
Math 735: Algebraic Methods in Combinatorics

Sep. 16, 2008 Scribe: Thành Nguyen

In this lecture note, we describe some properties of convex sets and their connection with
a more general model in topological spaces. In particular, we discuss Tverberg’s theorem,
Borsuk’s conjecture and related problems.

First we give some basic properties of convex sets in R
d.

1 Radon, Helly and Carathéodory theorems

Definition 1. A set S ⊂ R
d is convex if for any a1, .., aN ∈ S and α1, .., αN ≥ 0;

∑

i αi = 1,
∑

i αiai is also in S.

Definition 2. Convex hull of a set A, denoted by conv(A), is the set of all convex combi-
nation of points in A. That is:

conv(A) = {x|∃a1, ..., aN ∈ A,α1, .., αN ≥ 0;
N

∑

i=1

αi = 1;x =
N

∑

i=1

αiai.}

Equivalently, a convex hull of A is the intersection of all convex sets containing A.

To see the equivalence in Definition 2, observe that every convex set containing A also
contain conv(A), thus all we need to show is that conv(A) as given by the formula is convex.
This is true because a convex combination of some convex combinations of a set A′ ⊂ A is
also a convex combination of A′.

Theorem 1 (Radon). Let a1, a2, ..., am ∈ R
d,m ≥ d+2, then there is a partition of {1, ..,m}

into I and J such that the convex hull of {ai, i ∈ I} and {aj , j ∈ J} is nonempty.

Proof. Consider bi := (ai, 1). We have m ≥ d + 2 vectors in d + 1 dimensional space, thus
they are linearly dependent. That is, there exists α1, ..., αm not all zero such that:

m
∑

i=1

αibi = 0.

Set I = {i|αi ≥ 0} and J = {j|αj < 0}. Because the last coordinate of bi is 1 we have:
∑

i∈I

αi = −
∑

αj∈J = α 6= 0.

Now the vector
∑

i∈I

αi

α
ai =

∑

j∈J

−αj

α
aj

is in both the convex hull of {ai|i ∈ I} and {aj |j ∈ J}, which proves the theorem.
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Theorem 2 (Helly). Let the sets K1, ..,Kn ∈ R
d be convex and compact. If any d + 1 of

these sets intersect, then all the sets intersect.

Proof. We prove by induction on n. When n = d + 1 the theorem is trivial. Assume that
n > d + 1. By induction, there is ai ∈ ∩j 6=iKj for every i. Now, by Radon theorem, we can
partition {1, .., n} into 2 sets I, J such the convex hulls conv{ai|i ∈ I} and conv{aj |j ∈ J}
intersect. Let y be a point in the intersection. We can show that y ∈ Kl ∀l. Without loss
of generality, assume that l ∈ I, then for all j ∈ J, aj ∈ Kl because of the definition of aj .
But Kl is a convex set, hence conv{aj |j ∈ J} ⊂ Kl. Therefore y ∈ conv{aj |j ∈ J} ⊂ Kl .

Theorem 3 (Carathéodory). For S ⊂ R
d, if x ∈ conv(S) then x ∈ conv(R) for some

R ⊂ S, |R| ≤ d + 1.

Proof. Assume that x =
∑

i|xi∈S αixi, such that αi > 0 ;
∑

i αi = 1 and |S| > d + 1. We

will show that there exists a set S′ of size smaller than |S|, such that x ∈ conv(S′). And
by this, we can always reduce the size of the set whose convex hull contains x until we get
R of size at most d + 1.

Consider x2 − x1, x3 − x1, .., xd+2 − x1, these vectors are linearly dependent. Therefore
there exist β2, .., βd+2 not all zero such that:

d+2
∑

i=2

βi(xi − x1) = 0.

Let β1 = −
∑

i≥2 βi and βj = 0 for j > d + 2, we have
∑

i βixi = 0 and
∑

i βi = 0. Now,

x =
∑

i

αixi =
∑

i

αixi − λ
∑

i

βixi for all λ

x =
∑

i

(αi − λβi)xi for all λ

Thus, we can choose a λ such that all α′
i = αi − λβi ≥ 0 and at least one such value is 0.

