1 The Main Example

Consider the dual pair $(S p(m, \mathbb{R}), O(p, q)) \subset S p(m n, \mathbb{R})$, with $n=p+q$, and $p \geq q \geq m$. The last condition asserts that we are in the stable case. Let $P=M N$ be the Siegel parabolic subgroup of $S p(m, \mathbb{R})$. In the theory of the oscillator representation there are very explicit formulas for the action of $P \times O(p, q)$ on $L^{2}\left(\mathbb{R}^{m n}\right)$. Of course this action doesn't extend to a representation of $S p(m, \mathbb{R}) \times O(p, q)$, we would need to go to the double cover to do that, but it does extend to a projective representation of $\operatorname{Sp}(m, \mathbb{R}) \times O(p, q)$. To write down this explicit action we will identify $\mathbb{R}^{m n}$ with $\operatorname{Hom}\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right)$, and we will fix a unitary character χ of \mathbb{R}. The action is then given by

$$
\begin{align*}
\left(\left[\begin{array}{cc}
I & X \\
& I
\end{array}\right] \cdot \varphi\right)(T) & =\chi\left(\operatorname{tr} X T^{t} I_{p, q} T\right) \varphi(T) \tag{1}\\
\left(\left[\begin{array}{cc}
A & \\
& A^{-t}
\end{array}\right] \cdot \varphi\right)(T) & =|\operatorname{det} A|^{\frac{n}{2}} \varphi(T A), \quad A \in G L(m, \mathbb{R}) \tag{2}\\
(g \cdot \varphi)(T) & =\varphi\left(g^{-1} T\right), \quad g \in O(p, q) \tag{3}
\end{align*}
$$

Using this formulas we want to describe $L^{2}\left(\operatorname{Hom}\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right)\right)$ as a representation of $P \times O(p, q)$. Let

$$
U=\left\{\begin{array}{l|l}
T \in \operatorname{Hom}\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right) & \begin{array}{c}
T \text { is of maximal rank and the inner } \\
\text { product on } T\left(\mathbb{R}^{m}\right) \text { is non-degenerated }
\end{array}
\end{array}\right\}
$$

Observe that $U \subset \operatorname{Hom}\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right)$ is open, dense, and $P \times O(p, q)$-invariant. Let $r, s \geq 0$ be a pair of integers such that $r+s=m$, and define

$$
U_{r, s}=\left\{T \in U \mid T\left(\mathbb{R}^{m}\right) \text { has signature }(r, s)\right\}
$$

It's clear that

$$
U=\bigcup_{r+s=m} U_{r, s}
$$

and the $U_{r, s}$ are the open orbits of the action of $P \times O(p, q)$ on $\operatorname{Hom}\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right)$, hence as a $P \times O(p, q)$-module

$$
\begin{equation*}
L^{2}\left(\operatorname{Hom}\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right)\right) \cong \bigoplus_{r+s=m} L^{2}\left(U_{r, s}\right) \tag{4}
\end{equation*}
$$

We will now describe $L^{2}\left(U_{r, s}\right)$ as a $P \times O(p, q)$-module. Let $T_{r, s} \in U_{r, s}$ be given by $T_{r, s} e_{i}=e_{p-r+i}$, and define a character $\chi_{r, s}$ on N by the formula

$$
\chi_{r, s}\left(\left[\begin{array}{cc}
I & X \\
& I
\end{array}\right]\right)=\chi\left(\operatorname{tr} X T_{r, s}^{t} I_{p, q} T_{r, s}\right)=\chi\left(\operatorname{tr} X I_{r, s}\right)
$$

Let $H_{r, s}$ be the stabilizer of $T_{r, s}$ in $M \times O(p, q)$. Then

$$
\begin{align*}
L^{2}\left(U_{r, s}\right) & \cong \operatorname{Ind}_{H_{r, s} N}^{P \times O(p, q)} \chi_{r, s} \\
& \cong \operatorname{Ind}_{O(r, s) N \times O(r, s) \times O(p-r, q-s)}^{\left.P \times O()^{2}\right)} \operatorname{Ind}_{H_{r, s} N}^{O(r, s) N \times O(r, s) \times O(p-r, q-s)} \chi_{r, s} \\
& \cong \operatorname{Ind}_{O(r, s) N \times O(r, s) \times O(p-r, q-s)}^{P \times O(p, q)} \int_{O(\hat{r}, s)} \tau^{*} \chi_{r, s} \otimes \tau \otimes 1 d \nu(\tau) \\
& \cong \int_{O(\hat{r}, s)} \operatorname{Ind}_{O(r, s) N}^{P} \tau^{*} \chi_{r, s} \otimes \operatorname{Ind}_{O(r, s) \times O(p-r, q-s)}^{O(p, q)} \tau \otimes 1 d \nu(\tau) \tag{5}
\end{align*}
$$

