewed as schemes over Z[ζN , 1/N].We claim that there is a curve C over Fp2 such that (MG)Fp

∼= CFp
and

|C(Fp2 )| ≥ (p − 1)D/12.(5.2)We define C following the construction of Poonen in §3 of [Poo07] which builds off of the ideasof Ogg [Ogg74]. Define L := (Z/NZ)2 which we turn into a Gal(Fp/Fp2 )-module by letting the
p2-th power Frobenius automorphism act as multiplication by −p. We fix a group isomorphism
ι : ∧2 L → µN , with µN ⊆ Fp the group of N-th roots of unity, so that the Gal(Fp/Fp2 )-actionsare compatible. Let Y be the smooth affine curve over Fp2 that parametrizes pairs (E, α) where
α : L ∼−Ï E[N] is an isomorphism under which the Weil pairing corresponds to ι. Observe thatwe have a canonical isomorphism YFp

= (M◦
N )Fp

since they describe the same moduli space. Wecan extend Y to a smooth projective curve X defined over Fp2 and we have XFp
= (MN )Fp

. Theaction of SL2(Z/NZ) on L gives rise to an action on Y and X that respects the isomorphism
XFp

= (MN )Fp
. Therefore, (MG)Fp

= G\(MN )Fp
is isomorphic to CFp

, where C is the nice curveover Fp2 that is the quotient of X by G . In §3 of [Poo07], it is observed that
|C(Fp2 )| ≥ (p − 1)[SL2(Z/NZ) : G]/12 = (p − 1)D/12(5.3)by considering supersingular elliptic curves defined over Fp2 . This completes the proof of theclaim.We now prove (i) and (ii), so assume that γ := gon(XΓ) is 2 or 3 with g ≥ 5 if γ = 3. Thegeometric gonality of (MG)KG is γ since (MG)C is isomorphic to XΓ. Define d := gon((MG)Fp

).We have d ≤ γ by applying Proposition 2.3. We have 2 ≤ d ≤ γ since (MG)Fp
has genus g ≥ 2.The curve C has geometric gonality d since it is isomorphic over Fp to (MG)Fp
. By Theorems 1and 2 of [RX18], which uses that g ≥ 2 when d = 2 and g ≥ 5 when d = 3, there is a morphism

π : C → Z of degree d, where Z is a nice curve over Fp2 of genus 0. We have Z ∼= P1
Fp2 since weare working over a finite field. Using that π has degree d, we obtain the easy upper bound

|C(Fp2 )| ≤ d|Z(Fp2 )| = d(p2 + 1) ≤ γ(p2 + 1).Combining with (5.3) gives D ≤ 12γ(p2 + 1)/(p − 1) which completes the proof of (i) and (ii).We now prove (iii), so assume XΓ is bielliptic and g ≥ 6. Therefore, (MG)KG is geometricallybielliptic since it is isomorphic over C to XΓ. Proposition 2.8 implies that (MG)Fp
is geometricallybielliptic. By the claim, C is also geometrically bielliptic. Since C has genus g ≥ 6, Lemma 2.7implies that there is a degree 2 morphism C → Z , where Z is a nice curve of genus 1 definedover Fp2 . Using the Weil bounds, we have

|C(Fp2 )| ≤ 2|Z(Fp2 )| ≤ 2(p2 + 2p + 1).Combining with (5.3) gives D ≤ 24(p2 + 2p + 1)/(p − 1) which completes the proof of (iii). □

6. CHECKING IF A MODULAR CURVE IS GEOMETRICALLY BIELLIPTICFix a positive integer N and subgroup G of GL2(Z/NZ) that contains −I . In this section, weexplain how to computationally verify if the modular curve XG is geometrically bielliptic. Let gbe the genus of XG . We may assume that g ≥ 2 since XG is not geometrically bielliptic when
g = 0 and is geometrically bielliptic when g = 1. We have N ≥ 3 since g ≥ 2. To ease notation,we set K := KG for the rest of the section.As outlined in §3.6, one can compute a basis f1, . . . , fg of the K-vector space S2,G . Moreoverfor each fi , we can compute arbitrary many terms of its q-expansion at each cusp. With respect
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to the basis f1, . . . , fg , we have the canonical map

φ : XG → Pg−1
KLet C be the image of φ and let I(C) be the corresponding homogeneous ideal of K[x1, . . . , xg ].As described in §3.6, we can compute a basis F1, . . . , Fd of the K-vector space I(C)2. As noted in§3.6.1, the integer d allows us to determine whether or not XG is geometrically hyperelliptic.

6.1. Geometrically hyperelliptic case. Suppose that XG is geometrically hyperelliptic. If XG isalso geometrically bielliptic, then g ≤ 3 by Theorem 2.2. So we may assume that g = 2 or g = 3.We have a basis f1, . . . , fg of S2,G over K. Using this, we can construct a basis w1, . . . , wg of
S2,G ⊗K Q(ζN ) ⊆ S2(ΓG) over Q(ζN ) so that the order of vanishing of wi at the cusp at infinity isstrictly increasing as a function of i. As usual we have q = e2πiτ . The function field of (XG)Q(ζN ) isgenerated by x := wg−1/wg and y := dx/(wgdq), and there is a unique polynomial h(x) ∈ Q(ζN )[x]of degree at most 2g +2 such that y2 = h(x), see Lemma 2.5 of [BGJGP05] and the computationsthat follow the lemma. By using enough terms of the q-expansions of our modular forms, wecan set up linear equations and solve for the coefficients of h. By changing variables, we willobtain a model

y2 = h(x)of (XG)Q(ζN ) where h(x) is separable of degree 2g +2 with coefficients in Z[ζN ]. Let R be the ringof S-integers in Z[ζN ], where S consists of the nonzero prime ideals p that divide the leadingcoefficients of h or divide 2 disc(h). Let X be the smooth projective curve over Spec R definedby the affine equation y2 = h(x).Define H(x, z) := z2g+2h(x/z) ∈ Z[ζN ][x, z]; it is a homogeneous polynomial of degree 2g + 2.Let Z be the closed reduced subscheme of A4
R such that for any algebraically closed field k thatis an R-algebra and any point (a, b, c, d) ∈ k4, (a, b, c, d) lies in Z(k) if and only if A := ( a b

c d
)

satisfies A2 = I , tr(A) = 0 and H(ax + b, cx + d) = h(x).
Lemma 6.1. Let k be an algebraically closed field that is an R-algebra. Then Xk is bielliptic if
and only if Z(k) ̸= ∅.