But because α′
i ≥ 0,

∑

i α
′
i =

∑

i αi = 1, we obtain another convex representation of
x whose support has size smaller than |S|. As argued above, by this, we have proved the
theorem.

Remark: The theorems above are among the most basic properties of convex sets. There
are more general forms of these theorems. In particular, the topological version of Randon’s
theorem is as follows:

Let f be a continuous function from the boundary of a (d + 1) dimensional
simplex to R

d, f : ∂d+1 → R
d then there are two disjoint proper faces of the

simplex such that their images intersect.

Radon theorem is a special case when f is affine. Based on this theorem, a topological
version of Helly’s theorem can be given as follows:
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Let Ki be sets in R
d such that the intersection of any collection of sets is either

empty or contractible. A set is contractible if there is a point in a set such that
for every other point in the set the whole interval is also in the set. If any of
d + 1 sets intersect then all the sets intersect.

2 Tverberg’s theorem

In this section we discuss a generalization of Radon theorem: Tverberg’s theorem. This
theorem was first proved by Tverberg [5] in 1966. The original proof was involved and
difficult. Barány [1] in 1982 gave a generalization of Carathéodory’s theorem, and it came
as a surprise when Sarkaria [6] discovered that this version of Carathéodory’s theorem
implies Tverberg’s theorem in an elegant way. We now state the Tverberg’s theorem.

Theorem 4 (Tverberg). Given at least (r − 1)(d + 1) + 1 points in R
d, we can always

partition these points into r parts such that the convex hull of these parts intersect.

Example. For a simple case: when we have 7 points in the plane we can always partition
them in 3 parts such that their convex hulls intersect. See Figure 1.

Figure 1: A simple example.

Remark. Tverberg’s theorem is a generalization of Radon’s theorem where r = 2. The
minimum number of points in the theorem is tight as shown by the example in Figure 2. In
this example, we have 3(r−1) points in the plane, r−1 point on each “ray”. We show that
we cannot partition these points into r parts such that their convex hull intersect. Assume
that we have such a partition X1, ..,Xr . Because we have on each ray r − 1 points, thus
there exists a set, say X1, that does not contain any point from A, and there is a set, say
X2, that does not contain any point from B . But then the convex hull of X1,X2 can only
intersect at a point in the convex hull of C. However, C also contains only r − 1 points,
thus, there is a set X3 that does not contain any point from C. Therefore conv(X3) is
disjoint from conv(X1) ∩ conv(X2).

We now describe the proof of Tverberg’s theorem given by Sarkaria. We start with the
colorful Carathéodory’s theorem given by Barány.
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Figure 2: Tight example in the plane.

Theorem 5 (Barány). Let A1, A2, . . . , Ad+1 be d+1 sets in Rd. Suppose that x ∈ conv(A1)∩
conv(A2)∩conv(A3)∩· · ·∩conv(Ad+1). Then there is a set A = {a1 ∈ A1, a2 ∈ A2, . . . , ad+1 ∈
Ad+1} such that x ∈ conv(a1, a2, . . . , ad+1).

Proof. We can assume that Ai are finite. Take a set A = {a1, .., ad+1} such that ai ∈ Ai∀i
and the convex hull C = conv(A) is as close to x as possible. If x ∈ C we are done. Assume
by contradiction that x /∈ C, let c be the point nearest to x in C. Thus, c in on one of
the facets of C. We can apply Carathéodory’s theorem for d − 1 dimensional space: c can
be written as a convex combination of at most d of ai. Assume that the first point a1 is
not used in the presentation of c. Then a1 can be replaced by any element of A1 without
increasing the distance between x and C. Now, consider the hyperplane through c and
orthogonal to x − c. It separates x from a1. By the condition that the convex hull of A1

contains x thus, there is a a′1 ∈ A1 being on the same side of the hyperplane as x. It is easy
to see now that the distance from x to the convex hull of {a′1, a2, .., ad+1} in smaller than
that to C. We obtained a contradiction.