Now from (4) and (5)

$$
\begin{align*}
& L^{2}\left(\operatorname{Hom}\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right)\right) \cong \\
& \quad \bigoplus_{r+s=m} \int_{O(\hat{r}, s)} \operatorname{Ind}_{O(r, s) N}^{P} \tau^{*} \chi_{r, s} \otimes \operatorname{Ind}_{O(r, s) \times O(p-r, q-s)}^{O(p, q)} \tau \otimes 1 d \nu(\tau) \tag{6}
\end{align*}
$$

Now as a representation of $O(r, s) \times O(p, q)$

$$
\begin{align*}
\operatorname{Ind}_{O(p-r, q-s)}^{O(p, q)} 1 & \cong \operatorname{Ind}_{O(r, s) \times O(r, s) \times O(p-r, q-s)}^{O(r, s) \times O(p, q)} \operatorname{Ind}_{\Delta O(r, s) \times O(p-r, q-s)}^{O(r, s) \times O(r, s) \times O(p-r, q-s)} 1 \otimes 1 \\
& \cong \operatorname{Ind}_{O(r, s) \times O(r, s) \times O(p-r, q-s)}^{O(r, s) \times O(p, q)} \int_{O(\hat{r}, s)} \tau^{*} \otimes \tau \otimes 1 d \nu(\tau) \\
& \cong \int_{O(\hat{r}, s)} \tau^{*} \otimes \operatorname{Ind}_{O(r, s) \times O(p-r, q-s)}^{O(p, q)} \tau \otimes 1 d \nu(\tau) \\
& \cong \int_{O(\hat{r}, s)} \tau^{*} \otimes \int_{O(\hat{p}, q)} M_{\tau, r, s}(\pi) \otimes \pi d \tilde{\eta}(\pi) d \nu(\tau) \\
& \cong \int_{O(\hat{p}, q)} \int_{O(\hat{r}, s)} \tau^{*} \otimes M_{\tau, r, s}(\pi) \otimes \pi d \nu(\tau) d \tilde{\eta}(\pi) \tag{7}
\end{align*}
$$

On the other hand as a representation of $O(p, q)$ the space $\operatorname{Ind}_{O(p-r, q-s)}^{O(p, q)} 1$ has been described in the work of Delorme, Schlichtkrull and Van Den Ban as

$$
\begin{equation*}
\operatorname{Ind}_{O(p-r, q-s)}^{O(p, q)} 1=\int_{O(\hat{p}, q)} M_{r, s}(\pi) \otimes \pi d \eta(\pi) \tag{8}
\end{equation*}
$$

From (7) and (8)

$$
M_{r, s}(\pi) \cong \int_{O(\hat{r}, s)} \tau^{*} \otimes M_{\tau, r, s}(\pi) d \nu(\tau)
$$

and $\tilde{\eta}$ is in the same measure class as η. From all this and (6)

$$
\begin{align*}
L^{2}(& \left.\operatorname{Hom}\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right)\right) \cong \\
& \bigoplus_{r+s=m} \int_{O(\hat{r}, s)} \operatorname{Ind}_{O(r, s) N}^{P} \tau^{*} \chi_{r, s} \otimes \int_{O(\hat{p}, q)} M_{\tau, r, s}(\pi) \otimes \pi d \nu(\tau) d \eta(\pi) \cong \\
& \bigoplus_{r+s=m} \int_{O(\hat{p}, q)} \int_{O(\hat{r}, s)} M_{\tau, r, s}(\pi) \otimes \operatorname{Ind}_{O(r, s) N}^{P} \tau^{*} \chi_{r, s} \otimes \pi d \nu(\tau) d \eta(\pi) \tag{9}
\end{align*}
$$