Proof. First suppose there is a point (a, b, c, d) ∈ Z(k) and define A := ( a b
c d

). We have (cx +
d)2g+2h(ax+b

cx+d ) = h(x). From this and a fixed ε ∈ {±1}, we obtain an automorphism σ (x, y) =(ax+b
cx+d , εy(cx+d)g+1 ) of Xk . Using A2 = I , we find that σ2 = 1. The matrix A is nonscalar sincetr(A) = 0 and k does not have characteristic 2, and hence σ is not the identity map or thehyperelliptic involution. Also by choosing an appropriate ε ∈ {±1}, we may assume that Xk hasa point fixed by σ . Consider the degree 2 morphism π : Xk → Xk/⟨σ⟩ =: C′. The curve C′ hasgenus g ′ > 0 since σ is not the hyperelliptic involution (which is unique by Theorem 2.2). Wehave 0 < g ′ < g . We cannot have (g, g ′) = (3, 2) since otherwise the Riemann–Hurwitz formulaimplies that π is unramified and hence σ has no fixed points. Since g ∈ {2, 3}, we deduce that

g ′ = 1 and hence Xk is bielliptic.Now suppose that Xk is bielliptic and let σ be a bielliptic involution. By [BGJGP05, Proposition6.11], there is a matrix A = ( a b
c d

)
∈ GL2(K) satisfying A2 = I and a number ε ∈ {±1} suchthat σ (x, y) = ((ax + b)/(cx + d), εy/(cx + d)g+1). Note that the section containing [BGJGP05,Proposition 6.11] has a characteristic 0 assumption but the proof of this proposition works finein odd characteristic. Since σ is an automorphism of Xk , we have (cx+d)2g+2h((ax+b)/(cx+d)) =

y2 = h(x) for points (x, y) ∈ X(k) not at infinity and hence we have an equality H(ax+b, cx+d) =
h(x) of polynomials. To complete the proof of the lemma, we need to show that tr(A) = 0. Supposeto the contrary that tr(A) ̸= 0. Since A2 = I , tr(A) ̸= 0 and the characteristic of k is not 2, wehave A = ±I . However, A = ±I implies that σ is the identity or hyperelliptic automorphism of
Xk which is a contradiction. Therefore, tr(A) = 0. □
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We now explain how to check if XG is geometrically bielliptic. Consider any nonzero primeideal p /∈ S of OK ; we use the same notation to denote the prime ideal pR of R. We then checkif the subvariety ZFp of A4

Fp
is empty or not.Suppose that ZFp is empty. Since Z(Fp) = ∅, Lemma 6.1 implies that XFp is not geometricallybielliptic. Since X is a smooth projective curve over R, Proposition 2.8(ii) implies that XQ(ζN ) ∼=(XG)Q(ζN ) is not geometrically bielliptic. In particular, XG is not geometrically bielliptic.Now suppose that ZFp is nonempty. Then there is a point z ∈ Z(F) for some finite extension Fof Fp. We can then try to use Hensel’s lemma to lift z to a point z ∈ Z(L) for some local field Lcontaining Q(ζN ). If such a lift exists, then XL

∼= (XG)L is geometrically bielliptic by Lemma 6.1;in particular, XG is geometrically bielliptic.By looking at sufficiently many nonzero prime ideals p /∈ S of OK , the above arguments willeventually determine whether or not XG is geometrically bielliptic (taking S large enough, weget a smooth scheme Z over R and Hensel’s lemma will always apply to give lifts).
6.2. Genus 3 case. Assume that g = 3. We may assume that XG is not geometrically hyperellipticsince we have already dealt with this case.By Proposition 2.4(iii), the curve C is defined by a homogenous polynomial F (x1, x2, x3) ∈
K[x1, x2, x3] of degree 4 that is unique up to a nonzero scalar. In this case we are going todirectly check if CK has a bielliptic involution.
Lemma 6.2. The curve C is geometrically bielliptic if and only if there is a matrix A ∈ M3(K)
satisfying A2 = I , tr(A) = −1 and F (xAt ) = F (x).
Proof. First suppose that CK has a bielliptic involution σ . The involution σ induces an auto-morphism A of the K-vector space H0(CK, ΩC/K) that satisfies A2 = I . Moreover, A has a 1-dimensional +1-eigenspace and a 2-dimensional −1-eigenspace since C/⟨σ⟩ has genus 1. Thus
A2 = I and tr(A) = −1. Since C ⊆ P2

K is the canonical embedding, we can make a choice ofisomorphism H0(CK, ΩC/K) ∼= K3 so that A can be identified with a matrix in M3(K) that inducesan action on the curve CK . We thus have F (xAt ) = cF (x) for some nonzero c ∈ K since I(CK)4is spanned by F . We have c = ±1 since A2 = I . If c = −1 and vAt = −v with v ∈ K3, then
F (v) = F (−v) = F (vAt ) = −1 · F (v) and hence F (v) = 0. So if c = −1, then CK contains agenus 0 curve by considering the −1-eigenspace of A. Since C has genus 3, we conclude that
F (xAt ) = F (x).Now suppose that there is a matrix A ∈ M3(K) satisfying A2 = I , tr(A) = −1 and F (xAt ) = F (x).The matrix A defines an automorphism σ of CK since it is invertible and satisfies F (xAt ) = F (x).We have σ2 = 1 since A2 = I . Since CK ⊆ P2

K is the canonical embedding, σ acts on the K-vectorspace H0(CK, ΩC/K) and with an appropriate choice of basis it will act as cA for some nonzero
c ∈ K. The matrix A is not scalar by the A2 = I and tr(A) = −1 conditions, so σ induces anonscalar automorphism of H0(CK, ΩC/K) and hence σ ̸= 1.We have a degree 2 morphism φ : CK → CK/⟨σ⟩ =: C′. Since C has genus 3 and is notgeometrically hyperelliptic, C′ has genus 1 or 2. Suppose that C′ has genus 2. From the Riemann–Hurwitz formula, φ is a covering, i.e., there is no ramification. By [Acc94, Lemma 5.10] this impliesthat CK is geometrically hyperelliptic (the first step of the proof is to use φ to lift the hyperellipticinvolution of C′ to a new involution of CK). Since C is not geometrically hyperelliptic, we deducethat C′ has genus 1 and hence C is geometrically bielliptic. □We can identify a matrix in M3(K) with a K-point of A9

K . Let Z be the subvariety of A9
K whose

K-points correspond to matrices in M3(K) that satisfy A2 = I , tr(A) = −1 and F (xAt ) = F (x).By Lemma 6.2, XG
∼= C is geometrically bielliptic if and only if Z is nonempty. Checking that

Z is nonempty or not is something that is straightforward to check (at least in this case, directly
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checking for bielliptic involutions becomes infeasible for higher genus). Also Z is finite (one cancheck that every K-point of Z corresponds to a different bielliptic involution of CK).
6.3. Aside: smooth models. Assume that g ≥ 4 and that XG is not geometrically hyperelliptic;this holds in the cases that remain.We have d = (g−22 ) by Proposition 2.4(ii). Let W be the K-subspace of K[x1, . . . , xg ]3 spannedby xiFj (x1, . . . , xg ) with 1 ≤ i ≤ g and 1 ≤ j ≤ d. By computing a basis for I(C)3 over K asin §3.6, we can find polynomials H1, . . . , Hr ∈ K[x1, . . . , xg ]3 that give rise to a basis of I(C)3/W .By Proposition 2.4(iv), we have r = 0 or r = g − 3. By Proposition 2.4(iii), the ideal I(C) of
K[x1, . . . , xg ] is generated by the polynomials:

F1, . . . , Fd, H1, . . . , Hr.By scaling the Fi and Hj appropriately, we may assume that these polynomials all have coefficientsin OK .We define C to be the closed subscheme of Pg−1
OK

defined by the polynomials F1, . . . , Fd, H1, . . . , Hr .We have CK = C which is isomorphic to XG since XG is not geometrically hyperelliptic. For allbut finitely many prime ideals p of OK , COp will be a smooth proper curve over Op. Whether thisholds for a particular prime ideal p can be checked using the Jacobian criterion for smoothness;unfortunately this turns out to be much too slow for our application (which involves canonicalmodels of relatively large genus and hence many equations). The goal of this section is to explainan alternate way to show that COp is a smooth curve over Op.
Lemma 6.3. Let p ∤ N be a nonzero prime ideal of OK and let P be a nonzero prime ideal
of Z[ζN ] = OQ(ζN ) that divides p. Assume that for each 1 ≤ i ≤ g , all the coefficients of
the q-expansion of fi are integral at P and let f i ∈ FP[[qN ]] be the power series obtained by
reducing the coefficients of the q-expansion modulo P. For a polynomial F ∈ OK[x1, . . . , xg ], let
F ∈ FP[x1, . . . , xg ] be the polynomial obtained by reducing the coefficients modulo P.

Assume that the following hold:(a) f1, . . . , fg are linearly independent over FP,(b) F1, . . . , Fd is a basis for the FP-vector space consisting of homogeneous polynomials
F ∈ FP[x1, . . . , xg ] of degree 2 for which F (f1, . . . , fg ) = 0.(c) the FP-subspace W of FP[x1, . . . , xg ] spanned by xiF j (x1, . . . , xg ), with 1 ≤ i ≤ g and1 ≤ j ≤ d, has dimension dimK W .(d) H1, . . . , Hr are linearly independent over FP and W ∩ (FPH1 + · · · + FPHr) = 0.

Then COp is a smooth curve over Op.

Proof. We claim that CFP ⊆ Pg−1
FP

is the image of the canonical map of some nice curve over FPof genus g that is not geometrically hyperelliptic. To prove the claim we may base extend sothat we are in the case where G ⊆ SL2(Z/NZ) and hence K = Q(ζN ) and p = P.After scaling the fi by suitable elements of OK − p, we may assume without loss of generalitythat that the q-expansion of each fi has coefficients in Z[ζN ]. By Lemma 4.3(ii) we can view each
fi as an element of H0(MN , ω⊗2) that is stable under the G-action. By using the isomorphism ofLemma 4.3(ii), we can view each f i as an element of H0(MN , ω⊗2)⊗Z[ζN ,1/N] FP = H0((MN )FP , ω⊗2)that is stable under the G-action, where (MN )FP = MN ×Z[ζN ,1/N] FP. Since fi ∈ S2,G and M∞

Nis étale, using (4.2) we can view fi as an element of H0(MN , Ω1
MN

) and f i as an element of
H0((MN )FP , Ω1(MN )FP ). We have a natural homomorphism

∞⊕
d=0 H0(MN , Ω⊗d

MN
) →

∞⊕
d=0 H0((MN )FP , Ω⊗d(MN )FP )
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of graded Z[ζN , 1/N]-algebras. Let I be the ideal of FP[x1, . . . , xg ] generated by homogeneouspolynomials F for which F (f1, . . . , fg ) = 0. We have have F1, . . . , Fd ∈ I2 and H1, . . . , Hr ∈ I3.From §4.4, we have a smooth proper curve MG = G\MN over OK[1/N] with (MG)K ∼= XG . Sinceeach f i is an element of H0((MN )FP , Ω1(MN )FP ) stable under the G-action, we can view f1, . . . , fg aselements of H0((MG)FP , Ω1(MG )FP ). Therefore, f1, . . . , fg is a basis of H0((MG)FP , Ω1(MG )FP ) over FPsince they are linearly independent by assumption (a) and since XG , and hence also (MG)FP , hasgenus g . Let C′ be the image of the canonical map

φ : (MG)FP → Pg−1
FParising from the basis f1, . . . , fd . The ideal I(C′) ⊆ FP[x1, . . . , xg ] corresponding to C′ ⊆ Pg−1

FPequals I . By assumption (b), F1, . . . , Fd is a basis of I(C′)2 over FP. Since d = (g−22 ), Proposi-tion 2.4(ii) implies that (MG)FP is not geometrically hyperelliptic and is thus isomorphic to C′. Byassumption (c), dimFP W = dimK W . We have dimK I(C)3 = dimFP I(C′)3 by Proposition 2.4(i).Therefore, dimFP I(C′)3/W = dimK I(C)3/W = r. Thus by assumption (d) and g ≥ 4, I(C′)3/Whas basis H1, . . . , Hr . By Proposition 2.4(iii), the ideal I(C′) is generated by the polynomials
F1, . . . , Fd, H1, . . . , Hr . This proves that CFP = C′ and the claim follows; CFP is the image of thecanonical map for the nice curve (MG)FP of genus g .We now prove the lemma. The Op-scheme COp ⊆ Pg−1

Op
is projective and its generic fiber

CKp = CKp ⊆ Pg−1
Kp

is a nice curve of genus g over Kp since CK
∼= XG is not geometricallyhyperelliptic. From Proposition 2.4(i), one can show that the Hilbert polynomial of CKp ⊆ Pg−1

Kp
is(2g−2)x−g+1. From the claim and Proposition 2.4(i), CFp ⊆ Pg−1

Fp
is a nice curve over Fp of genus

g whose Hilbert polynomial is (2g−2)x−g+1; this can be proved by base changing to FP first. Thescheme COp is flat over Op by using that the Hilbert polynomials of the fibers agree [GW23, 23.155].Therefore, COp is smooth over Op since the fibers are nice curves [GW23, Corollary 18.57]. Weconclude that COp is a smooth proper curve over Op. □To apply Lemma 6.3, we will use Proposition 4.4 to ensure that the coefficients of the q-expansions of each fi is integral at a prime ideal P ∤ N of Z[ζN ]. The conditions in Lemma 6.3are straightforward to check assuming enough terms of the q-expansions have been computed.Note that Lemma 6.3 will apply to all but finitely many prime ideals p ∤ N of OK .
6.4. Genus at least 5 case. Assume that g ≥ 5. We may assume that XG is not geometricallyhyperelliptic since we have already dealt with this case.Suppose that the ideal I(C) is not generated by I(C)2; whether this holds can be checked by§3.6.2 and Proposition 2.4. By Proposition 2.4, (XG)K is trigonal or is isomorphic to a smoothplane quintic. Therefore, XG is not geometrically bielliptic by Lemma 2.5.So we may now assume that I(C) is generated by I(C)2. We already have a basis F1, . . . , Fdof I(C)2 over K. By scaling the Fi , we may further assume that each Fi is an element of
OK[x1, . . . , xg ].We define C to be the closed subscheme of Pg−1

OK
defined by the polynomials F1, . . . , Fd . Wehave CK = C which is isomorphic to XG since XG is not geometrically hyperelliptic. For each1 ≤ i ≤ d, define the polynomial