We are ready to prove the Tverberg’s theorem:
Proof of Tverberg theorem Writing n = (d + 1)(r − 1). We can assume that X =
{x0, x1, ..., xn}, where xi ∈ R

d∀i, is the set that we need to partition. Let yi be the (d + 1)
dimensional vector whose first d coordinates are xi’s coordinates and whose last one is 1:
yi = (xi, 1).

Here is the nontrivial idea introduced by Sarkaria: Choose vectors v1, ..., vr ∈ R
r−1 with

the restriction that the only linear dependence (apart from a scalar multiplier) is

v1 + ... + vr = 0.

Consider the (r − 1) × (d + 1) sized matrices vjy
T
i . Define:

Ai = {v1y
T
i , v2y

T
i , .., vry

T
i } for every i = 0, 1, ..., n.
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Ai is a set of vectors in Rn. Observe that 0 ∈ conv(Ai) for every i, because of the condition
v1 + ... + vr = 0. Thus we can apply Theorem 5 for the sets Ai: There is a set A = {a0 ∈
A0, ..., an ∈ An} such that 0 is in its convex hull. That is

n
∑

i=0

αiai = 0 for some αi ≥ 0,
∑

αi = 1

Assume ai = vσ(i)y
T
i for some index σ(i). We now define Ik = {i : σ(i) = k}. We will

show that this is a partition that we are looking for. Define zk =
∑

i∈Ik
αiyi,. We rewrite

the equation
∑n

i=0 αiai = 0, by grouping αiai according to the partition defined above:

0 =

n
∑

i=0

αivσ(i)y
T
i =

r
∑

k=1

vk

∑

j∈Ik

αjy
T
j =

r
∑

k=1

vkz
T
k .

Now because the only linear dependence of vi is v1 + ...+vr = 0, we have that all the vector
zk are the same. But zk is in a cone defined by some vectors yi which are (xi, 1). This
fact show that the convex hull of xi in each partition Ij contain a vector z∗ obtained by
taking the first d coordinate of zk divided by the last coordinate. By this, we proved the
theorem.
Remark: The proof for the existence of Tverberg’s partitions above depends on the exis-
tence of a set A in Theorem 5. Until now, no polynomial time algorithms for finding such
sets are known. It is also an open problem whether a polynomial time algorithm for finding
Tverberg’s partitions exists.
Remark: Sierksma conjectured that the number of Tverberg partitions for a set of (r −
1)(d + 1) + 1 points in general position in R

d is at least ((r − 1)!)d. The conjecture is
still unresolved. When r = pk, a prime power, Stephan Hell showed that the number of
Tverberg partitions is at least:

1

(r − 1)!
(

r

k + 1
)

(d+1)(r−1)
2

Remark: As in Radon’s theorem, there is a topological version of Tverberg’s theorem:

Let N = (r − 1)(d + 1), every continuous map f from the boundary of the N
dimensional simplex to R

d, there exist r disjoint faces F1, .., Fr of the simplex
whose images under f intersect.

The proof, however, is only known when r is a prime or prime powers. See Barány, Shlosman
and Szücs [2].
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3 Borsuk’s problem

In the previous sections we have seen some interesting properties related to convex sets
and their topological generalization. In this section, we discuss another interesting problem
called the Borsuk’s conjecture. Let’s start with simple examples.

Consider a 2 dimensional disc of diameter 1, we would like to cut the disc in pieces of
smaller diameter. How many pieces do we need to cut the disc into? It is clear that we
need to cut the disc into at least 3 parts. If we consider a ball in 3 dimensional space, it
takes a little more effort to show that we need to cut the ball into at least 4 parts.

As we will see later, it is not hard to see that we can always cut a d dimensional ball to
d + 1 parts to reduce the diameter. But is this the optimal way? Can we extend the result
to arbitrary sets in R

d? In the early thirties Borsuk asked the following question:

Is it true that every set in R
d can be cut into d + 1 pieces of smaller diameter?