On the other hand, the abstract theory of Howe duality establishes that as a $P \times O(p, q)$-module

$$
\begin{equation*}
\left.L^{2}\left(H o m\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right)\right) \cong \int_{S p(\hat{m}, \mathbb{R})} \pi\right|_{P} \otimes \Theta(\pi) d \mu(\pi) \tag{10}
\end{equation*}
$$

Since we are working on the stable range, we know that μ is the Plancherel measure for $S p(m, \mathbb{R})$. The representation $\Theta(\pi)$ has been determined by the work of Jian-Shu Li among others. We are thus left with the problem of decomposing an irreducible tempered representation of $S p(m, \mathbb{R})$ when restricted to P.

Let G be a Lie group of tube type, and let $P=M N$ be a parabolic subgroup such that N is abelian. We will look at $L^{2}(G)$ as a $P \times G$-module. We have an isomorphism

$$
L^{2}(G) \cong L^{2}(\hat{N}, E, \eta)
$$

with $E_{\chi} \cong \operatorname{Ind}_{N}^{P} \operatorname{End}(\chi)$ given in the following way: Given $f \in L^{2}(G)$, define $s_{f} \in L^{2}(\hat{N}, E, \eta)$ by

$$
s_{f}(\chi)(g)=\int_{N} \chi(n)^{-1} f(n g) d n
$$

Where $d \eta(n)=d n$ is the usual Lebesgue measure on N. Then

$$
\begin{aligned}
s_{R_{g_{1}} f}(\chi)(g) & =\int_{N} \chi(n)^{-1} R_{g_{1}} f(n g) d n=\int_{N} \chi(n)^{-1} f\left(n g g_{1}\right) d n \\
& =s_{f}(\chi)\left(g g_{1}\right)=\left(R_{g_{1}} s_{f}(\chi)\right)(g)
\end{aligned}
$$

and

$$
\begin{aligned}
s_{L_{p} f}(\chi)(g) & =\int_{N} \chi(n)^{-1} L_{p} f(n g) d n=\int_{N} \chi(n)^{-1} f\left(p^{-1} n p p^{-1} g\right) d n \\
& =\int_{N} \chi\left(p n p^{-1}\right)^{-1} \delta(p) f\left(n p^{-1} g\right) d n \\
& =\int_{N}\left(p^{-1} \chi\right)(n)^{-1} \delta(p) f\left(n p^{-1} g\right) d n \\
& =\delta(p) s_{f}\left(p^{-1} \chi\right)\left(p^{-1} g\right)=\left[\delta(p) L_{p} s_{f}\left(p^{-1} \chi\right)\right](g)
\end{aligned}
$$

This means that the action of $P \times G$ on $L^{2}(\hat{N}, E, \eta)$ is given by a vector bundle action, and hence, if Ω is the set of open orbits for the action of M on N, then

$$
\begin{align*}
L^{2}(G) & \cong L^{2}(\hat{N}, E, \eta) \cong \bigoplus_{\chi \in \Omega} \operatorname{Ind}_{M_{\chi} N \times G}^{P \times G}\left(\operatorname{Ind}_{N}^{P} \operatorname{End}(\chi)\right) \\
& \cong \bigoplus_{\chi \in \Omega} \operatorname{Ind}_{M_{\chi} N \times G}^{P \times G} \int_{\hat{M}_{\chi}} \tau^{*} \chi^{*} \otimes \operatorname{Ind}_{M_{\chi} N}^{G} \tau \chi d \nu(\tau) \\
& \cong \bigoplus_{\chi \in \Omega} \int_{\hat{M}_{\chi}} \operatorname{Ind}_{M_{\chi} N}^{P} \tau^{*} \chi^{*} \otimes L^{2}\left(M_{\chi} N \backslash G ; \tau \chi\right) d \nu(\tau) \\
& \cong \bigoplus_{\chi \in \Omega} \int_{\hat{M}_{\chi}} \operatorname{Ind}_{M_{\chi} N}^{P} \tau^{*} \chi^{*} \otimes \int_{\hat{G}} W_{\chi, \tau}(\pi) \otimes \pi d \nu(\tau) d \tilde{\mu}(\pi) \\
& \cong \bigoplus_{\chi \in \Omega} \int_{\hat{G}} \int_{\hat{M}_{\chi}} W_{\chi, \tau}(\pi) \otimes \operatorname{Ind}_{M_{\chi} N}^{P} \tau^{*} \chi^{*} \otimes \pi d \nu(\tau) d \tilde{\mu}(\pi) \tag{11}
\end{align*}
$$