Pi(x1, . . . , xg , y1, . . . , yg ) := Fi(x1 + y1, . . . , xg + yg ) − Fi(x1, . . . , xg ) − Fi(y1, . . . , yg )in OK[x1, . . . , xg , y1, . . . , yg ]. Since Fi is homogeneous of degree 2, we find that the polynomial
Pi(x1, . . . , xg , y1, . . . , yg ) is homogeneous of degree 2 in all the variables and also homogeneousof degree 1 in just the variables (x1, . . . , xg ) (or (y1, . . . , yg )).
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Let Z be the closed subscheme of Pg−1

OK
= Proj OK[y1, . . . , yg ] defined by the coefficients of

Fi(y1, . . . , yg )Pj (x1, . . . , xg , y1, . . . , yg ) − Fj (y1, . . . , yg )Pi(x1, . . . , xg , y1, . . . , yg )when viewed as polynomials over x1, . . . , xg as we vary over all 1 ≤ i < j ≤ d; note thatthe polynomials in OK[y1, . . . , yg ] obtained are all homogeneous. We may view C and Z assubschemes of the same Pg−1
OK

.
Lemma 6.4.(i) There is a bijection between the bielliptic involutions of CK and the set Z(K) − C(K). In

particular, the curve CK is geometrically bielliptic if and only if Z(K)−C(K) is nonempty.(ii) Let p be a nonzero prime ideal of OK for which COp is a smooth proper curve over Op.
If Z(Fp) − C(Fp) is empty, then CK is not geometrically bielliptic.

Proof. First consider any bielliptic involution σ of CK . By Proposition 2.6(i), there is a unique
a ∈ Pg−1(K) − C(K) such that the projection

π : Pg−1
K 99K Pg−2

Kcentered at a defines a degree 2 morphism from CK to a genus 1 curve that agrees with thequotient map CK → CK/⟨σ⟩ composed with an embedding. Take any b ∈ C(K) except for thefinite number of points for which the line ℓb between a and b is tangent to CK (equivalently, thepoints where the degree 2 morphism is ramified). We choose lifts of a and b to Kg − {0} whichwe also denote by a and b, respectively. The line ℓb intersects CK at exactly two distinct points,so there is a unique t ∈ K − {0} for which we have Fi(ta + b) = 0 for all 1 ≤ i ≤ d. We have0 = Fi(ta + b) = Pi(ta, b) + Fi(ta) + Fi(b) = tPi(a, b) + t2Fi(a) + 0and hence tFi(a) + Pi(b, a) = 0. Since t is nonzero, we have
Fi(a)Pj (b, a) − Fj (a)Pi(b, a) = 0(6.1)for all 1 ≤ i < j ≤ d and all but finitely many b ∈ C(K). Therefore,

Fi(a)Pj (x, a) − Fj (a)Pi(x, a)(6.2)is a polynomial in K[x1, . . . , xg ] that lies in I(C)1 ⊗K K. Since I(C)1 = 0, the coefficients of (6.2)are all 0. This proves that a lies in Z(K) and we already have a /∈ C(K).We have just described an injective map f from the set of bielliptic involutions of CK to theset Z(K) − C(K). Now take any a ∈ Z(K) − C(K). Since a /∈ C(K), there is a 1 ≤ j ≤ d such that
Fj (a) ̸= 0. Take any b ∈ C(K). We choose lifts of a and b to Kg − {0} which we also denote by
a and b, respectively. By excluding finitely many b, we shall further assume that Pj (b, a) ̸= 0.Define t = −Pj (b, a)/Fj (a) ∈ K − {0}. The equation (6.1) holds for all 1 ≤ i ≤ d since a lies in
Z(K). Therefore, t is the unique value for which tFi(a) + Pi(b, a) = 0 holds for all i. Like above,we have Fi(ta +b) = tPi(a, b)+ t2Fi(a) and hence Fi(ta +b) = 0 for all i. We deduce that the line
ℓb in Pg−1

K through a and b intersects CK at precisely two points. So projection from a definesa morphism CK → Pg−2
K which gives a degree 2 morphism π : CK → C′ for a curve C′ over K.By Proposition 2.6(ii), C′ has genus 1. We have f (σ ) = a, where σ is the involution of CK arisingfrom π . This proves that f is a bijection which proves (i).We will now prove (ii). Assume that COp is a smooth proper curve over Op. The curve CFp ⊆

Pg−1
Fp

is smooth, has genus g and degree 2g −2, and is hence a canonical curve. Suppose that CK isgeometrically bielliptic. Using Proposition 2.8, one can show that CFp is geometrically bielliptic.By Proposition 2.6(i), there is an a ∈ Pg−1(Fp) − C(Fp) such that the projection Pg−1
Fp

99K Pg−2
Fpcentered at a defines a degree 2 morphism from CFp

to a genus 1 curve. An identical argument
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as above shows that a lies in Z(Fp) − C(Fp). So if Z(Fp) − C(Fp) is empty, then CK cannot begeometrically bielliptic. □The set Z(K) − C(K) is finite by Lemma 6.4(i) since a curve of genus at least 2 has only finitelymany automorphisms. Moreover, Lemma 6.4(i) implies that C = CK is geometrically biellipticif and only if Z(K) − C(K) is nonempty. Since the set Z(K) − C(K) is finite, the quasiprojectivevariety W := ZK − CK is closed and is either empty or has dimension 0.We proceed by considering several nonzero prime ideals p of OK for which COp is a smoothproper curve over Op. Such primes can be found by making use of the approach from §6.3.Define the quasiprojective variety

Wp := ZFp − CFp ⊆ Pg−1
Fp

.If Wp is empty, then Lemma 6.4(ii) implies that C is not geometrically bielliptic.Suppose that Wp is nonempty. Since Z(K) − C(K) is finite, we may assume that Wp is a closedsubvariety of dimension 0 by excluding a finite number of p. Consider one of the finitely manyclosed points of Wp; it gives a point a ∈ Wp(F) for some finite extension F of Fp. We have
a ∈ Z(F) and a /∈ C(F). There is a finite extension of Kp whose ring of integers R has residuefield F; the ring R is Henselian. Using the defining equations for Z, we can then check if a liftsuniquely to a point a′ in Z(R); note that we do not need to compute a′. Now suppose we haveproved the existence of a point a′ ∈ Z(R) as above; we have a′ /∈ C(R) since a /∈ C(F). We thushave a point a′ in W and hence a′ can be defined over K since W has dimension at most 0.Therefore, Z(K) − C(K) is nonempty and C = CK is geometrically bielliptic.By considering more and more nonzero prime ideals p of OK , this process will eventuallydetermined if C is geometrically bielliptic or not. We could also try to check if Z(K) − C(K) isnonempty directly but the computations are significantly faster over finite fields. When g ≥ 6,Theorem 2.2 implies that CK has at most 1 bielliptic involution and hence W is empty or consistsof a single point.
6.5. Genus 4 case. Assume that g = 4. We may assume that XG is not geometrically hyperellipticsince we have already dealt with this case. By Proposition 2.1(iii), we deduce that XG has geometricgonality 3.We can compute a basis of I(C)2 over K which by Proposition 2.4(ii) consists of a singlepolynomial F ∈ K[x1, . . . , x4]2. By Proposition 2.4(iii) and (iv), there is a single polynomial H ∈
K[x1, . . . , x4]3 such that the ideal I(C) is generated by F and H . By scaling F and H , we mayassume that they have coefficients in OK . We define C to be the closed subscheme of Pg−1