For many years, many people expected the answer for the question above to be “YES”,
therefore call the problem the Borsuk’s conjecture. It turned out that the conjecture is true
when the set is smooth (defined later) and it is not when this condition is dropped. In the
rest of this section, we show the following results:

• We can cut a d dimensional ball into d + 1 parts of smaller diameter, and there is no
way to do it with d parts.

• Any bounded “smooth” (defined later) d-dimensional set can be divided in d+1 parts
of smaller diameter.

• There exists a convex set in R
d such that the number of parts we need to cut to reduce

the diameter is at least (1.01)
√

d.

Notation: We use the following notation: Given X ⊂ R
d, the diameter of X denoted by

diam(X) is defined as supa,b∈X l(a, b), where l(a, b) is the Euclidean distance between a, b.
We denote b(X) to be the minimum number of sets that we need to partition X into sets
of smaller diameter. For a dimension d, denote b(d) as the supremum of the values of b(X)
over all bounded sets X ∈ R

d.
Remark: Kahn and Kalai [3] constructed a set X as a counter example for the Borsuk’s

conjecture, where b(X) ≥ (1.2)
√

d. In this lecture note, we prove a slightly weaker bound.
For the upper bound of b(d) , Schramm proved that: ∀ǫ > 0,∃d(ǫ) s.t ∀d > d(ǫ) :

b(d) < (β + ǫ)d, where β =
√

3/2.
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To prove the results in this section, we need a tool from topology . In particular the
Borsuk-Ulam’s theorem. For more applications of Borsuk-Ulam’s theorem see a book of
Matoušek [4].

Theorem 6 (Borsuk-Ulam). Any continuous function from an n-sphere into Euclidean n-
space maps some pair of antipodal points to the same point. (Two points on a sphere are
called antipodal if they are in exactly opposite directions from the sphere’s center.)

Theorem 7. Given a d dimensional ball B, b(B) = d + 1.

Proof. We need to show that there is a way to partition the ball into d + 1 parts of smaller
diameter, but we cannot do it with partitions of less than d + 1 parts.

First we show how to cut the ball into d+1 parts of smaller diameter. The construction
is quite natural. Take a symmetric simplex whose vertices are on the sphere. Let 0̄ be the
center of the simplex and of the ball. Cut the ball into d + 1 parts by d + 1 cones from 0̄ to
each facet of the simplex. It is clear that the diameter of each part is strictly smaller than
the diameter of the ball.

Now, assume that we can partition the ball into d parts X1,X2, ..,Xd of smaller diameter.
We will use this partition to define a continuous function from the boundary of the ball to
R

d as follows: Given a x ∈ Sd−1, f(x) = (l(x,X1), l(x,X2), .., l(x,Xd)). Here l(x,Xi) is the
Euclidean distance between x and the set Xi. It is clear that this function is continuous.
By Borsuk-Ulam theorem, there exists x and −x such that f(x) = f(−x). Without loss of
generality, assume that x ∈ X1, we have d(x,X1) = 0 therefore, l(−x,X1) = 0 thus, the
diameter of X1 is the same as the diameter of the original ball. A contradiction.

We now show that every smooth d dimensional set can be cut into d + 1 sets of smaller
diameter. We first give a formal definition of smooth bodies in R

d.

Definition 3. A set S in R
d is smooth if it is closed and for every point a on its boundary,

there is an ǫ such that there exists a f isomorphism and continuously differentiable from
[0, 1]d−1 to the intersection of the boundary of S and the ball B(a, ǫ), i.e. the ball centered
at a with diameter ǫ.

Theorem 8. For any bounded smooth set S in R
d , b(S) ≤ d + 1 .

Proof. For each point a of the boundary of the set S, consider the unit vector orthogonal to
the tangent hyperplane at a that has the direction outward of the set. We call this tangent
vector of a. Because the set is smooth, for each point on the boundary, there is an unique
tangent vector.