On the other hand, the Harish-Chandra Plancherel theorem says that

$$
\begin{equation*}
\left.L^{2}(G) \cong \int_{\hat{G}} \pi^{*}\right|_{P} \otimes \pi d \mu(\pi) \tag{12}
\end{equation*}
$$

Hence from (11) and (12) $\tilde{\mu}$ is in the measure class of μ and

$$
\begin{equation*}
\left.\pi^{*}\right|_{P} \cong \bigoplus_{\chi \in \Omega} \int_{\hat{M}_{\chi}} W_{\chi, \tau}(\pi) \otimes \operatorname{Ind}_{M_{\chi} N}^{P} \tau^{*} \chi^{*} d \nu(\tau) \tag{13}
\end{equation*}
$$

Also observe that as an $M_{\chi} N \times G$-module

$$
\begin{align*}
L^{2}(N \backslash G ; \chi) & \cong \operatorname{Ind}_{M_{\chi} N \times M_{\chi} N}^{M_{\chi} N \times G} \operatorname{Ind}_{N \times N}^{M_{\chi} N \times M_{\chi} N} \chi^{*} \otimes \chi \\
& \cong \operatorname{Ind}_{M_{\chi} N \times M_{\chi} N}^{M_{\chi} N \times G} \int_{\hat{M}_{\chi}} \tau^{*} \chi * \otimes \tau \otimes \chi d \nu(\tau) \\
& \cong \int_{\hat{M}_{\chi}} \tau^{*} \chi * \otimes \operatorname{Ind}_{M_{\chi} N}^{G} \tau \chi d \nu(\tau) \\
& \cong \int_{\hat{M}_{\chi}} \tau^{*} \chi * \otimes \int_{\hat{G}} W_{\chi, \tau}(\pi) \otimes \pi d \nu(\tau) d \mu(\pi) \\
& \cong \int_{\hat{G}} \int_{\hat{M}_{\chi}} W_{\chi, \tau}(\pi) \otimes \tau^{*} \chi * \otimes \pi d \nu(\tau) d \mu(\pi) \tag{14}
\end{align*}
$$

Returning to the case $G=S p(m, \mathbb{R})$, equation (13) reads

$$
\begin{equation*}
\left.\pi^{*}\right|_{P} \cong \bigoplus_{r+s=m} \int_{O(\hat{r}, s)} W_{\chi_{r, s}, \tau}(\pi) \otimes \operatorname{Ind}_{O(r, s) N}^{P} \tau^{*} \chi_{r, s}^{*} d \nu(\tau) \tag{15}
\end{equation*}
$$

From this and equation (10)

$$
\begin{aligned}
& \left.L^{2}\left(\operatorname{Hom}\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right)\right) \cong \int_{S p(\hat{m}, \mathbb{R})} \pi^{*}\right|_{P} \otimes \Theta\left(\pi^{*}\right) d \mu(\pi) \\
& \quad \cong \int_{S p(\hat{m}, \mathbb{R})} \bigoplus_{r+s=m} \int_{O(\hat{r}, s)} W_{\chi_{r, s}, \tau}(\pi) \otimes \operatorname{Ind}_{O(r, s) N}^{P} \tau^{*} \chi_{r, s}^{*} \otimes \Theta\left(\pi^{*}\right) d \nu(\tau) d \mu(\pi) \\
& \quad \cong \bigoplus_{r+s=m} \int_{S p(\hat{m}, \mathbb{R})} \int_{O(\hat{r}, s)} W_{\chi_{r, s}, \tau}(\pi) \otimes \operatorname{Ind}_{O(r, s) N}^{P} \tau^{*} \chi_{r, s}^{*} \otimes \Theta\left(\pi^{*}\right) d \nu(\tau) d \mu(\pi)
\end{aligned}
$$