OKdefined by the polynomials F and H . We have CK = C which is isomorphic to XG since XG isnot geometrically hyperelliptic.With x = (x1, . . . , x4) and y = (y1, . . . , y4), we have polynomials P, Q, R ∈ OK[x1, . . . , x4, y1, . . . , y4]such that
F (x + y) = F (x) + P(x, y) + F (y) and H(x + y) = H(x) + Q(x, y) + R(x, y) + H(y),where Q(x, y) and R(x, y) are homogeneous polynomials of degree 3 that are homogeneous ofdegree 2 and 1, respectively, in just the variables x1, . . . , x4. The polynomial P(x, y) is homoge-neous of degree 2 and homogeneous of degree 1 in just the variables x1, . . . , x4.

Lemma 6.5. Let L be the field K or a field Fp where p is a nonzero prime ideal p for which COp is
a smooth proper curve over Op. Take any point a ∈ Pg−1(L) − C(L) and choose a representative
a ∈ Lg − {0}. Let

φ : CL → Pg−2
L

be the projection from the point a.
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(i) Suppose that F (a) ̸= 0. Then φ has degree 2 if and only if P(x, a) ̸= 0 and

P(x, a)2H(a) − P(x, a)F (a)R(x, a) + F (a)2Q(x, a)
is a scalar multiple of F in L[x1, . . . , x4]. If φ has degree 2, then φ is ramified exactly at
the points in CL for which P(x, a) vanishes.(ii) Suppose that F (a) = 0, that H(a) ̸= 0 and that Q(x, a) is not a scalar multiple of F in
L[x1, . . . , x4]. Then φ has degree 2 if and only if P(x, a) = 0 and

R(x, a)2 − 4H(a)Q(x, a)
is a scalar multiple of F .(iii) Suppose that F (a) = 0, that H(a) ̸= 0 and that Q(x, a) is a scalar multiple of F in
L[x1, . . . , x4]. Then φ has degree 2 if and only if P(x, a) = 0 and R(x, a) ̸= 0.

Proof. When L = Fp, CFp ⊆ Pg−1
Fp

is a nice curve of genus g and degree 2g − 2, and is hence acanonical curve. Thus for the ideal I of CL , I1 = 0 and I2 is generated by the image of F . Since
CL is a canonical curve, the morphism φ is nonconstant.Take any b ∈ C(L) except for the finite number of points for which the line ℓb between a and
b is tangent to b in CL . Choose a lift of b ∈ Lg−1 − {0} of b. For t ∈ L, we have F (b + ta) =
F (b)+ tP(b, a)+ t2F (a) = tP(b, a)+ t2F (a) and H(b + ta) = H(b)+ tQ(b, a)+ t2R(b, a)+ t3H(a) =
tQ(b, a) + t2R(b, a) + t3H(a). The line ℓb intersects CL at a point that is not b if and only if therea t ∈ L − {0} with F (b + ta) = 0 and H(b + ta) = 0; equivalently, we have a t ∈ L − {0} such that

tF (a) + P(b, a) = 0(6.3)and
t2H(a) + tR(b, a) + Q(b, a) = 0.(6.4)Suppose that F (a) ̸= 0. Then ℓb intersects CL at a point that is not b if and only if P(b, a) ̸= 0and P(b, a)2H(a) − F (a)P(b, a)R(b, a) + F (a)2Q(b, a) = 0 (solve for t in (6.3) and then substituteinto (6.4)). In particular, this implies that φ−1(b) has cardinality at most 2 for all but finitely many

b ∈ C(L) and hence has degree at most 2. The morphism φ has degree 2 if and only if P(x, a) /∈ I1and P(x, a)2H(a) − F (a)P(x, a)R(x, a) + F (a)2Q(x, a) ∈ I2. When φ has degree 2, from the abovecomputations we find that the points in CL for which φ is ramified are precisely those for whichthe linear equation P(x, a) vanishes.We shall now assume that F (a) = 0. We must have H(a) ̸= 0 since a is not in CL . For φ tohave degree greater than 1, we need P(x, a) ∈ I1 by (6.3). So we may assume that P(x, a) = 0since I1 = 0.Suppose that Q(x, a) /∈ I2. So for all but finitely many b ∈ C(L), we have Q(b, a) ̸= 0 andhence t = 0 is not a root of (6.4). Therefore, φ is a morphism of degree 2 if and only if
R(x, a)2 − H(a)Q(x, a) is in I2 (this is needed so that (6.4) has one repeated root as a polynomialin t).Suppose that Q(x, a) ∈ I2. Then (6.4) has two roots t = 0 and t = −R(b, a)/H(a). Therefore, φis a morphism of degree 2 if and only if R(x, a) /∈ I1.The lemma is now immediate since I1 = 0 and I2 is spanned by F . □Consider a fixed prime ideal p ∤ N of OK for which COp is a smooth proper curve over Op.Such primes can be found by making use of the approach from §6.3.With L = Fp, we can then determine whether there is an a ∈ Fg

p − {0} for which projectionby its image a ∈ Pg−1(Fp) defines a degree 2 morphism
φ : CFp

→ Pg−2
Fp



26 DAVID ZYWINA
and a /∈ C(Fp). Indeed, we need only check the three cases of Lemma 6.5. For the three cases ofLemma 6.5, the condition for φ to have degree 2 is equivalent to a being the Fp-point of a certain
OK-scheme Z1, Z2 and Z3, respectively, that do not depend on p.First suppose that we find that (Zi)Fp is empty for all 1 ≤ i ≤ 3. Then there is no projectionfrom a point a ∈ Pg−1(Fp) − C(Fp) that defines a degree 2 morphism of CFp

. Since CFp
⊆ Pg−1

Fp
isa canonical curve, Proposition 2.6(i) implies that CFp

is not bielliptic. So CFp is not geometricallybielliptic and hence C = CK is not geometrically bielliptic by Proposition 2.8(ii). We deduce that
XG

∼= C is not geometrically bielliptic.Suppose that (Z1)Fp is nonempty. There is a point a ∈ Z1(F) for some finite extension F ⊆ Fpof Fp. Choose a lift a ∈ Fg−1 − {0}. There is a finite extension L of Kp whose ring of integers
R has residue field F; the ring R is Henselian. Using the defining equations for Z1, we can thencheck if a lifts uniquely to a point a′ in Z(R); note that we do not need to compute a′. Nowsuppose further that the hyperplane P(x, a) = 0 intersects CFp at 6 distinct points (this is thegeneric behavior since CFp has degree 2g −2 = 6). Suppose that the Hensel lift a′ exists and thatmoreover the 6 points above lift unique to points in C(R) that lie in the hyperplane P(x, a′) = 0.Using Proposition 6.5(i), we find that the projection φ : CL → Pg−1