The main observation in the proof is that if a, b are two points whose distance is the
diameter of S then their tangent vectors are antipodal. Consider the mapping f maps each
point a on the boundary of S to a point on the boundary of the ball corresponding to a’s
tangent vector. Because S is smooth, f is a continuous mapping. It satisfies the following
property: if the Euclidean distance between a and b : l(a, b) = diam(S) then the distance
between f(a) and f(b) is also the diameter of the ball. By the theorem above, we can
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cut the boundary of the ball into d + 1 sets of smaller diameter, thus the inverse image of
these sets define a partition of ∂(S) into d + 1 sets of smaller diameter. Call this partition
A1, ..., Ad+1.

Figure 3: Tangent vectors

We now define a partition of S as follows: For every s ∈ int(S), put s in the same
set with Ai if the distance from s to Ai is the smallest among A1, .., Ad+1, we break tie
arbitrarily. We call this partition B1, ..., Bd+1.

We need to show that by this way, we partition S in d + 1 parts of smaller diameter.
Assume by contradiction that there is a sequence (ai, bi) such that ai, bi are in the same
set, say B1 and limi l(ai, bi) → diam(S). Because S is bounded and closed, there exists a
subsequence (aki

, bki
) such that limi aki

→ a;limi bki
→ b; and l(a, b) = diam(S). Now, we

know that the maximum distance of a closed set can be achieved only at two points on the
boundary. Thus ai, bi are in ∂(S). If both of them are in A1, then we have a contradiction,
because diam(A1) < diam(S). Assume now that a /∈ A1. We will show that there is a
sequence a′i ∈ A1 such that limi a′i → a, and it is similar for the case b /∈ A1. By this way,
we can still obtain the contradiction that diam(A1) = diam(S).

The reason that such a sequence a′i exists is simple. Because aki
∈ B1, by the definition

of B1, there is an a′i ∈ A1 such that l(aki
, a) ≥ l(aki

, a′i). But then l(a, a′i) ≤ l(aki
, a) +

l(aki
, a′i) ≤ 2l(aki

, a). However limi l(aki
, a) → 0, thus limi l(a′i, a) → 0 meaning limi a

′
i → a.

This is what we need to show.

As discussed above, the most general form of Borsuk’s conjecture is not true. We now
describe a version of the counter example given by Kahn and Kalai in 1993 [3].

Theorem 9. For d >> 1 there exists X non-smooth such that b(X) ≥ (1.01)
√

d.

Proof. Kahn-Kalai’s construction uses a theorem of Frankl and Wilson about the size of a
set of some vectors such that there do not exist two orthogonal vectors. It implies that in
order to partition this set of vectors into sets not containing orthogonal vectors, we need to
use “many” sets. This type of statement is similar to a statement that we need to construct
a counter example for the Borsuk’s conjecture, except that the “metric” in Frankl-Wilson’s
theorem is not an Euclidean metric. To connect different metrics, we need the following
simple claim:
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Claim: X,Y metric spaces, f : X → Y s.t if d(x, x′) = diamX then d(f(x), f(x′)) =
diamY . Then b(X) ≤ b(f(X)).

Proof of the claim: The proof is simple, given a good partition on Y (by good par-
tition, we mean a partition that reduces the diameter of the original set), we can define a
partition on X as the inverse image of f . Because of the condition on f , it is clear that this
partition is also a good partition of X.

Now, let RPn−1 be the collection of lines through origin in R
n, and define a metric between

two lines as the angle between them. The maximum distance in this metric is π
2 .

Let X = {−→v ∈ {±1}n, v1 = 1, the number of 1’s in −→v is even}.

We have: |X| = 2n−2, diam(X) = π
2 and A ⊂ X, diam(A) < π

2 ⇐⇒ ∀u, v ∈ A uT v 6= 0.
We use the following theorem of Frankl and Wilson:

(Frankl-Wilson): Let p be an odd prime number, and put n = 4p. If A ⊆ X
and aT a′ 6= 0 for all a, a′ ∈ A, then |A| ≤

∑p−1
j=0

(n
j

)

.

For now, assume that Frankl-Wilson’s theorem is true, we will show how this leads to a
counter example of Borsuk’s conjecture. In order to have a partition with smaller diameter
on X, we need at least

2(n−2)

∑p−1
j=0

(n
j

)
sets.