Now from above equation and equation (9)

$$
\begin{aligned}
& \bigoplus_{r+s=m} \int_{O(\hat{p}, q)} \int_{O(\hat{r}, s)} M_{\tau, r, s}(\pi) \otimes \operatorname{Ind}_{O(r, s) N}^{P} \tau^{*} \chi_{r, s}^{*} \otimes \pi d \nu(\tau) d \eta(\pi) \cong \\
& \bigoplus_{r+s=m} \int_{S p(\hat{m}, \mathbb{R})} \int_{O(\hat{r}, s)} W_{\chi_{r, s}, \tau}(\pi) \otimes \operatorname{Ind}_{O(r, s) N}^{P} \tau^{*} \chi_{r, s}^{*} \otimes \Theta\left(\pi^{*}\right) d \nu(\tau) d \mu(\pi)
\end{aligned}
$$

Hence

$$
\begin{equation*}
W_{\chi_{r, s}, \tau}(\pi) \cong M_{\tau, r, s}\left(\Theta\left(\pi^{*}\right)\right) \tag{16}
\end{equation*}
$$

and η is the pullback of μ under the map

$$
\Theta: S p(\hat{m}, \mathbb{R}) \longrightarrow O(\hat{p}, q)
$$

Putting everything together we obtain the following interesting formulas:

$$
\begin{aligned}
\operatorname{Ind}_{O(p-r, q-s)}^{O(p, q)} 1 & \cong \int_{O(\hat{p}, q)} \int_{O(\hat{r}, s)} \tau^{*} \otimes M_{\tau, r, s}(\pi) \otimes \pi d \nu(\tau) d \tilde{\eta}(\pi) \\
& \cong \int_{S p(\hat{m}, \mathbb{R})} \int_{O(\hat{r}, s)} W_{\chi_{r, s}, \tau}(\pi) \otimes \tau^{*} \otimes \Theta\left(\pi^{*}\right) d \nu(\tau) d \mu(\pi)
\end{aligned}
$$

and

$$
\begin{equation*}
L^{2}\left(N \backslash S p(m, \mathbb{R}) ; \chi_{r, s}\right) \cong \int_{S p(\hat{m}, \mathbb{R})} \int_{O(\hat{r}, s)} W_{\chi_{r, s}, \tau}(\pi) \otimes \tau^{*} \otimes \pi d \nu(\tau) d \mu(\pi) \tag{17}
\end{equation*}
$$

And also the equations

$$
\begin{aligned}
& L^{2}\left(\operatorname{Hom}\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right)\right) \cong \\
& \quad \bigoplus_{r+s=m} \int_{S p(\hat{m}, \mathbb{R})} \int_{O(\hat{r}, s)} W_{\chi_{r, s}, \tau}(\pi) \otimes \operatorname{Ind}_{M_{\chi} N}^{P} \tau^{*} \chi_{r, s}^{*} \otimes \Theta\left(\pi^{*}\right) d \nu(\tau) d \mu(\pi)
\end{aligned}
$$

and

$$
\begin{aligned}
& L^{2}(S p(m, \mathbb{R})) \cong \\
& \quad \bigoplus_{r+s=m} \int_{S p(\hat{m}, \mathbb{R})} \int_{O(\hat{r}, s)} W_{\chi_{r, s}, \tau}(\pi) \otimes \operatorname{Ind}_{M_{\chi} N}^{P} \tau^{*} \chi_{r, s}^{*} \otimes \pi d \nu(\tau) d \mu(\pi)
\end{aligned}
$$

We are thus left with the calculation of $W_{\chi_{r, s}, \tau}$. We conjecture that

$$
W_{\chi_{r, s}, \tau}(\pi) \cong W h_{\chi_{r, s}, \tau}(\pi)
$$

where

$$
W h_{\chi_{r, s}, \tau}(\pi):=\left\{\lambda: \pi^{\infty} \longrightarrow \tau^{\infty} \left\lvert\, \begin{array}{c}
\lambda(\pi(m n) v)=\chi_{r, s}(n) \tau(m) \lambda(v) \\
\text { for all } m \in M_{\chi_{r, s}} \cong O(r, s), n \in N
\end{array}\right.\right\}
$$