L from a′ defines a morphism ofdegree 2 for which at least 6 points ramify. Since CL
∼= (XG)L is not hyperelliptic, the Riemann–Hurwitz formula implies that φ(CL) has genus 1 and hence CL is bielliptic. Therefore, XG isgeometrically bielliptic.If (Z2)Fp or (Z3)Fp are nonempty, then there are similar arguments to lift their points and see ifit proves that XG is geometrically bielliptic. We do not the give the details since they are similarand since these cases never arose in our actual computations!By considering enough primes p ∤ N , the above arguments will sufficient to determine whether

XG is geometrically bielliptic (this can be deduced from Proposition 2.6(i) and Lemma 6.5).
7. CLASSIFICATION FOR CONGRUENCE SUBGROUPS OF GENUS AT MOST 24In the section, we proof the classification of Theorem 1.1 when restricted to congruencesubgroups of genus at most 24. In particular, we verify all of Table 1.1 except for the last column.

Magma code for this process can be found in [Zyw25].Cummins and Pauli [CP03] have given a complete classification of all congruence subgroupsΓ of SL2(Z) with −I ∈ Γ, up to conjugacy in GL2(Z), for which XΓ has genus at most 24. Notethat the isomorphism class of the curve XΓ does not change if we replace Γ by a conjugate inGL2(Z).There is a slight difference between conjugacy in GL2(Z) and SL2(Z) that needs to be taken intoaccount for the values in Theorem 1.1 and Table 1.1. Define A = ( −1 00 1 ); it is a representative ofthe nonidentity coset GL2(Z)/ SL2(Z). If Γ and AΓA−1 are conjugate in SL2(Z), then the congruencesubgroups conjugate to Γ in SL2(Z) and GL2(Z) agree. If Γ and AΓA−1 are not conjugate in SL2(Z),then a congruence subgroup conjugate to Γ in GL2(Z) is conjugate to either Γ or AΓA−1 in SL2(Z).We now fix one of the finitely many congruence subgroups Γ of SL2(Z) containing −I thatare in the Cummins–Pauli classification. Let CΓ be the finite set of congruence subgroups Γ′ forwhich Γ ⊊ Γ′ ⊆ SL2(Z). Let g be the genus of XΓ, D the index of Γ in SL2(Z), and N the level ofΓ. We can deal with the congruence subgroups ordered by increasing index in SL2(Z). In partic-ular, for a group Γ′ ∈ CΓ we will know if the gonality of XΓ′ is 1, 2, 3 or at least 4; we will alsoknow whether or not XΓ′ is bielliptic.The curve XΓ has gonality 1 if and only if g = 0. If g = 0, then XΓ is not bielliptic. If g = 1,then XΓ has gonality 2 and it is bielliptic. So we need only consider the cases where g ≥ 2.
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7.1. Choice of models. For some Γ, we will need to choose a model of XΓ defined over anumber field. We can choose a subgroup G ⊆ GL2(Z/NZ) with [GL2(Z/NZ) : G] minimal forwhich G ∩ SL2(Z/NZ) agrees with Γ modulo N . The modular curve XG is defined over thenumber field KG = Q(ζN )det(G). Recall that (XG)C and XΓ are isomorphic curves over C. Thereason for taking [GL2(Z/NZ) : G] minimal is so that KG has relative small degree. For thegroups G we will need to consider throughout §7, [KG : Q] turns out to be a power of 2 that is atmost 16.
7.2. Gonality 2 classification. We now determine whether XΓ has gonality 2. The curve XΓ hasgonality 2 when g = 2 so we may assume that g ≥ 3. If XΓ has gonality 2, then Corollary 5.2(i),implies that D ≤ 201 and that D ≤ 191 when N ≤ 226.So we need only consider the cases where D ≤ 201 or D ≤ 191 when N ≤ 226. By Theo-rem 5.4(i), we may assume further that D ≤ 24(p2 +1)/(p −1) for all primes p ∤ N since otherwise
XΓ does not have gonality 2. We may assume that XΓ′ has gonality at most 2 for all Γ′ ∈ CΓ sinceotherwise XΓ does not have gonality 2 by Proposition 2.1(iv).If there is a Γ′ ∈ CΓ for which [Γ′ : Γ] = 2 and XΓ′ has genus 0, then the morphism XΓ → XΓ′implies that XΓ has gonality 2; we may thus assume that no such Γ′ exists. Take any Γ′ ∈ CΓ. If
XΓ has gonality 2, then the Castelnuovo–Severi inequality (Theorem 2.2), with the hyperellipticmap of XΓ and the morphism XΓ → XΓ′ , gives

g ≤ [Γ′ : Γ]g ′ + ([Γ′ : Γ] − 1),(7.1)where g ′ is the genus of XΓ′ . So we may assume that (7.1) holds for all Γ′ ∈ CΓ since otherwise
XΓ does not have gonality 2.Finally if the above methods are inconclusive, we can determine if XΓ has gonality 2 byapplying the methods of §3.6.1 to XG with a group G as in §7.1. In our computation, we neededto use this direct approach 455 times.
7.3. Gonality 3 classification. We now determine whether XΓ has gonality 3. Using §7.2, we mayassume that XΓ has gonality at least 3. If XΓ has gonality 3, then Corollary 5.2(ii), implies that
D ≤ 302 and that D ≤ 287 when N ≤ 226.So we need only consider the case where D ≤ 302 or D ≤ 287 when N ≤ 226. By Theo-rem 5.4(ii), if g ≥ 5, then we may assume further that D ≤ 36(p2 + 1)/(p − 1) for all primes p ∤ Nsince otherwise XΓ does not have gonality 3. We may assume that XΓ′ has gonality at most 3 forall Γ′ ∈ CΓ since otherwise XΓ does not have gonality 3 by Proposition 2.1(iv).If there is a Γ′ ∈ CΓ for which [Γ′ : Γ] = 3 and XΓ′ has genus 0, then the morphism XΓ → XΓ′implies that XΓ has gonality 3; we may thus assume that no such Γ′ exists. Take any Γ′ ∈ CΓ. If
XΓ has gonality 3, then the Castelnuovo–Severi inequality (Theorem 2.2), with the hyperellipticmap of XΓ and the morphism XΓ → XΓ′ , gives

g ≤ [Γ′ : Γ]g ′ + 2([Γ′ : Γ] − 1),(7.2)where g ′ is the genus of XΓ′ . So we may assume that (7.2) holds for all Γ′ ∈ CΓ since otherwise
XΓ does not have gonality 3.Finally if the above methods are inconclusive, we can determine if XΓ has gonality 3 byapplying the methods of §3.6.2 to XG with a group G as in §7.1. In our computation, we neededto use this direct approach 988 times.
7.4. Bielliptic classification. We now determine whether XΓ is bielliptic.If XΓ is bielliptic, then XΓ has gonality at most 4. By Corollary 5.2 we may assume that D ≤ 403and that D ≤ 383 when N ≤ 226 since otherwise XΓ has gonality at least 5. By Theorem 5.4(iii),if g ≥ 6, then we may assume further that D ≤ 24(p2 + 2p + 1)/(p − 1) for all primes p ∤ N sinceotherwise XΓ is not bielliptic.
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For any Γ′ ∈ CΓ, we have a morphism XΓ → XΓ′ . So if XΓ is bielliptic, then XΓ′ has gonality atmost 2 or is bielliptic for all Γ′ ∈ CΓ by Lemma 2.5(iii). We can thus assume that XΓ′ has gonalityat most 2 or is bielliptic for all Γ′ ∈ CΓ.If there is a Γ′ ∈ CΓ for which [Γ′ : Γ] = 2 and XΓ′ has genus 1, then the morphism XΓ → XΓ′implies that XΓ is bielliptic; we may thus assume that no such Γ′ exists. Take any Γ′ ∈ CΓ. If