Here n = 4p, and thus we have :
∑p−1

j=0

(

n
j

)

< n
4

(

n
n/4

)

< (1.9)n. Therefore,

b(X) ≥
|X|

(1.9)n
=

2n−2

(1.9)n
> (1.01)n, where n is big enough.

We now need to define a mapping from X to a Euclidean space. The mapping is defined as
follows: f : RPn → R

n2
, here the dimension of the space is d = n2.

f(x) = x × xT , where the length of x is 1

Given z ∈ R
n2

: ||z||2 =
∑

z2
ij = tr(zzT ), we have:

d(f(x), f(y))2 = ||xxT − yyT ||2 = tr((xxT − yyT )2)

= tr(xxTxxT ) = tr(yyTyyT ) − tr(xxTyyT ) − tr(yyT xxT )

= ||x||4 + ||y||4 − 2(xT y)2 = 2(1 − (xT y)2)

Thus, d(x, y) = diam(X) ⇐⇒ xT y = 0 ⇐⇒ d(f(x), d(f(y))) = diamf(X). Therefore as

proved above b(f(X)) ≥ b(X) ≥ (1.01)n = (1.01)
√

d

For the completeness, we now provide a proof of Frankl-Wilson’s theorem.
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Theorem 10 (Frankl-Wilson). Let p be an odd prime number, and put n = 4p. Define

X = {−→v ∈ {±1}n, v1 = 1, the number of 1’s in −→v is even}.

If A ⊆ X and a · a′ 6= 0 for all a, a′ ∈ A, then |A| ≤
∑p−1

j=0

(n
j

)

.

Proof. It is clear that a · a = n, which is divisible by p. For a 6= a′, we first show that a · a′

cannot be divisible by p.
Given a 6= a′, we can partition [n] into the following four parts:

B1 = {i ∈ [n] : ai = 1, a′i = 1}, B2 = {i ∈ [n] : ai = 1, a′i = −1},

B3 = {i ∈ [n] : ai = −1, a′i = 1}, B4 = {i ∈ [n] : ai = −1, a′i = −1}.

Let α = |B1|, β = |B2|, γ = |B3|, and δ = |B4|. Then

a · a′ = α − β − γ + δ = (α + β + δ + γ) − 2(β + γ) = 4p − 2(β + γ).

By the definition of X:
2 | γ + δ, 2 | δ + β,

We have 2 | β + γ. Therefore, 4 | a · a′. Suppose that p | a · a′, then the only choices for
a · a′ are −n, n or 0. However,

a 6= a′ ⇒ a · a′ < n,

By the definition of A, a · a′ 6= 0. We also have that a and a′ agree on the first coordinate
⇒ a · a′ > −n, therefore a · a′ cannot be divisible by p.

Now for each a ∈ A, we define a polynomial fa ∈ Zp[X]:

fa(x) =

p−1
∏

j=1

(a · x − j), for x ∈ X.

From what we have proved above, it is straightforward to see that fa(a
′) 6= 0 if and only if

a = a′.
Expanding fa(x), we put

fa(x) =
∑

α

βαxα, where α = (α1, . . . , αℓ), and xα := xα1
1 · · · xαℓ

ℓ .

Then we apply the following technique called multi-linearization: replace all xk
i in fa(x)

by xi if k is odd, and by 1 if k is even. Denote the resulting polynomial as ga(x), then each
ga(x) is square free. Let V be the set of all square free polynomials over Zp on n variables
with degree at most p−1, then each ga(x) is a member of V and they are pairwise different
(as ga(a

′) 6= 0 ⇔ a = a′). But since the dimension of V is exactly
∑p−1

j=0

(n
j

)

, if we can
show that ga(x)’s are linearly independent in V , then the theorem follows. But this is
straightforward: suppose

∑

a αaga = 0, then
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0 = 0(a′) =
∑

a

αaga(a
′) = αa′ga′(a′),

as ga′(a′) 6= 0, we get αa′ = 0. This is true for every a′, so ga(x)’s are linearly independent
on V , and therefore

|A| ≤ dim V =

p−1
∑

j=0

(

n

j

)

.
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