XΓ is bielliptic, then the Castelnuovo–Severi inequality (Theorem 2.2), with a bielliptic map of XΓand the morphism XΓ → XΓ′ , gives
g ≤ [Γ′ : Γ]g ′ + 2 + ([Γ′ : Γ] − 1),(7.3)where g ′ is the genus of XΓ′ . So we may assume that (7.3) holds for all Γ′ ∈ CΓ since otherwise

XΓ is not bielliptic.Finally if the above methods are inconclusive, we can determine if XΓ is bielliptic by applyingthe methods of §6 to XG with a group G as in §7.1. In our computation, we needed to use thisdirect approach 1324 times. 8. PROOF OF THEOREM 1.1In §7, we proved the part of the classification in Theorem 1.1 that concerns congruencessubgroups Γ for which XΓ has genus at most 24. This constraint on the genus arises from ouruse of the classification of low genus congruence subgroups due to Cummins and Pauli [CP03].Suppose that there is a congruence subgroup Γ of SL2(Z) containing −I for which XΓ hasgenus g ≥ 25 and XΓ has gonality at most 3 or is bielliptic. To complete the classification, weneed to obtain a contradiction. We may assume that our Γ was chosen with [SL2(Z) : Γ] minimal.Let N be the level of Γ and let D be the index of Γ in SL2(Z).Let N1 be the largest power of 2 that divides N and define N2 := N/N1. For each i ∈ {1, 2}, let
Hi ⊆ SL2(Z/NiZ) be the image of Γ modulo Ni . Let Γi be the congruence subgroup consistingof matrices in SL2(Z) whose image modulo Ni lies in Hi . Let Mi be the level of Γi; it divides Ni .
Lemma 8.1. Assume that N is even.(i) We have D = m[SL2(Z) : Γ2] for some integer m of the form 2e or 2e3 with e ≥ 0.(ii) Every prime p > 3 that divides N also divides M2.(iii) Suppose 3 ∤ M2. The integer D is divisible by 6 · [SL2(Z) : Γ2]. The index of the image ofΓ modulo 6 in SL2(Z/6Z) is divisible by 6 and the image of Γ modulo 2 is not SL2(Z/2Z).(iv) If D = 3[SL2(Z) : Γ2], then Γ1 has level 2 and [SL2(Z) : Γ1] = 3.
Proof. Let H ⊆ SL2(Z/NZ) be the image of Γ modulo N . We have a natural injective homomor-phism H ↪Ï H1 × H2, that we can view as an inclusion, such that the projection maps pi : H → Hiare surjective. Let B1 and B2 be the normal subgroups of H1 and H2, respectively, for whichker(p2) = B1 ×{1} and ker(p1) = {1}×B2. In particular, we may view B1 ×B2 as a subgroup of H .By Goursat’s lemma [Rib76, Lemma 5.2.1], the image of H in (H1 ×H2)/(B1 ×B2) = H1/B1 ×H2/B2is the graph of an isomorphism H1/B1 ∼−Ï H2/B2. We can view H/(B1 × B2) as an index |H1/B1|subgroup of (H1 × H2)/(B1 × B2) and hence |H| = |H1||H2|/|H1/B1| = |B1||H2|. Therefore,
D = [SL2(Z/NZ) : H] = [SL2(Z/N1Z) : B1][SL2(Z/N2Z) : H2] and hence

D = [SL2(Z/N1Z) : B1] · [SL2(Z) : Γ2].(8.1)This proves (i) since | SL2(Z/N1Z)| = 2e3 for some e ≥ 1. The group H1 is solvable sinceSL2(Z/2mZ) is solvable for all m ≥ 1. Therefore, H2/B2 ∼= H1/B1 is solvable.Consider any odd prime p that divides N but does not M2. Let pe > 1 the largest power of
p that divides N2 and define N ′2 := N2/pe . Since p ∤ M2, we have H2 = H ′2 × SL2(Z/peZ) witha subgroup H ′2 ⊆ SL2(Z/N ′2Z). From our description of H from Goursat’s lemma and from Γhaving level N , we obtain a nontrivial homomorphism

φ : SL2(Z/peZ) ∼−Ï {I} × SL2(Z/peZ) ⊆ H2 → H2/B2 ∼−Ï H1/B1.
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Suppose that p > 3 and hence the group SL2(Z/peZ) is equal to its own commutator subgroup,cf. [Zyw10, Lemma A.1]. So φ(SL2(Z/peZ)) is a nontrivial subgroup of H1/B1 that is equal toits own commutator subgroup which contradicts that H1/B1 is solvable. This proves (ii). Wenow have p = 3 and 3 ∤ M3. The maximal abelian quotient of SL2(Z/3eZ) is cyclic of order 3,cf. [Zyw10, Lemma A.1]. Since φ is nontrivial and H1/B1 is solvable, we deduce that H1/B1 has anormal subgroup of index 3. Let W1 be the image of H1 modulo 2. The kernel of the reductionmodulo 2 homomorphism H1 → W1 is a 2-group and hence W1 contains a normal subgroup ofindex 3. Since SL2(Z/2Z) ∼= S3, this implies that W1 is the unique subgroup of SL2(Z/2Z) of order3. Since H1/B1 has order divisible by 3, this implies that B1 has trivial image modulo 2. We thushave a surjective homomorphism̃

φ : SL2(Z/3eZ) φ−Ï H1/B1 → W1obtained by composing φ with reduction modulo 2. The maximal abelian quotient of SL2(Z/3eZ)is cyclic of order 3 and factors through SL2(Z/3Z), cf. [Zyw10, Lemma A.1], and hence φ̃ factorsthrough a surjective homomorphism φ̃′ : SL2(Z/3Z) → W1. From our description of H in termsof Goursat’s lemma, we find that the image of H modulo 6 lies in the group
{(A1, A2) ∈ SL2(Z/2Z) × SL2(Z/3Z) : φ̃′(A2) = A1},where we have made an identification SL2(Z/6Z) = SL2(Z/2Z) × SL2(Z/3Z). This proves that theimage of H modulo 6 lies in an index 6 subgroup of SL2(Z/6Z) and that the image of H modulo2 is not SL2(Z/2Z). Since B1 is the trivial group modulo 2, (8.1) implies that | SL2(Z/2Z)|[SL2(Z) :Γ2] = 6[SL2(Z) : Γ2] divides D. This completes the proof of (iii).We will now prove (iv). Suppose that D = 3[SL2(Z) : Γ2]. By (8.1), we have [SL2(Z/N1Z) : B1] = 3.This implies that the image of B1 in SL2(Z/2Z) has order 2 and that B1 contains all A ∈ SL2(Z/N1Z)with A ≡ I (mod 2). Since B1 is a normal subgroup of H1, we find that H1 modulo 2 equals B1modulo 2 (since SL2(Z/N1Z) does not have a normal subgroup of index 3 by [Zyw10, Lemma A.1]).From these properties, we deduce that Γ1 has level 2 and that its image modulo 2 has cardinality2. This proves (iv). □8.1. Gonality 1 and 2 cases. We know that XΓ does not have gonality 1 since g ≥ 25 > 0.Suppose that XΓ has gonality 2. Corollary 5.2(i) implies that D ≤ 201. Equation (3.1) impliesthat g ≤ 1 + D/12 ≤ 1 + 201/12 < 18. Since g ≥ 25, we deduce that XΓ does not have gonality 2.8.2. Gonality 3 case. Suppose that XΓ has gonality 3.

Lemma 8.2. We have 294 ≤ D ≤ 302, N ≡ 0 (mod 30), and g = 25.

Proof. We have D ≤ 302 by Corollary 5.2(ii). Since XΓ has a cusp, (3.1) implies that g ≤ 1 +
D/12 − 1/2 ≤ 1 + 302/12 − 1/2 < 26. We have g = 25 since g ≥ 25 by assumption. We have
D ≥ 294 since otherwise (3.1) implies that g ≤ 1 + 293/12 − 1/2 < 25. The integer N is divisibleby every prime p ≤ 5 since otherwise D ≤ 36(p2 +1)/(p−1) < 294 by Theorem 5.4(ii). Therefore,
N is divisible by 30. □By Lemma 8.1(ii) and Lemma 8.2, the level M2 of Γ2 is an odd integer that is divisible by 5.We have Γ ⊊ Γ2, where equality does not hold since the level N of Γ is even. Since g = 25, thegenus of the modular curve XΓ2 is at most 24. Proposition 2.1(iv) with the morphism XΓ → XΓ2implies that XΓ2 has gonality at most 3. By Lemmas 8.1(i) and 8.2, we have D = m[SL2(Z) : Γ2]and 294 ≤ D ≤ 302, where m is not divisible by any prime p > 3 and can only be divisible by 3once. Also when 3 ∤ M2, the level D will be divisible by 6[SL2(Z) : Γ2] by Lemma 8.1(iii).We now check which groups Γ2 in our explicit classification of all congruence subgroupscontaining −I with gonality at most 3 and genus at most 24 have all the above properties. Thereturns out to be a unique possibility for Γ2 up to conjugacy in GL2(Z); it has label 25E2 in theclassification of Cummins–Pauli. We can characterize Γ2, up to conjugacy in GL2(Z), as the
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unique congruence subgroup containing −I with level 25 and index 50 in SL2(Z) such that XΓ2has genus 2.Let Γ3 be the congruence subgroup of SL2(Z) consisting of matrices whose image modulo 6lies in the image of Γ modulo 6. Since Γ2 and Γ3 have relatively prime levels, the intersectionΓ2 ∩ Γ3 is uniquely determined up to conjugacy in GL2(Z), and[SL2(Z) : Γ2 ∩ Γ3] = [SL2(Z) : Γ2][SL2(Z) : Γ3] = 50[SL2(Z) : Γ3].Lemma 8.1(iii) implies that [SL2(Z) : Γ2 ∩ Γ3] is divisible by 50 · 6 = 300. From the inclusionΓ ⊆ Γ2 ∩ Γ3, we find that 300 also divides D. We thus have D = 300 since 294 ≤ D ≤ 302 andthis implies that Γ = Γ2 ∩ Γ3. The integer N divides 6 · 25 = 150 since Γ = Γ2 ∩ Γ3. Since XΓ hasgonality 3 and N ≤ 150, Corollary 5.2(ii) implies that D ≤ 287 which contradicts D = 300.
8.3. Bielliptic case. Finally suppose XΓ is bielliptic.
Lemma 8.3. We have 294 ≤ D ≤ 403 and N ≡ 0 (mod 210).
Proof. From the previous cases, we know that XΓ has gonality at least 4. Since XΓ is bielliptic, ithas gonality at most 4. Thus XΓ has gonality 4 and hence D ≤ 403 by Corollary 5.2(iii). We have
D ≥ 294 since otherwise (3.1) implies that g ≤ 1 + 293/12 − 1/2 < 25.The integer N is divisible by every prime p ≤ 7 since otherwise D ≤ 24(p2+2p+1)/(p−1) < 294by Theorem 5.4(iii). Therefore, N is divisible by 210. □

We have Γ ⊊ Γ2, where equality does not hold since the level N of Γ is even by Lemma 8.3. Bythe minimality of our choice of Γ and Lemma 2.5(iii), XΓ2 has gonality at most 2 or is bielliptic,and XΓ2 has genus at most 24.By Lemmas 8.1(ii) and 8.3, the level M2 of Γ2 is divisible by 35. By Lemmas 8.1(i) and 8.3, wehave D = m[SL2(Z) : Γ2] and 294 ≤ D ≤ 403, where m is not divisible by any prime p > 3 andcan only be divisible by 3 once. Also when 3 ∤ M2, the level D will be divisible by 6[SL2(Z) : Γ2]by Lemma 8.1(iii).We now check for all groups Γ2 as above in our explicit classification of congruence subgroupscontaining −I for which XΓ has genus at most 24 and XΓ has gonality at most 2 or is bielliptic.There turns out to be a unique possibility for Γ2 up to conjugacy in GL2(Z); it has label 105A10 inthe classification of Cummins–Pauli. We can characterize Γ2, up to conjugacy in GL2(Z), as theunique congruence subgroup containing −I with level 105 and index 120 in SL2(Z) such that XΓ2has genus 10.Since [SL2(Z) : Γ2] = 120 divides D and 294 ≤ D ≤ 403, we have D = 360 = 3[SL2(Z) : Γ2].Lemma 8.1(iv) implies that Γ1 has level 2 and [SL2(Z) : Γ1] = 3. Since Γ1 and Γ2 have relativelyprime levels, Γ1 ∩ Γ2 has level 2 · 105 = 210 and [SL2(Z) : Γ1 ∩ Γ2] = 3 · 120 = 360. We haveΓ = Γ1 ∩ Γ2 since we have an inclusion Γ ⊆ Γ1 ∩ Γ2 and both groups have index 360 in SL2(Z).In particular, N = 210 and D = 360. Since XΓ is bielliptic, Theorem 5.4(iii) with p = 11 impliesthat D < 346 which contradicts D = 360.
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